

Volume: 09 Issue: 11 | Nov - 2025 SJIF Rating: 8.586 **ISSN: 2582-3930**

AI FOR PREDICTING WATER WASTAGE & SUGGESTING REDUCTION STRATEGIES

<u>AUTHORS</u>: Manish Markandey [Email: get1pet@gmail.com]

Dr. Ranu Pandey [Email : ranu pandey8@hotmail.com]

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING SHRI RAVATPURA SARKAR UNIVERSITY , RAIPUR (C.G)

ABSTRACT

Water scarcity has emerged as one of the most critical environmental challenges of the 21st century. Rapid urbanization, industrial expansion, agricultural intensification, and climate change have significantly affected the availability of freshwater resources. At the same time, human activities continue to contribute to large-scale water wastage due to leakage, inefficiency, poor infrastructure, and lack of awareness. Traditional approaches to water monitoring rely on manual inspections or periodic meter readings, which are incapable of identifying real-time wastage. Artificial Intelligence (AI), in combination with IoT-based smart water meters, offers an intelligent solution for detecting water wastage, analyzing consumption patterns, predicting future usage, and providing suggestions for water conservation.

This research proposes an AI-driven approach for predicting water wastage through forecasting algorithms, anomaly detection models, and sensor-based monitoring systems. The study examines how real-time data from households, industries, and municipal water networks can be analyzed using machine learning techniques to identify unusual consumption, detect leaks, and recommend strategies to minimize wastage. This project highlights the potential of AI to transform the traditional water management landscape, enabling sustainability, cost reduction, and improved decision-making for consumers and administrations. The ultimate goal is to develop a system that contributes to environmental protection and supports the global mission of efficient water use.

Keywords: Artificial Intelligence, Water Wastage, Smart Water Meter, IoT Sensors, Forecasting Models, LSTM, Anomaly Detection, Leak Prediction, Resource Management, Smart Cities,

INTRODUCTION

Water is universally recognized as the foundation of life, yet it is one of the most undervalued and mismanaged resources. As global population levels rise and the demand for water intensifies, the pressure on freshwater systems continues to grow. According to global studies, nearly **2.1 billion people** lack access to safely managed drinking water, and this number is expected to increase due to climate variation, pollution, and depletion of natural water sources. Urban areas suffer from excessive consumption and outdated water infrastructure, while rural areas often face scarcity due to inadequate supply systems.

One of the major contributors to water scarcity is **water wastage**, which occurs in several forms: household leakage, irrigation overflow, industrial processing inefficiencies, poorly maintained pipelines, and uninformed consumption behavior. Traditional water monitoring systems often depend on manual readings, monthly billing cycles, and reactive maintenance, which means wastage remains undetected for long periods. These outdated methods do not reflect real-time usage, nor do they support predictive decision-making.

Artificial Intelligence (AI) has become a transformative technology that can revolutionize water management and conservation efforts. AI allows the analysis of large-scale data collected from smart meters, IoT sensors, and water flow

© 2025, IJSREM | <u>https://ijsrem.com</u> DOI: 10.55041/IJSREM54198 | Page 1

Volume: 09 Issue: 11 | Nov - 2025 SJIF Rating: 8.586 **ISSN: 2582-3930**

devices, providing insights into consumption patterns, leakage detection, and future demand forecasting. By integrating AI-based techniques with existing water infrastructure, it becomes possible to identify hidden leakage, detect abnormal usage instantly, and implement intelligent strategies for reducing water wastage.

This project provides a detailed analysis of how AI can support sustainable water usage by offering predictive analytics, early warning systems, and personalized recommendations. The integration of advanced algorithms, sensor networks, and cloud-based monitoring contributes to better planning and efficient management of water resources. This initiative aligns with global efforts such as the United Nations Sustainable Development Goals (SDG 6 – Clean Water and Sanitation), aiming to ensure availability and sustainable management of water for all.

Problem Statement

Despite increased awareness about water conservation, a significant amount of water continues to be wasted globally due to ineffective monitoring and lack of intelligent prediction systems. Some common issues include:

1. Absence of Real-Time Monitoring

Most households and institutions rely on monthly water bills, which do not provide timely information about daily or hourly consumption. As a result, users are unaware of excessive usage or hidden leaks.

2. Manual Detection of Leakage

Leakages in toilets, pipelines, underground systems, and industrial machines often remain unnoticed for weeks or months. Manual inspections cannot detect early-stage leakage, leading to unnecessary water loss.

3. Inefficient Water Distribution

Municipalities struggle with pipeline losses, inaccurate demand forecasting, and outdated distribution networks. Many cities lose nearly 30–40% of their water due to leakage and unauthorized usage.

4. Agricultural Wastage

Traditional irrigation methods often lead to overwatering, which wastes both water and energy. Without predictive monitoring, farmers cannot optimize irrigation cycles.

5. Industrial Inefficiency

Industries use large quantities of water, yet many lack advanced monitoring mechanisms to identify wastage or detect equipment malfunction causing abnormal water flow.

These limitations clearly show the need for an intelligent solution that utilizes AI-based forecasting, anomaly detection, pattern recognition, and recommendation systems to minimize water wastage. This project aims to solve these issues by developing a predictive, automated, and sustainable water monitoring system.

RELATED WORK

Over the past decade, AI has been widely explored for improving water management systems. Many researchers have developed models to analyze consumption patterns and detect leakage in water networks. Key works include:

- **IoT-based Smart Water Monitoring Systems**: Several studies propose the use of IoT sensors to collect real-time flow data. These systems improve monitoring but lack advanced predictive features.
- **ARIMA-based Forecasting Models**: Researchers have used ARIMA models to predict residential water demand. However, ARIMA struggles with non-linear patterns.

© 2025, IJSREM | https://ijsrem.com DOI: 10.55041/IJSREM54198 | Page 2

Volume: 09 Issue: 11 | Nov - 2025 SJIF Rating: 8.586 **ISSN: 2582-3930**

- **Deep Learning Approaches**: Models such as LSTM and GRU have been applied in different regions to forecast water demand based on climate and consumption patterns.
- **Anomaly Detection Algorithms**: Methods like Isolation Forest and K-Means clustering have been used to identify leakages in underground pipelines.
- **Smart City Project Implementations**: Countries like Singapore, Japan, and the United States have deployed AI-based smart water grids to reduce losses in municipal distribution.

Although these studies provide a foundation, existing solutions often focus on only one aspect—either forecasting or anomaly detection. This project integrates multiple approaches to create a complete system.

Real World Work of AI for Predicting Water Wastage Smart Homes and Residential Water Monitoring

AI systems can track water usage in real time, send mobile alerts for unusual consumption, detect leakage in toilets, and analyze individual appliance usage patterns.

Industrial Consumption Optimization

Industries use AI systems to monitor cooling systems, boilers, production lines, and equipment. Even minor inefficiencies can lead to large-scale water wastage, and AI helps detect such issues early.

Agricultural Smart Irrigation

AI-powered irrigation systems analyze soil moisture levels, crop requirements, weather forecasts, and sunlight exposure to adjust water supply, minimizing wastage.

Municipal Water Infrastructure Management

Cities use AI-based GIS tools to map pipeline networks, simulate water flow, detect underground leakage, and prioritize repair work.

Hotels, Hospitals & Commercial Buildings

AI helps track bathroom and kitchen water usage, detect faulty valves, and optimize supply schedules for large facilities.

These applications demonstrate how AI is actively contributing to global water sustainability efforts.

METHODOLOGY

The complete methodology for the AI-based water wastage prediction system includes:

1. Data Collection

- Smart water meters
- IoT sensors
- Municipal distribution logs
- Weather data (humidity, temperature, rainfall)
- User behavior patterns

2. Preprocessing & Data Cleaning

- Missing value reconstruction
- Outlier detection and removal

© 2025, IJSREM | https://ijsrem.com DOI: 10.55041/IJSREM54198 | Page 3

Volume: 09 Issue: 11 | Nov - 2025 SJIF Rating: 8.586 **ISSN: 2582-3930**

- Normalization and scaling
- Feature-time alignment

3. Feature Engineering

- Time-of-day usage
- Weekly and seasonal trends
- Month-wise consumption
- Peak hour patterns
- Pressure and flow variations

4. Forecasting Algorithms

- **ARIMA:** Best for short-term trends
- LSTM: Learns long-term dependencies
- Random Forest Regression: Handles nonlinearities
- **GRU:** Faster and more efficient version of LSTM

5. Anomaly Detection Algorithms

- **Isolation Forest**: Detects sudden surges
- One-Class SVM: Identifies outliers
- Local Outlier Factor (LOF): Measures density anomalies
- Statistical Rule-Based Methods

6. Recommendation Engine

The system provides personalized suggestions such as:

- Replace leaking taps
- Reduce irrigation frequency
- Repair broken pipes
- Install pressure regulators
- Optimize bathroom/kitchen usage

7. Alert & Dashboard System

Real-time alerts through:

- Mobile app
- Dashboard
- Email notifications

© 2025, IJSREM | https://ijsrem.com DOI: 10.55041/IJSREM54198 | Page 4

Volume: 09 Issue: 11 | Nov - 2025 SJIF Rating: 8.586 **ISSN: 2582-3930**

CONCLUSION

Water is one of the most critical natural resources, and its conservation must be prioritized across all sectors. This project demonstrates how AI can play a transformative role in reducing water wastage through forecasting models, anomaly detection, and intelligent recommendation systems. AI-powered water monitoring improves user awareness, enhances municipal planning, and supports global sustainability goals. With ongoing advancements, AI-based systems can be integrated with automated valve control, drone surveillance, GIS pipelines, and advanced cloud-based dashboards to revolutionize modern water management.

RESEARCH PAPERS AND JOURNALS

- International Journal of Water Resource Management
- Elsevier: Smart Water Analytics
- IEEE Transactions on Sustainable Computing
- Springer Water Engineering Studies
- MDPI Water Conservation Journals
- Journal of Environmental Systems Research
- Journal of Hydro informatics
- Artificial Intelligence in Water Prediction IEEE
- Water Resource Technology Letters
- Sustainable Water Research Journal

WEBSITES AND ONLINE RESOURCES

- · water.org
- unwater.org
- smartwatermagazine.com
- hydrologyinfo.com
- environmental-dashboard.com
- ai-water-systems.io
- data.gov water datasets
- municipalwaterworks.org
- openwaterresearch.net
- smartcityresourcehub.com

REPORTS

- UN World Water Development Report
- Global Water Intelligence Annual Report
- National Smart Water Mission Report
- Ministry of Water Resources Annual Report
- Smart City Water Sustainability Report
- Industrial Water Usage Report
- World Bank Water Solutions Report
- Sustainable Development Goal (SDG 6) Report

SURVEYS AND CASE STUDIES

- Urban Water Consumption Survey
- Rural Water Wastage Case Study

© 2025, IJSREM | <u>https://ijsrem.com</u> DOI: 10.55041/IJSREM54198 | Page 5

Volume: 09 Issue: 11 | Nov - 2025 SJIF Rating: 8.586 **ISSN: 2582-3930**

- Industrial Water Utilization Survey
- Agricultural Irrigation Practice Study
- Smart Meter User Feedback Survey
- Smart Home Water Conservation Study
- City Pipeline Leakage Case Study
- Household Consumption Pattern Survey

TECHNICAL DOCUMENTS

- IoT Smart Water Meter Manual
- Smart Pipeline Monitoring Blueprint
- Cloud Water Analytics Documentation
- Water Leakage Detection Algorithm Notes
- Sensor Calibration Technical Report
- Real-Time Data Processing Manual
- API Guide for Water Monitoring Systems
- Smart Grid Water Network Notes
- ML Model Training Documentation
- Smart Water Network Architecture Document

© 2025, IJSREM | <u>https://ijsrem.com</u> DOI: 10.55041/IJSREM54198 | Page 6