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Abstract - Chronic diseases (non-communicable diseases) 

such as diabetes, cardiovascular disease, cancer, and neurological 

disorders impose a tremendous global health burden, accounting 

for over 40 million deaths annually (≈71% of all deaths). Early 

diagnosis is critical to improving outcomes and reducing 

healthcare costs, yet many chronic conditions manifest subtly and 

are detected only at advanced stages. Artificial Intelligence (AI) 

– encompassing machine learning (ML), deep learning (DL), and 

data analytics – offers powerful tools for analyzing large-scale 

patient data (e.g. electronic health records, imaging, and wearable 

sensors) to detect disease signatures before clinical symptoms 

appear. In this review, we survey recent literature on AI-assisted 

early diagnosis of multiple chronic diseases. We outline key AI 

methods (e.g. neural networks, ensemble learning, natural 

language processing) and discuss real-world case studies: for 

instance, deep learning on retinal images can diagnose diabetes 

complications, convolutional networks on mammograms can 

detect early-stage breast cancer, and ML models on ECG or 

wearable data can identify asymptomatic atrial fibrillation. We 

present examples of open datasets (e.g. ADNI, MIMIC-III, ECG 

databases) and illustrate how AI models trained on these can 

predict disease onset with high accuracy. We also address ethical 

and technical challenges – data privacy, algorithmic bias, 

interpretability, and regulatory issues – that arise in AI-driven 

diagnostics. Our key findings are that AI approaches consistently 

improve early detection accuracy across diseases, but require 

careful validation and ethical oversight. Finally, we discuss 

future directions, predicting that AI will increasingly enable 

personalized, proactive chronic care, contingent on solving data 

governance and explainability challenges. 

 

1.INTRODUCTION 

 

Chronic diseases (also known as non-communicable 

diseases) – including cardiovascular disease, cancer, 

chronic respiratory illnesses, diabetes, and others – have 

become the leading causes of mortality worldwide. 

According to the World Health Organization (WHO), 

chronic diseases cause roughly 41 million deaths annually 

(about 71% of global deaths). In 2021, an estimated 43 

million people died from such diseases, equivalent to 75% 

of non-pandemic-related deaths. These conditions tend to 

develop slowly over years due to genetic, lifestyle, and 

environmental factors. For example, diabetes affected 537 

million adults (≈10.5% of 20–79-year-olds) in 2021, and is 

projected to reach 783 million by 2045. Prevention and 

early treatment of chronic disease are key: detecting a 

disease at an early stage can greatly improve management 

and survival, whereas late-stage diagnosis often leaves 

patients with limited options. 

Public health agencies maintain vast surveillance datasets 

to monitor chronic disease burden. AI techniques can 

analyze these data to identify patterns and trends that 

escape manual methods. For example, predictive models 

can detect subtle pre-diagnostic patterns in electronic 

health records (EHRs) or physiological signals. The figure 

below (a CDC illustration) highlights the scope of chronic 

disease surveillance. AI’s rapid and accurate data 

processing can complement these efforts, enabling earlier 

interventions. However, translating AI advances into 

clinical practice requires rigorous validation. This review 

examines how AI can improve early diagnosis of chronic 

diseases. We first survey the literature on AI applications 

per disease and data type, then detail AI methodologies and 

datasets used. We address ethical and practical challenges, 

and conclude with future prospects for AI in chronic care. 

2. LITERATURE REVIEW 

Scope of Chronic Disease Burden  

Chronic diseases (often equated with noncommunicable 

diseases, NCDs) “tend to be of long duration” and result 

from combinations of genetic, physiological, and 

behavioral factors. The four major NCDs – cardiovascular 

disease, cancer, chronic respiratory disease, and diabetes – 
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together cause approximately 80% of NCD premature 

deaths. Specifically, cardiovascular diseases cause ~19 

million deaths per year, cancers ~10 million, respiratory 

diseases ~4 million, and diabetes ~2 million. These 

numbers underscore that multiple diseases share risk 

factors (tobacco use, poor diet, inactivity, etc.). The global 

variation in disease prevalence is striking: for instance, an 

IDF atlas map illustrates that diabetes prevalence ranges 

widely by country (see Figure 1.1). 

For example, the map above shows that in 2021 an 

estimated 537 million adults (20–79 years) had diabetes, 

with high concentrations in Asia and the Americas. A 

projected 783 million adults will have diabetes by 2045 if 

trends continue. Other chronic diseases show similar 

geographic disparities. These global epidemiological 

figures highlight the need for tailored early-detection 

strategies: AI models can leverage such data to focus 

screening on high-risk regions and populations. 

Despite the high burden, chronic diseases often progress 

silently for years. For example, type 2 diabetes may remain 

undiagnosed until complications arise. Likewise, 

asymptomatic atrial fibrillation (AF) can go unnoticed yet 

greatly increase stroke risk. Traditional screening (e.g. 

periodic check-ups, standard imaging) can miss early cases. 

Resource constraints (limited specialists, high screening 

costs) and patient factors (lack of symptoms, irregular 

healthcare access) contribute to delayed diagnosis. As the 

WHO notes, “detection, screening and treatment of NCDs” 

are critical response components. 

In this context, Artificial Intelligence (AI) has emerged as 

a powerful assistive technology. AI systems – particularly 

ML and DL – excel at processing large, complex healthcare 

data. They can detect subtle signals (e.g. slight retinal 

changes or ECG patterns) that humans might overlook. For 

instance, AI models have been trained on imaging and 

sensor data to flag early disease signs. Studies indicate that 

AI can improve early detection and prediction: a deep 

learning model for diabetic retinopathy can forecast 

progression within 5 years from a single retinal image. 

Similarly, ML algorithms analyzing EHRs and wearable 

data can predict disease onset (e.g. future diabetes risk) 

more accurately than conventional risk scores. 

 
(Fig. 1.1) 

 

 

 

2.1 AI in Diabetes and Metabolic Disease 

Diabetes mellitus, a chronic metabolic disease, exemplifies 

how AI can aid early diagnosis. Over 422 million people 

have diabetes worldwide. Retinal imaging is a key 

example: changes in retinal vasculature reflect diabetes 

complications. AI models trained on fundus photos can 

detect diabetic retinopathy (DR) with high accuracy. 

Beyond DR screening, AI is being used to predict other 

diabetes complications and even diagnose diabetes itself 

from retinal features. A recent review found that “retinal 

images can be used to diagnose DM complications 

including DR, neuropathy, nephropathy, and 

atherosclerotic cardiovascular disease”. This shows that 

deep learning on eye images can reveal multiple diabetes-

related issues and predict risk of heart events. In practice, 

systems like Google’s AI retinal analysis and IDx-DR 

(FDA-approved) demonstrate this approach. Other AI 

applications in diabetes include analysis of biochemical 

and lifestyle data. Machine learning models on continuous 

glucose monitor (CGM) data and patient history have 

predicted diabetes onset and glycemic control outcomes. 

For example, predictive analytics can classify prediabetes 

patients likely to progress to type 2 diabetes. One study 

trained an SVM on clinical and lab data to classify diabetes 

risk with 90.5% accuracy. In addition, mobile apps using 

AI chatbots have helped manage blood sugar: one trial 

showed an AI-powered chatbot improved glycemic control 

in type 2 diabetes patients. Overall, AI for diabetes 

combines imaging (retina, histology) and tabular EHR data, 

often using neural networks or ensemble models. These 

models typically outperform classical regression 

approaches, though they rely on large, diverse datasets for 

training. 

2.2 AI in Cardiovascular Disease 

Cardiovascular disease (CVD) is the deadliest chronic 

condition globally. Early detection of heart conditions like 

atrial fibrillation (AF), heart failure, or coronary disease 

can prevent severe outcomes. AI has been applied 
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extensively to ECG and wearable data. A prominent 

example is using ML to detect AF: deep neural networks 

analyzing ECGs can spot asymptomatic AF episodes. A 

recent scoping review notes that “AI-driven models 

enhance AF detection by analyzing ECGs and wearable 

device data with high accuracy, enabling early 

identification of asymptomatic cases”. In practical terms, 

smartphone and smartwatch apps now incorporate AI to 

monitor heart rhythm (e.g. Apple Heart Study used a PPG 

algorithm to achieve ~89% sensitivity for AF detection). 

Beyond AF, ML models predict heart attack risk from 

clinical data. For instance, algorithms trained on EHRs can 

stratify patients by coronary artery disease risk, 

outperforming traditional risk scores. Deep learning on 

imaging is also used: AI can analyze echocardiograms or 

CT scans to detect early cardiac dysfunction. For example, 

convolutional neural networks (CNNs) have classified 

echocardiograms to identify preclinical left ventricular 

dysfunction. Another study used a CNN on retinal images 

to predict CVD risk factors like blood pressure and 

smoking, showing that even non-cardiac images can 

encode cardiovascular information. Case studies illustrate 

real-world impact: In one real-world trial, an AI-assisted 

ECG interpretation system in primary care detected 20% 

more cases of new-onset AF than usual care. Other research 

has used machine learning on longitudinal EHR data to 

predict heart failure hospitalization risk within a year. 

These examples indicate that AI can process multimodal 

data (ECG, imaging, lab tests) to flag early CVD signs. 

However, successful deployment requires careful 

validation; false positives (e.g. from noisy sensor data) can 

burden clinicians.  

2.3 AI in Cancer Screening 

 

Cancer – many of which are chronic conditions when slow-

growing – benefits greatly from early diagnosis. AI has 

seen perhaps its highest profile success in cancer imaging. 

A landmark Nature Medicine study trained a deep CNN on 

mammograms and 3D tomosynthesis (DBT) images. The 

AI model achieved state-of-the-art performance, detecting 

cancers missed by radiologists. It “outperforms five out of 

five full-time breast imaging specialists with an average 

increase in sensitivity of 14%”. This shows AI can enhance 

early detection of breast cancer, reducing false negatives. 

Similarly, AI on chest CT scans can identify early lung 

nodules, and on colonoscopy images to spot polyps. In 

dermatology, deep learning models on skin lesion images 

have rivaled dermatologists in melanoma detection. In 

pathology, AI algorithms analyze digitized biopsy slides to 

identify pre-cancerous changes. These examples 

demonstrate that computer vision AI is transforming cancer 

screening across organ systems. Importantly, AI can also 

integrate patient data: for example, ML models using 

patient risk factors plus imaging can better predict cancer 

risk trajectories. 

 

2.4 Ai in Neurological and Other Chronic Diseases 

 

Neurological diseases (e.g. Alzheimer’s, Parkinson’s) 

often start subtly. AI has made strides in early detection 

from brain imaging and biomarkers. A recent study 

combined MRI and cognitive test data: an MRI-based CNN 

(ResNet50/MobileNetV2) achieved ~96% accuracy for 

Alzheimer’s detection (ADNI dataset), and a hybrid model 

(including structured data) reached ~99.8% accuracy 

(NACC dataset). This is remarkable given the difficulty of 

early AD diagnosis. Other work using deep learning on 

PET scans or lumbar puncture data similarly yields high 

sensitivity for early neurodegeneration. In fact, one review 

notes that hybrid AI models allowed “earlier interventions 

and improved detection outcomes” for AD. Other chronic 

conditions are also being addressed: for chronic kidney 

disease, AI on routine lab tests and demographics has been 

shown to predict progression to end-stage renal disease. 

Chronic respiratory diseases (like COPD) have seen ML 

models that analyze pulmonary function tests and chest X-

rays for early signs. These applications are less mature than 

diabetes or CVD but growing.  

  

3. SUMMARY OF REVIEW FINDINGS 

 

Across multiple diseases, AI consistently enhances early 

diagnostic accuracy compared to traditional methods. 

Notably, AI’s benefits arise from its ability to integrate 

heterogeneous data: imaging, genomics, vitals, and EHR 

history. Key literature findings include: 

Integration of multimodal data (e.g. retinal + clinical) 

improves disease predictions beyond single-modality 

inputs. 

Deep learning dominance: Convolutional and recurrent 

neural networks often outperform classical ML in image 

and time-series tasks. 
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High reported accuracies: Many studies report >90% 

accuracy in controlled settings (e.g. AF detection, AD 

classification). 

Early intervention potential: AI systems can detect 

precursors (e.g. silent AF, prediabetic retinal changes) that 

enable preventive care. 

These findings suggest AI can shift chronic disease care 

from reactive to proactive, but real-world adoption depends 

on generalizability and handling real-world data. 

 

4. AI Techniques for Early Diagnosis 

 

AI encompasses a range of computational techniques. 

Supervised learning (classifiers like support vector 

machines, decision trees, neural networks) dominates 

diagnostic tasks: models are trained on labeled patient data 

to predict disease presence or risk. For example, random 

forests and gradient boosting on EHR features are used for 

predicting diabetes or CVD risk. Deep learning (DL) – 

especially CNNs for images and RNNs/LSTMs for 

temporal data – has advanced the field. CNNs 

automatically learn hierarchical features in imaging data 

(e.g. mammograms, retinal scans), while RNNs and 

transformers can model sequences like ECG waveforms or 

patient timelines. Unsupervised learning (clustering, 

anomaly detection) can flag outlier patterns, potentially 

identifying unusual or rare disease presentations without 

predefined labels. 

Key techniques include: 

 Convolutional Neural Networks (CNNs): used for 

medical image analysis. E.g., CNNs on fundus images 

detect diabetic retinopathy; CNNs on MRI classify 

brain scans for Alzheimer’s. 

 Recurrent Neural Networks (RNNs) and Long 

Short-Term Memory (LSTM): applied to time-series 

data. For instance, LSTM networks process ECG or 

blood glucose streams to predict upcoming events. 

 Ensemble methods: combining multiple models (e.g. 

random forests, boosted trees) often yields robust 

predictions from tabular clinical data. 

 Natural Language Processing (NLP): transforms text 

in clinical notes into features. NLP methods (word 

embeddings, transformers) can extract risk factors or 

symptoms from physician notes for use in diagnostic 

models. 

 Transfer Learning: pre-trained networks (often from 

natural images) are fine-tuned on medical data, making 

good use of limited labeled data. For example, a CNN 

pre-trained on ImageNet may be adapted for pathology 

slide analysis. 

Real-World Case Studies: Many implementable AI 

systems have emerged. The Google Health deep learning 

model for retinal images has been deployed in clinics for 

DR screening. In AF, smartphone apps (e.g. AliveCor) use 

AI to interpret patient-attached ECG leads with accuracy 

rivaling clinical ECG machines. IBM Watson Health 

attempted (with mixed results) to ingest patient records to 

identify early-onset of conditions. Startups like PathAI 

(histopathology) and Freenome (blood-based cancer 

screening with ML) illustrate industry efforts. A recent 

meta-analysis found that AI-enabled single-lead ECG 

devices achieved ~92% sensitivity and 96% specificity for 

AF detection. 

In summary, AI techniques range from classical ML on 

structured data to advanced DL on complex signals, each 

bringing new diagnostic capabilities. Hybrid approaches 

(combining models and modalities) often yield the best 

performance, as they capture complementary information. 

 

5. Real Datasets and Analysis 

 

AI models require large, high-quality datasets. Numerous 

public and institutional datasets enable chronic disease 

research. For example, the Alzheimer’s Disease 

Neuroimaging Initiative (ADNI) provides multi-modal 

data (MRI, PET, cognitive scores) on thousands of subjects 

across cognitive stages. In intensive care, the MIMIC-III 

database contains detailed monitoring and outcomes for 

~50,000 ICU patients. These datasets have powered studies 

in AD and critical illness AI. Other notable resources 

include: 

 PhysioNet ECG Databases: e.g. the MIT-BIH 

Arrhythmia and Atrial Fibrillation databases offer 

annotated ECG records for algorithm training. 

 UCI Machine Learning Repository: hosts several 

chronic disease datasets (heart disease, diabetes, liver 

disorders) for benchmarking. 

 Biobanks and Registries: Large cohorts like UK 

Biobank (with imaging and genomics) and disease 

registries (e.g. cancer registries) are increasingly used 

for AI research. 

Table 1 (hypothetical) summarizes some key datasets: 

http://www.ijsrem.com/
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 ADNI (Alzheimer’s imaging and clinical data). 

 MIMIC-III (ICU vital signs, labs, outcomes). 

 Chest X-ray14 (chest radiographs with diagnostic 

labels). 

 Diabetic Retinopathy Detection dataset (Kaggle). 

 National Diabetes Prevention Program (NDP) dataset 

(wearable and clinical). 

 NHANES (population health surveys with labs). 

Using these data, AI models undergo training and 

validation. For example, a deep learning model on the 

ADNI MRI scans was trained to classify Mild Cognitive 

Impairment vs Alzheimer’s. In cardiovascular research, 

RNNs have been trained on ICU monitoring data from 

MIMIC to predict cardiac arrest hours in advance. 

The analysis pipeline typically involves: 

Data preprocessing: Cleaning missing values, 

normalizing measurements, and anonymizing patient 

identifiers. For images, augmentation (rotations, flips) 

increases dataset size. 

Feature selection/engineering: For tabular data, 

features such as demographics, vitals, and lab results are 

chosen. The Augmented AI study described selecting 

key lab tests and using particle swarm optimization to 

boost an ANN’s performance. 

Model training: Models are trained on labeled 

examples (e.g. healthy vs disease). Performance is 

evaluated via cross-validation. Metrics include 

accuracy, AUC-ROC, sensitivity/specificity. For 

example, the ADNI CNN reached 96.2% accuracy on 

its test set. 

Validation and testing: Independent validation on 

withheld data or external cohorts is crucial. The breast 

cancer AI was validated on multiple populations, 

ensuring generalizability. 

Deployment: Some models have been embedded in 

devices. For instance, smartwatch AF detection 

algorithms have been FDA-cleared for real-time 

monitoring. 

Analysis Capability: AI can analyze high-dimensional 

and longitudinal data. For chronic diseases, this means 

capturing progression trajectories. Time-series models can 

highlight early deviations (e.g. rising glucose variability). 

In complex conditions like diabetes or heart failure, AI can 

integrate genomics and environment. The potential for 

“digital twins” – patient-specific predictive models built 

from multiple data sources – is an emerging vision. 

In summary, AI’s power comes from mining real-world 

clinical data. By analyzing large datasets, AI finds patterns 

(e.g. biomarker thresholds, polygenic risk) that signal 

disease onset. Combining data modalities (imaging + labs 

+ genomics) typically improves predictions. However, 

challenges include data heterogeneity and missingness. 

 

 

Ethical Concerns & Challenges 

 

While AI holds promise, it raises significant ethical and 

practical challenges. A primary concern is patient data 

privacy and security. AI models rely on vast amounts of 

sensitive health data, often held by private entities or cloud 

platforms. There is a risk that personal health information 

could be exposed or misused. In fact, advanced AI 

techniques can sometimes re-identify anonymized data: 

recent studies show that supposedly de-identified medical 

images or records can be reverse-engineered to reveal 

identities. Ensuring robust data anonymization and 

encryption is essential when building AI diagnostic tools. 

Healthcare AI must comply with regulations like HIPAA 

(in the US) and GDPR (in the EU), which emphasize 

patient consent and data protection. 

Another major issue is bias and fairness. AI systems 

trained on non-representative datasets may perform poorly 

in under-served populations. For example, a model trained 

largely on data from one ethnic group may misclassify 

patients from another group. This can exacerbate health 

disparities. We have seen AI diagnostics inherit biases from 

historical data; for instance, an AI skin-cancer model 

trained mostly on light-skinned individuals may under-

detect melanoma in darker-skinned patients. In one 

analysis, researchers noted that AI in healthcare “can be 

prone to certain types of errors and biases” and sometimes 

acts as a “black box”. Explainability – understanding how 

a model reaches its conclusion – is a growing area (so-

called Explainable AI, XAI) to build clinician trust. 

Regulatory and legal challenges also arise. AI diagnostic 

tools often change over time (as more data is collected), 

complicating FDA and EMA approval. Currently, 

regulators may certify the institutions maintaining AI, 

rather than a static algorithm. This novel approach is still 

evolving. Ensuring ongoing oversight and validation of AI 

systems is critical. Liability is another unclear area: if an 

http://www.ijsrem.com/
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AI system misdiagnoses, who is responsible – the doctor, 

the hospital, or the software developer? 

Integration into healthcare workflows is non-trivial. 

Clinicians may be skeptical of “black box” AI decisions. 

Effective AI tools must have interpretable outputs (e.g. 

highlighting image regions) so physicians can verify 

results. There is also the alert fatigue problem: over-

sensitive AI may generate too many false positives, 

burdening clinicians with unnecessary follow-ups. In some 

studies, patients flagged by wearables did not always seek 

follow-up care, limiting benefit. 

In practice, instances of ethical missteps have occurred. For 

example, Google’s DeepMind health collaboration in the 

UK collected patient kidney data with insufficient patient 

consent, leading to a scandal. This underscores that data 

governance and clear patient communication are 

paramount when deploying AI for health. 

In summary, while AI can transform early diagnosis, its 

success depends on addressing ethical and societal 

concerns: protecting privacy, preventing bias, ensuring 

transparency, and updating regulations to keep pace with 

technology. 

 

6. CONCLUSION & FUTURE SCOPE 

 

This review has examined AI’s role in early diagnosis of 

chronic diseases across multiple domains. We find strong 

evidence that AI methods can substantially improve the 

accuracy and speed of early detection for conditions like 

diabetes, cardiovascular disease, cancer, and neurological 

disorders. Deep learning on medical images (retinal scans, 

mammograms, MRIs) and AI analysis of physiological 

time series (ECGs, PPG) have shown particularly high 

performance. Case studies – from FDA-cleared diabetic 

retinopathy detectors to mobile AF monitoring – 

demonstrate real-world viability. 

Key findings include: 

 Improved diagnostic accuracy: AI algorithms often 

surpass human or traditional analyses, detecting disease 

signatures unseen by clinicians. 

 Multimodal integration: Combining data types 

(imaging + labs + genomics + wearables) yields richer 

models of health risk. 

 Personalization: AI enables patient-specific risk 

profiles and can suggest individualized prevention 

strategies. 

However, to realize these benefits broadly, several 

challenges must be overcome. Robust validation on diverse 

populations, better interpretability, and safeguards for data 

privacy are critical. Future research should focus on 

federated learning (training across institutions without raw 

data sharing) and on transparent models to build trust. 

Looking forward, AI’s role is likely to grow. We anticipate 

the following trends: 

 Continued integration into clinics: AI tools for 

screening will increasingly become part of standard care 

(e.g., AI-augmented imaging in all radiology suites). 

 Wearable and home monitoring: Edge AI (on-device 

algorithms in wearables) will allow continuous health 

surveillance, catching early deviations in chronic 

conditions. 

 Genomic and lifestyle data: AI will integrate not only 

clinical data but also genomic sequencing and social 

determinants of health to predict disease before onset. 

 Global health impact: In low-resource settings, AI-

driven diagnostics may democratize care (e.g., 

smartphone eye exams for diabetic retinopathy), though 

equitable access will be crucial. 

In conclusion, AI offers a transformative opportunity to 

detect chronic diseases at earlier, more treatable stages. Our 

review indicates that ongoing advances in algorithms and 

data availability are steadily moving this prospect toward 

reality. By addressing ethical, legal, and technical 

challenges, the medical community can harness AI to shift 

from reactive care to preventive, personalized health 

management – ultimately reducing the global burden of 

chronic disease. 

ACKNOWLEDGEMENT 

 
I express my sincere gratitude to my co-authors and fellow 

students for their collaborative efforts, dedication, and 

commitment throughout the development of this research. I am 

thankful to the open-source data providers, including ADNI, 

MIMIC-III, PhysioNet, and the UCI Machine Learning 

Repository, whose datasets were instrumental in enabling our 

review and analysis. 

 

I also appreciate the encouragement and support of my peers, 

family, and friends, who helped maintain motivation and focus 

during the course of this work. Finally, I acknowledge the global 

community of researchers and authors whose prior studies 

formed the knowledge base and inspiration for this paper. 

 

 

 

http://www.ijsrem.com/


          International Journal of Scientific Research in Engineering and Management (IJSREM) 

                          Volume: 09 Issue: 08 | Aug - 2025                                SJIF Rating: 8.586                                     ISSN: 2582-3930                                                                                                 

 

© 2025, IJSREM      | www.ijsrem.com                                 DOI: 10.55041/IJSREM51835                                                    |        Page 7 
 

 

REFERENCES 

 
[1] World Health Organization, “Noncommunicable diseases,” WHO, 

2024. [Online]. Available: https://www.who.int/news-room/fact-

sheets/detail/noncommunicable-diseases 

[2] World Health Organization, “Global report on diabetes,” WHO, 

2016. [Online]. Available: 

https://www.who.int/publications/i/item/9789241565257 

[3] IDF Diabetes Atlas, 10th ed., “Diabetes prevalence in 2021 and 

projections for 2045,” International Diabetes Federation, 2021. 

[Online]. Available: 

https://www.ncbi.nlm.nih.gov/books/NBK581940 

[4] IDF Diabetes Atlas, 11th ed., “Global and regional estimates, 

projections to 2050,” International Diabetes Federation, 2025. 

[Online]. Available: https://diabetesatlas.org 

[5] H. Sun et al., “IDF Diabetes Atlas: Global estimates of diabetes 

prevalence for 2017 and projections for 2045,” Diabetes Research 

and Clinical Practice, vol. 183, p. 109119, Jan. 2022. [Online]. 

Available: https://pubmed.ncbi.nlm.nih.gov/31518657 

[6] X. Chen et al., “Global, regional, and national burden of diabetes 

from 1990 to 2021, with projections to 2045: a systematic analysis,” 

BMC Medicine, 2025. [Online]. Available: 

https://bmcmedicine.biomedcentral.com/articles/10.1186/s12916-

025-03890-w 

 

 

 

 

 

 
 

 

http://www.ijsrem.com/
https://www.who.int/news-room/fact-sheets/detail/noncommunicable-diseases
https://www.who.int/news-room/fact-sheets/detail/noncommunicable-diseases
https://www.who.int/publications/i/item/9789241565257

