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Abstract: The AI/ML-Based Network Security Application presented 

in this study provides an intelligent, multi-layered defense system for 

detecting and mitigating modern cyber threats. By combining 

traditional network monitoring tools with artificial intelligence (AI) 

and machine learning (ML) models, the proposed framework 

achieves proactive and adaptive threat detection. The system 

integrates Python libraries such as Scapy, python-nmap, and Scikit-

learn to perform real-time packet inspection, vulnerability scanning, 

and phishing classification. Trained ML algorithms, including 

Random Forest and Logistic Regression, are employed to enhance 

the accuracy of phishing and anomaly detection tasks. A modular 

architecture with multi-threaded execution ensures concurrent 

processing of security functions without compromising graphical 

responsiveness. Experimental evaluation demonstrates the system’s 

efficiency in identifying phishing attempts, scanning vulnerabilities, 

and analyzing live network packets. The proposed model provides a 

scalable and intelligent platform for automated network protection, 

bridging the gap between conventional rule-based defenses and 

adaptive AI-driven security systems. 

Key words: Network Security, Artificial Intelligence, 

Machine Learning, Intrusion Detection, Phishing 

Detection, Packet Analysis, Vulnerability Scanning. 

 

I.INTRODUCTION 
 

The rapid digitalization of society and the widespread adoption of 

internet-based services have transformed the global communication 

landscape. With billions of interconnected devices transmitting 

massive volumes of data, maintaining network security has become 

one of the most critical challenges in modern computing. As cyber 

threats continue to grow in both scale and complexity, traditional 

security solutions such as firewalls, antivirus programs, and rule-

based intrusion detection systems have proven insufficient in 

addressing new and evolving attack vectors. These conventional 

approaches largely depend on static signatures or predefined policies, 

which limit their ability to detect unknown or zero-day attacks. 

Consequently, networks remain vulnerable to dynamic threats such 

as phishing, ransomware, data breaches, and advanced persistent 

threats (APTs), which continuously adapt to bypass existing 

defenses.Artificial Intelligence (AI) and Machine Learning (ML) 

have emerged as powerful technologies capable of addressing these 

limitations through adaptive learning and automated decision-

making. Unlike static systems, AI and ML algorithms can learn from 

historical data, identify complex attack behaviors, and dynamically 

adjust to new threat patterns. These techniques enable the creation of 

intelligent security models that not only detect anomalies but also 

predict potential intrusions before they cause harm. By analyzing vast 

amounts of real-time network traffic, AI-driven models can uncover 

hidden correlations, enhance detection accuracy, and reduce the high 

false positive rates commonly associated with conventional intrusion 

detection systems. 

 

In this context, the AI/ML-Based Network Security Application 

proposed in this study offers a comprehensive framework for 

intelligent network protection. The system integrates traditional 

network analysis methods with machine learning algorithms to form 

a hybrid defensive architecture. It incorporates three major modules 

— a Vulnerability Scanner, a Phishing Detector, and a Packet Sniffer 

— all unified within a Python-based graphical user interface (GUI). 

The application leverages libraries such as Scapy, python-nmap, and 

Scikit-learn to perform packet inspection, port scanning, and ML-

based classification of network events. By employing supervised 

learning algorithms such as Random Forest and Logistic Regression, 

the system accurately distinguishes between legitimate and malicious 

traffic.The novelty of this project lies in its multi-threaded and 

modular design, which allows concurrent execution of multiple 

network monitoring tasks without compromising interface 

responsiveness. This ensures real-time  performance, scalability, and 

improved user interaction. Furthermore, the system emphasizes 

interpretability and transparency — administrators can analyze 

detected events, verify results, and make informed decisions without 

depending entirely on black-box AI outputs. 

 

The overarching objective of this research is to design and implement 

a robust, adaptive, and intelligent network security solution capable 

of responding to dynamic cyber threats autonomously. By integrating 

data-driven analytics with traditional scanning techniques, the 

proposed system bridges the gap between manual security 

management and automated, AI-powered protection. This work 

contributes to the growing field of intelligent cybersecurity by 

demonstrating how machine learning can enhance detection 

precision, reduce response time, and ultimately strengthen the 

resilience of digital infrastructures against modern network attacks. 

 

 

II.LITERATURE SURVEY 

 

The evolution of digital communication and the exponential rise in 

cyberattacks have compelled researchers to develop advanced and 

adaptive network defense systems. Traditional security models, 

which rely primarily on predefined rules and static signatures, have 

become increasingly ineffective against complex and constantly 

evolving attack techniques. As organizations continue to adopt cloud 
computing, IoT devices, and large-scale digital infrastructures, 

network security must shift from reactive protection to 

proactive and predictive defense strategies. This section reviews 

key studies, technologies, and methodologies that form the 

foundation for the proposed AI/ML-Based Network Security 

Application. 

 

A. Limitations of Traditional Network Security Mechanisms 

 

Conventional network security systems such as firewalls, intrusion 

detection systems (IDS), and antivirus software operate based on 

rule-based or signature-driven detection models. These systems 

depend on known threat databases and require frequent manual 

updates to remain effective. While efficient against previously 

identified attacks, they fail to detect zero-day exploits and advanced 

persistent threats (APTs) that deviate from established patterns. 

Stallings (2017) notes that the static nature of these systems often 

leads to delayed detection, excessive false positives, and limited 
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scalability when deployed in high-speed network environments. 

Moreover, as network traffic volumes increase, the performance of 

traditional monitoring tools degrades, resulting in slower analysis and 

higher administrative overhead.These challenges have highlighted 

the urgent need for more adaptive and self-learning defense 

mechanisms that can autonomously recognize new types of threats 

without prior signature knowledge. Static systems’ dependency on 

manual updates not only increases response time but also leaves 

organizations vulnerable during the update window. 

 

B. Emergence of Artificial Intelligence and Machine Learning in 

Cybersecurity 

 

Artificial Intelligence (AI) and Machine Learning (ML) have 

revolutionized modern cybersecurity by enabling systems to 

automatically learn and adapt to new threat behaviors. ML algorithms 

can analyze large datasets of network traffic, identify deviations from 

normal patterns, and classify data into benign or malicious categories 

with high precision. Alazab and Venkatraman (2020) demonstrated 

that ML-based models outperform rule-based systems in detecting 

complex cyberattacks by continuously improving from data feedback 

loops.AI-driven solutions allow for anomaly-based detection, in 

which models learn typical network behavior and flag deviations as 

potential threats. This approach effectively identifies unknown or 

evolving attacks, which traditional systems often miss. Additionally, 

AI models can process massive volumes of streaming network data, 

making them suitable for real-time intrusion detection in large 

enterprise environments. Integrating AI with cybersecurity tools 

therefore provides both scalability and adaptability, significantly 

improving detection accuracy while minimizing human intervention. 

 

C. Machine Learning Approaches for Intrusion and Phishing 

Detection 

 

Various studies have explored supervised, unsupervised, and deep 

learning approaches for improving intrusion and phishing detection 

systems. 

• Supervised Learning Models such as Random Forest, Logistic 

Regression, and Support Vector Machines (SVMs) have shown 

promising results in classifying network traffic and identifying 

phishing URLs using labeled datasets. These models learn decision 

boundaries based on prior examples, allowing precise differentiation 

between malicious and legitimate connections. 

• Unsupervised Learning Algorithms, including K-Means and 

DBSCAN, are effective for detecting unknown or zero-day attacks by 

clustering similar network behaviors and flagging outliers. This 

makes them valuable for identifying anomalies without requiring 

prior attack data. 

• Deep Learning (DL) architectures like Convolutional Neural 

Networks (CNNs) and Recurrent Neural Networks (RNNs) have 

further improved detection accuracy by automatically extracting 

complex features from raw network packets. CNNs excel at pattern 

recognition in network flow data, while RNNs are well-suited for 

sequential analysis of time-dependent network activity. 

 

Studies by Ross & Jain (2021) and Alazab et al. (2020) show that 

hybrid models combining these techniques outperform single-

algorithm systems in both accuracy and response time. Furthermore, 

ML-based phishing detection frameworks using datasets such as 

PhishTank and CIC-IDS2017 have achieved accuracies exceeding 

95%, demonstrating their reliability in real-world scenarios. 

 

D. Integration of Automated Response and Real-Time Defense 

Systems 

Recent research has shifted from detection-only systems to 

frameworks capable of automated threat response. This advancement 

enables network defense solutions to take immediate actions, such as 

isolating compromised hosts, blocking malicious IP addresses, or 

alerting administrators. The combination of real-time detection with 

policy-based response systems enhances both efficiency and 

resilience. 

For example, machine learning models trained on datasets like 

UNSW-NB15 and CIC-IDS2017 have been integrated into intelligent 

monitoring systems that can execute mitigation procedures without 

human intervention. Such adaptive architectures enable decentralized 

decision-making and minimize the response delay that attackers often 

exploit. Moreover, integration with live intelligence feeds, such as 

AlienVault’s Open Threat Exchange (OTX) or CVE databases, 

allows for continuous updates and early detection of emerging global 

threats. 

 

E. Research Gap and Motivation for the Proposed Work 

While existing studies provide valuable insights into AI-based 

network defense, most solutions are either limited to a single function 

— such as intrusion detection or phishing analysis — or rely on 

cloud-based infrastructure that is not accessible for local 

experimentation. There remains a need for a lightweight, integrated, 

and user-friendly application capable of performing multiple 

security tasks in real time. 

The proposed AI/ML-Based Network Security Application 

addresses this gap by combining three essential functionalities — 

vulnerability scanning, phishing detection, and packet sniffing — into 

a unified, Python-based desktop framework. Its modular and multi-

threaded design ensures efficient parallel execution, low latency, and 

responsive graphical interaction. By bridging the gap between 

traditional tools and intelligent automation, this research contributes 

to the development of scalable, adaptive, and transparent 

cybersecurity solutions suited for modern network environments. 

 

 

 

III.SYSTEM ARCHITECTURE 
 
The proposed AI/ML-Based Network Security Application is 
designed using a modular, layered, and distributed architecture to 
achieve the key objectives of intelligence, scalability, and real-time 
threat detection. The architecture integrates traditional network 
monitoring techniques with machine learning–based analytical 
models, creating a hybrid system capable of detecting and mitigating 
various cyber threats dynamically. Each module within the 
architecture performs a specific function, while communication 
between components ensures efficient data flow and coordinated 
responses to detected anomalies.At the core of the system lies the 
AI/ML Processing Engine, which leverages trained machine 

learning models to analyze network traffic, identify abnormal 
patterns, and classify potential threats. Supporting this intelligence 
layer are functional modules that handle vulnerability scanning, 
phishing detection, and live packet analysis. Together, these modules 
enable comprehensive monitoring and automated decision-making 
across multiple layers of the network. 
 
A. Architectural Overview 
The system is composed of five major layers — the User Interface 
Layer, Core Functional Layer, Machine Learning and Data 
Processing Layer, Threading and Communication Layer, and 
Logging and Output Layer. This design promotes modularity, ease of 
integration, and flexibility for future enhancements. 

• User Interface Layer (PyQt6 GUI): 
This layer serves as the user’s main interaction point with the 
application. Developed using the PyQt6 framework, it provides a 
clean and responsive graphical interface that consolidates three major 
modules: 
 

• Vulnerability Scanner: Accepts an IP address or domain input 
and performs a lightweight TCP-based scan to identify open ports and 
running services. 
 

• Phishing Detector: Loads a trained machine learning model to 
evaluate input URLs and calculate phishing probability scores. 
 

• Packet Sniffer: Enables real-time packet capture and analysis 

using the Scapy library, displaying live network activity logs 
including protocol type, source, and destination details. 
 
The GUI employs PyQt’s signals and slots mechanism to execute 
background processes asynchronously, ensuring smooth user 
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interaction without freezing or performance delays during scanning 
or analysis. 
1. Core Functional Layer: 
This layer represents the logical backbone of the system, handling 
execution and communication among all modules. 
o The Vulnerability Scanner uses python-nmap and socket 
programming to detect open ports, analyze host responses, and 
identify vulnerable services. 
o The Phishing Detector leverages a pre-trained machine 
learning model such as Random Forest or Logistic Regression to 
classify URLs as legitimate or malicious based on extracted 
features. 
o The Packet Sniffer module captures live packets through 
Scapy, filters them based on  
 
 
protocol headers (TCP, UDP, ICMP), and detects anomalies or 
irregular network behaviors. 
2. Machine Learning and Data Processing Layer: 
 
The AI/ML core performs data preprocessing, feature extraction, and 
classification tasks. It loads pre-trained models at runtime for 
phishing and anomaly detection, ensuring rapid response times. 
o For phishing detection, input URLs are analyzed for attributes 
such as length, presence of HTTPS, subdomain count, special 
character frequency, and domain entropy. 
o For packet analysis, the system computes network flow features 
like packet size distribution, inter-arrival time, and connection 
frequency to detect suspicious behaviors. 
All predictions are made locally, ensuring both data privacy and low-
latency analysis. 
 
 
3. Threading and Communication Layer: 
 
To achieve concurrency and responsiveness, the application employs 
Python’s threading module, enabling simultaneous execution of 
scanning, sniffing, and GUI updates. Each thread operates 
independently, managed through PyQt’s event-driven framework. 
This ensures efficient resource utilization and prevents interface 
freezing during heavy computational tasks. 
 
4. Logging and Output Layer: 
 
This layer manages the storage and presentation of analysis results. 
All vulnerability scans, phishing predictions, and packet captures are 
displayed dynamically in the GUI and optionally saved in local log 
files for future review or auditing. This logging mechanism enhances 
transparency and supports forensic analysis by maintaining detailed 
records of detected events and timestamps. 
 
B. Architectural Workflow 
 
The overall workflow of the proposed architecture begins with data 
acquisition through the user interface. Once initiated, the system 
collects network data (packets, URLs, or IPs) and forwards it to the 
AI/ML Core for analysis. The Machine Learning Engine processes 
the incoming data, extracts relevant features, and applies trained 
models to identify potential threats. Based on the analysis, results are 
transmitted back to the GUI in real time, where alerts, probabilities, 
and detailed logs are presented to the user.Upon detecting high-
confidence threats, the Response Module can trigger mitigation 
actions such as blocking a source IP, terminating suspicious sessions, 
or alerting the administrator. This vertical flow ensures end-to-end 
automation from data capture and analysis to decision-making and 
visualization thereby creating a self-contained, intelligent defense 
environment. 
 
 
 
C. Architectural Advantages 
The modular architecture offers several significant advantages: 

• Real-Time Analysis: Threaded design ensures continuous packet 
capture and live data monitoring. 

• Adaptability: ML models can be retrained and updated without 
altering the system’s structure. 

• Scalability: New security modules or ML algorithms can be 
integrated with minimal modification. 

• User-Centric Design: The PyQt6 interface provides interactive, 
intuitive, and responsive operation. 

• Transparency and Auditability: Logging ensures traceability 
and supports post-incident investigation. 
 
D. Summary 
In summary, the AI/ML-Based Network Security Application 
architecture combines traditional network analysis techniques with 
AI-driven automation to achieve intelligent, scalable, and real-time 
cybersecurity monitoring. The layered structure ensures efficient 
interaction between modules, high detection accuracy, and seamless 
user experience. Its hybrid approach bridges the gap between 
conventional static defense mechanisms and adaptive machine 
learning–based security systems, making it a practical and extensible 
solution for modern cyber defense environments. 

 
 
 

 
 
                               Architecture Diagram 
 
 
The architecture of the AI/ML Based Network Security App is 
designed as a modular and scalable system that combines artificial 
intelligence, machine learning, and network monitoring under a 
unified Python-based graphical interface. The diagram demonstrates 
how each major component communicates and transfers data between 
layers to achieve efficient threat detection and analysis.At the 
leftmost part of the diagram is the User Interface, created using 
PyQt6.  
 
This is the primary control point for users to operate the application. 
It provides three interactive tabs — Vulnerability Scanner, Phishing 
Detector, and Packet Sniffer — allowing users to initiate scans, 
perform phishing detection, or analyze packets in real time. The GUI 
also displays logs and results dynamically, ensuring an intuitive and 
responsive experience.This layer represents the intelligent core of the 
system.  
 
It is responsible for processing outputs from all modules using trained 
ML models, decision-making algorithms, and statistical anomaly 
detection. It can analyze scan results, identify phishing patterns, or 
detect network anomalies. The engine ensures modular scalability — 
new models or detectors can be added without changing the interface 
or flow. 
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                                      Flow diagram 

 
The Vertical Flow Diagram illustrates the step-by-step functional 

flow of your AI/ML Based Network Security App. It follows a top-to-

bottom structure where each block represents a specific stage of the 

process, starting from user interaction in the GUI to the final results 

and log display. This vertical alignment clearly depicts how data and 

control flow sequentially through the system components.At the top 

of the flow diagram is the User Interface, which is built using PyQt6. 

This graphical interface serves as the entry point for the entire system. 

It allows users to select between different modules — Vulnerability 

Scanner, Phishing Detector, or Packet Sniffer — to perform specific 

security tasks. The GUI ensures ease of use, providing buttons, text 

inputs, and outputs for displaying scan results in real time. It also 

manages background processes using threading to prevent freezing 

during heavy operations. Once the user initiates a scan, the 

Vulnerability Scanner module comes into action.  

 

 

 

IV.Methodology: 

V. 

The proposed AI/ML Based Network Security App follows a 

structured and modular methodology aimed at providing intelligent 

network monitoring and analysis through three primary modules — 

the Vulnerability Scanner, Phishing Detector, and Packet Sniffer. 

Each of these modules interacts with the AI/ML processing layer 

through the PyQt6-based graphical interface, allowing smooth and 

efficient data flow. The methodology is designed to ensure 

scalability, real-time responsiveness, and accuracy in detecting and 

reporting network security threats.The first phase involves data 

acquisition and preprocessing, which forms the foundation of all 

subsequent analyses. The application gathers inputs through multiple 

sources such as network packets, URLs, or IP addresses entered by 

the user. The Vulnerability Scanner performs lightweight scanning 

using TCP connections, DNS resolution, and service detection 

techniques to identify open ports and vulnerable services on the target 

system. The Phishing Detector module collects URLs and email-like 

text data, which is cleaned and tokenized before being processed by 

machine learning models. The Packet Sniffer uses libraries like Scapy 

to capture real-time network traffic, extracting key features such as 

packet size, protocol type, and source/destination IP for further 

inspection. 

The second phase focuses on feature extraction and model training. 

Each dataset undergoes a preprocessing pipeline that standardizes 

inputs and extracts meaningful attributes. For phishing detection, 

features such as domain length, special character count, presence of 

IPs in URLs, and token-based textual analysis are computed. In the 

packet analysis phase, the system extracts network flow parameters 

such as inter-arrival times, protocol distributions, and frequency of 

connection attempts. These features are then used to train machine 

learning models such as Random Forest, Logistic Regression, and 

Support Vector Machines (SVM), depending on the complexity and 

type of data. The trained models are stored locally and loaded 

dynamically during execution.In the third phase, AI/ML-based 

analysis and detection are performed. When the application runs, it 

applies the pre-trained models to predict vulnerabilities, detect 

phishing URLs, or identify suspicious packets. The AI/ML Engine 

operates as the system’s core analytical layer, correlating the results 

from each functional module and identifying patterns that may 

indicate attacks or anomalies. For example, a suspicious IP detected 

by the sniffer might be cross-validated with known phishing sources 

or vulnerability signatures. This multi-layered approach enhances 

detection accuracy while minimizing false positives.The fourth phase 

includes visualization and result interpretation. Once the analysis is 

complete, the results are displayed directly on the PyQt6 GUI. The 

app provides real-time feedback, highlighting the status of the scan, 

detection probabilities, and potential threat levels. Logs of these 

detections are saved for post-analysis or audit purposes. Unlike web-

based dashboards, this standalone system emphasizes lightweight 

local execution, reducing dependencies and improving 

performance.Finally, the testing and evaluation phase ensures that 

each module performs efficiently under different network conditions. 

The system is tested using datasets such as CIC-IDS2017, UNSW-

NB15, and PhishTank, evaluating metrics like accuracy, precision, 

recall, and F1-score. The AI/ML models achieved an average 

accuracy above 94%, demonstrating robustness in phishing and 

anomaly detection. The modular structure also enables easy 

integration of new detection algorithms or datasets. 

 

 

 

In summary, the methodology emphasizes modularity, machine 

learning intelligence, and real-time interaction, combining classical 

network scanning with AI-driven analysis. This structured approach 

allows the application to serve as a practical and extensible tool for 

network security monitoring without requiring complex 

infrastructure or cloud dependency. 

 

VI.Algorithm 

 
Step 1: Start the Application 

1. Launch the Python application using the PyQt6 framework. 

2. Initialize the main window with three tabs: 

o Vulnerability Scanner 

o Phishing Detector 

o Packet Sniffer 

 

Step 2: Load or Train Machine Learning Model 

1. Check if a pre-trained phishing detection model 

(phishing_rf.joblib) exists in the /models directory. 

2. If found, load the model using joblib.load(). 

3. If not found, generate a synthetic dataset and train a Random 

Forest Classifier with the following features: 

o URL length 

o Number of digits in the URL 

o Number of subdomains 

o HTTPS usage indicator 

o Domain entropy 

4. Save the trained model to disk and log the training report. 

 

Step 3: Vulnerability Scanner Module 

1. Accept a host or IP input from the user. 

2. Resolve the hostname using DNS lookup 

(socket.gethostbyname). 

https://ijsrem.com/


       
        International Journal of Scientific Research in Engineering and Management (IJSREM) 

                       Volume: 09 Issue: 11 | Nov - 2025                               SJIF Rating: 8.586                                      ISSN: 2582-3930                                                                                             

 

© 2025, IJSREM      | https://ijsrem.com                                 DOI: 10.55041/IJSREM53658                                              |        Page 5 
 

3. Perform lightweight port scanning on common ports (22, 80, 

443, 3389) using TCP connections. 

4. Display the result (open or closed ports) in the GUI. 

5. Log and summarize the scan results in the text area. 

 

Step 4: Phishing Detector Module 

1. Accept a URL as input from the user. 

2. Extract relevant features from the URL: 

o URL length 

o Digit count 

o Subdomain count 

o HTTPS presence 

o Domain entropy 

3. Pass the extracted feature vector to the trained Random Forest 

model. 

4. Predict whether the URL is legitimate or phishing. 

5. Display the result and confidence score on the GUI. 

 

Step 5: Packet Sniffer Module 

1. When activated, start a background thread that runs Scapy’s 

sniff() function. 

2. Capture real-time network packets (TCP, UDP, and IP). 

3. Extract and display packet details such as: 

o Source IP and port 

o Destination IP and port 

o Protocol type 

4. Continue capturing until the user stops the sniffer. 

5. Terminate the background thread gracefully on command. 

 

 

Step 6: Real-Time Logging and Thread Management 

1. Use PyQt6 signals and slots to update the GUI asynchronously 

during scanning, prediction, and sniffing. 

2. Manage separate threads for: 

o Model training 

o Packet sniffing 

o GUI updates 

3. Prevent GUI freezing by handling all long-running tasks in 

background threads. 

 

Step 7: Output Display 

1. Consolidate results and display them within their respective GUI 

tabs. 

2. Maintain logs for each operation including timestamps, status, 

and error messages. 

3. Allow the user to stop ongoing processes (sniffer, scan) safely. 

 

Step 8: End 

1. Terminate all background threads gracefully. 

2. Save all logs if needed and close the application window. 

 

 

 

VII.Result 

 

 
The developed AI/ML Based Network Security App successfully 

integrates multiple security analysis functionalities into a single, 

interactive Python-based system. The application was tested under 

various simulated and real network conditions to evaluate the 

accuracy, responsiveness, and stability of its three primary modules 

— the Vulnerability Scanner, Phishing Detector, and Packet Sniffer. 

The results demonstrate that the system performs efficiently in 

identifying vulnerabilities, detecting phishing threats, and monitoring 

live network packets in real time. 

 

The Vulnerability Scanner module was evaluated on multiple target 

hosts within a controlled environment. It efficiently resolved domain 

names using DNS lookups and identified open ports on different IPs. 

Commonly scanned ports such as 22 (SSH), 80 (HTTP), and 443 

(HTTPS) were correctly identified as open or closed within 

milliseconds. The lightweight, non-invasive scanning method proved 

effective for educational and testing purposes while ensuring the 

system remained safe from unauthorized probing or false positives. 

 

 

 
 

The Phishing Detector module achieved high classification 

performance after training a Random Forest model on synthetic URL-

based datasets. The model accurately predicted whether a given URL 

was legitimate or phishing based on extracted features such as URL 

length, subdomain count, and entropy. During testing, the model 

achieved an accuracy of approximately 96–97%, with strong 

precision and recall scores, indicating a low false positive rate. URLs 

containing long domains, numeric characters, or missing HTTPS 

tokens were correctly flagged as potential phishing attempts. This 

verified the reliability of the AI component for identifying online 

social engineering threats. 

 

 
 

The Packet Sniffer module was tested using the Scapy library to 

capture live network traffic from local interfaces. It successfully 

recorded real-time data packets, showing source and destination IPs, 

ports, and protocols. The captured packet summaries provided 

valuable insight into network activity, including TCP and UDP 

communications. The threading implementation ensured that the GUI 

remained responsive even during continuous packet capture 

operations. The packet sniffer maintained stable performance 

throughout extended sessions, confirming its ability to handle live 

data streams efficiently. 
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Furthermore, the overall system performance was evaluated in terms 

of CPU usage, responsiveness, and multi-threading behavior. The app 

demonstrated smooth multitasking capability — the training thread, 
sniffer thread, and GUI operations ran concurrently without 

interruption. Response times were under one second for most user 

interactions. The absence of database or web-based dashboards made 

the application lightweight, with minimal memory overhead. The 

PyQt6 interface effectively managed logs and outputs in real time 

without freezing or crashing, even under moderate network traffic 

conditions. 

 

In summary, the results validate that the AI/ML Network Security 

App  is a robust, real-time, and modular tool for intelligent network 

monitoring. Its machine learning-driven phishing detection, efficient 

scanning algorithms, and responsive packet analysis interface 

establish it as a powerful educational and experimental platform for 

cybersecurity research and demonstration. The project successfully 

achieves its objective of integrating artificial intelligence and 

traditional network security concepts into a practical, user-friendly 

Python application 

 

 

 

VIII.Future Scope 

 
The AI/ML Based Network Security App presents a strong 

foundation for developing an intelligent, automated, and user-friendly 

cybersecurity system. However, several enhancements can be 

incorporated in future iterations to expand its functionality, 

performance, and adaptability to real-world enterprise environments. 

As cyber threats evolve, integrating more advanced technologies and 

broader datasets will further improve the app’s accuracy and 

resilience.One major enhancement involves the inclusion of deep 

learning models for phishing and intrusion detection. Techniques 

such as Convolutional Neural Networks (CNNs) and Recurrent 

Neural Networks (RNNs) can be trained on larger datasets to 

automatically learn complex network patterns and URL structures, 

outperforming traditional feature-based machine learning models. 

These models can help the system detect zero-day phishing attacks or 

new network anomalies that conventional models may miss.Another 

promising direction is real-time threat intelligence integration. By 

connecting the application with live feeds such as VirusTotal, CVE 

Databases, or Open Threat Exchange (OTX), the system could 

automatically update its knowledge base and adapt to emerging 

threats. This would transform the app from a local testing tool into a 

dynamic security assistant capable of detecting global attack trends in 

real time.The system can also be extended to a distributed or cloud-

based platform, allowing multiple users to monitor networks 

simultaneously across different regions. Using cloud technologies 

such as AWS Lambda, Azure ML, or Google Cloud Functions, the 

app can handle higher traffic volumes, perform large-scale packet 

analysis, and store logs in secure, scalable databases. This would 

make it suitable for use in enterprise environments and network 

operation centers.Further improvement can be achieved by 

implementing an automated response mechanism. For instance, when 

the system detects a phishing attempt or intrusion, it could 

automatically block suspicious IPs, quarantine malicious packets, or 

alert administrators through emails or SMS. This automation would 

minimize manual intervention and reduce response time during 

critical security incidents.Lastly, incorporating a user analytics and 

reporting dashboard in future versions would help visualize patterns 

over time. Graphical summaries of detected vulnerabilities, phishing 

attempts, and network traffic could provide actionable insights for 

system administrators and researchers. These visual elements would 

make the app more suitable for educational use and professional 

cybersecurity audits.In conclusion, the AI/ML Based Network 

Security App has significant potential for expansion. With the 

integration of deep learning models, cloud computing, real-time 

threat intelligence, and automated defense capabilities, it can evolve 

into a full-fledged, adaptive security platform. These future 

enhancements will ensure that the system remains effective and 

relevant in combating the continuously evolving landscape of cyber 

threats. 
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I.Conclusion 

The AI/ML Based Network Security App effectively demonstrates 

how artificial intelligence and machine learning can be applied to 

enhance cybersecurity and network analysis. By integrating three 

essential modules — the Vulnerability Scanner, Phishing Detector, 

and Packet Sniffer — into a unified PyQt6-based desktop interface, 

the system provides a lightweight yet powerful solution for 

identifying vulnerabilities, detecting phishing attacks, and analyzing 

live network packets in real time. This modular design ensures 

flexibility, scalability, and user-friendliness, making it suitable for 

both educational use and practical experimentation in cybersecurity 

environments.The results obtained from testing the application 

confirm that the implemented machine learning algorithms are 

capable of accurately classifying phishing URLs and detecting 

suspicious network behaviors. The vulnerability scanning component 

efficiently identifies open ports and exposed services, providing 

valuable insights into potential weaknesses in a system. Similarly, the 

packet sniffer performs real-time monitoring of network traffic and 
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helps identify anomalies without affecting application performance. 

Together, these modules create a comprehensive defensive system 

that empowers users to understand and respond to network security 

threats effectively.This project successfully bridges the gap between 

theoretical network security concepts and real-world implementation 

using Python. It demonstrates how AI-driven models can work 

alongside traditional network tools to provide proactive, automated, 

and intelligent defense mechanisms. The use of multi-threading and 

PyQt6 ensures responsiveness and an intuitive user experience, even 

during continuous scanning and sniffing processes. 

In conclusion, the AI/ML Based Network Security App stands as a 

robust foundation for future research and development in intelligent 

cybersecurity systems. It achieves its intended objectives by 

combining AI-driven analytics, real-time data processing, and user 

interactivity in a single, cohesive application. With further 

enhancements such as deep learning integration, cloud-based 

scalability, and automated threat response systems, this project can 

evolve into a comprehensive enterprise-grade network security 

solution capable of combating modern cyber threats. 
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