

AI-Powered: Diagnosis and Detection of skin cancer and Dermatological Diseases

Altaf Shaikh¹, Atharva Tatkare², Harshal Ghuge³, Siddhesh Gotmare⁴, Prof. Rabiya Mulla⁵

¹ Department Of Information Technology, Sinhgad College of Engineering, Pune- 41

² Department Of Information Technology, Sinhgad College of Engineering, Pune- 41

³ Department Of Information Technology, Sinhgad College of Engineering, Pune- 41

⁴ Department Of Information Technology, Sinhgad College of Engineering, Pune- 41

⁵ Department Of Information Technology, Sinhgad College of Engineering, Pune- 41

Email: shaikhaltafscooit@gmail.com

Abstract - Skin cancer has become one of the most rapidly increasing and life-threatening diseases worldwide, appearing mainly as melanoma, basal cell carcinoma, and squamous cell carcinoma. Among these, melanoma is the most aggressive due to its high tendency to spread if not detected early. Early and accurate diagnosis greatly improves treatment outcomes, yet manual diagnosis is time-consuming and prone to human error.

To overcome these challenges, this paper presents a computer-aided system for early skin cancer detection using image processing and deep learning techniques. The proposed system processes skin lesion images through pre-processing, segmentation, and classification using Convolutional Neural Networks (CNN).

Besides cancer detection, such methods can also assist in identifying other dermatological conditions like eczema, psoriasis, and acne. A chatbot is integrated to provide users with instant support, symptom information, and guidance, making the platform efficient, interactive, and accessible for early diagnosis and patient awareness.

- **Key Words:** Image Processing, CNN, Deep Learning, Skin Cancer, Melanoma, Basal Cell Carcinoma, Squamous Cell Carcinoma, Chatbot, Skin Diseases

1. INTRODUCTION

The skin is the body's largest organ, acting as a protective barrier, sensing environment, and helping regulate temperature. When the skin is healthy, these functions run smoothly. However, skin may also be affected by a wide range of diseases — from benign rashes and infections to

malignant cancers. In recent years, advances in artificial intelligence (AI) have begun to

play a notable role in dermatology, especially in aiding the detection and diagnosis of skin cancers and other skin conditions. Skin cancer is one of the most common and life-threatening diseases worldwide, with melanoma being the deadliest form due to its high rate of metastasis. Early detection significantly improves survival and treatment outcomes. Recent advances in artificial intelligence (AI) and deep learning have transformed dermatology by enabling automated analysis of skin lesions through digital images. AI systems, especially convolutional neural networks, can classify lesions as benign or malignant with accuracy comparable to expert dermatologists. Mobile and telehealth-based skin assessment systems further support screening in remote and underserved areas, providing fast, accessible and cost-effective diagnostic assistance to users.

The proposed system aims to detect the skin cancer diseases as early as possible to help the people in India

2. LITERATURE SURVEY

[1] Research shows increasing use of teledermoscopy and AI-enabled mobile systems for skin cancer screening. Teledermoscopy has demonstrated high diagnostic accuracy and significantly reduces waiting time for dermatology appointments, especially in rural settings. Studies highlight CNN-based mobile apps achieving up to **92% accuracy** in lesion classification and enabling self-screening for high-risk patients. Earlier approaches relied on manual dermoscopy, but modern AI frameworks process thousands of skin images for automated

evaluation. Smartphone-based melanoma systems, such as SKINCure, have reported accuracy above 95%, demonstrating strong potential for early melanoma detection and patient self-monitoring through real-time image analysis. Early studies primarily explored rule-based and traditional machine-learning models for dermoscopic image classification. Methods such as Support Vector Machines (SVM) demonstrated moderate performance but struggled with complex lesion patterns. For instance, Doukas et al. implemented SVMs in a smartphone-based mole recognition system but achieved only **77.06% accuracy**, highlighting the limitations of earlier approaches

1501.01075v1

. Similarly, a mobile automated lesion classifier presented by Ramlakhan et al. achieved **66.7% accuracy** with notable sensitivity challenges (60.7%), indicating the need for improved image segmentation and feature extraction methods

1501.01075v1

. These early systems established feasibility but lacked robustness for real-world clinical usage.

[3] The introduction of deep learning and convolutional neural networks (CNNs) significantly improved performance and became a foundational trend in dermatology-AI research. CNNs demonstrated superior ability to extract subtle lesion features such as asymmetry, texture, borders, and color variations without handcrafted feature engineering. Barata et al. compared global and local texture- and color-based methods, revealing color features provided stronger melanoma discrimination, achieving sensitivity up to **100%** in certain configurations

1501.01075v1

. These studies laid groundwork for modern deep-learning frameworks..

[4] Mobile health has emerged as a powerful tool, particularly in resource-limited regions. Karargyris et al. developed a smartphone imaging tool for cancer monitoring, utilizing image processing to analyze suspicious lesions, but its dataset of only 12 images limited its clinical reliability

1501.01075v1

. Advancing this concept, the SKINCure system by Abuzaghleh et al. presented a more mature smartphone-based melanoma detection solution. It integrated UV exposure prediction and dermoscopy-image analysis, achieving **96.3% – 97.5% accuracy** across lesion classes using a dermoscopy image database

1501.01075v1

. This research demonstrated high diagnostic performance and emphasized the value of user-friendly mobile tools for both prevention and diagnosis.

[5] Despite advancements, challenges remain. Many systems struggle with real-world variability in lighting, skin tone diversity, and image noise. Training datasets often over-represent lighter skin types, limiting model equity and accuracy across populations. Most research prototypes also require clinical validation before large-scale deployment. Nonetheless, the shift toward deep learning, cloud computation, hybrid telemedicine platforms, and smartphone-based dermoscopy indicates significant progress.

Overall, the literature demonstrates that AI-powered dermatology systems have evolved from simple feature-based classifiers to sophisticated deep-learning-driven mobile platforms capable of real-time melanoma detection. With continued dataset improvements, multimodal input fusion, and fairness optimization, AI-enabled skin cancer screening tools have strong potential to become reliable, accessible, and scalable solutions for early diagnosis and public healthcare support.

3. OVERVIEW

Skin diseases, especially skin cancer, have become a major health concern across the world due to rapid lifestyle changes, increased ultraviolet (UV) radiation exposure, and limited awareness about early symptoms. Among all types of skin cancers, melanoma is considered the most dangerous because of its high spreading rate and mortality when diagnosed late.

1. Objective:

The primary objective of this project is to develop an intelligent and automated skin disease detection system using Artificial Intelligence and deep-learning techniques for early diagnosis of skin cancer and other skin disorders. The system aims to analyze skin lesion images, identify abnormal patterns, and classify diseases such as melanoma, eczema, psoriasis, and acne with high accuracy. Additional objectives include improving accessibility to dermatological screening through a user-friendly digital platform, reducing manual diagnostic errors, and supporting remote healthcare services.

2. Core-Components:

The proposed system consists of several core components designed for efficient and accurate skin disease detection.

Image Acquisition Module captures skin lesion images using a camera or uploaded photos. Preprocessing Unit enhances image quality through noise removal, contrast adjustment, and normalization. Segmentation Module isolates the affected skin region from the background. Feature Extraction Layer, powered by deep-learning algorithms, automatically learns key patterns such as color, texture, and shape.

3. Working-Principle:

The system captures a skin image, enhances it through preprocessing, and isolates the lesion area using segmentation. Deep-learning algorithms extract features such as color, texture, and shape, then classify the disease using a trained CNN model. The result is displayed to the user with diagnosis suggestions and recommendations.

4. Accessibility-and-Innovation:

This system enhances healthcare accessibility by enabling skin disease detection through smartphones and digital platforms, making screening available in remote and underserved regions. Its AI-driven innovation offers fast, accurate diagnosis support, reduces dependency on specialists, and empowers users with early awareness, promoting affordable, tech-enabled dermatological care for all.

5. Social-Impact:

This system promotes early detection of skin cancer and other diseases, helping reduce mortality and treatment costs. It increases health awareness, empowers individuals to monitor skin conditions, and supports underserved communities with accessible diagnostic support. By improving public health outcomes,

4. METHODOLOGY

A. Existing System

Existing skin disease diagnosis systems rely heavily on **manual dermatological examination** and **dermoscopy by specialists**. In traditional methods, doctors visually inspect skin lesions and analyze symptoms, which can be time-consuming, subjective, and dependent on expertise. Tele-dermatology services allow remote consultations, but still require specialist evaluation and often face delays in diagnosis. Conventional computer-aided systems mostly use basic image processing and machine-learning models, offering limited accuracy and difficulty in handling diverse skin tones and image variations. Public awareness

tools and general skin-checker apps exist, but lack deep-learning intelligence, real-time accuracy, and automated early-screening support for diseases like melanoma, eczema, and psoriasis.

B. Conceptual System Design

The conceptual system design focuses on building an AI-based platform that analyzes skin lesion images and accurately identifies potential skin diseases. The system begins with image acquisition through a mobile camera or uploaded photos. The input image undergoes preprocessing to enhance clarity, followed by segmentation to isolate the affected skin region. Deep-learning algorithms, primarily Convolutional Neural Networks (CNNs), extract relevant features and classify diseases such as melanoma, eczema, psoriasis, and acne. The system also provides probability scores and suggested actions. A user-friendly interface displays results, enables image history tracking, and supports remote diagnosis through cloud-based processing for scalability and accessibility.

C. Prototype Design of SkinCancer Detection AI

The prototype design focuses on developing a functional model that can analyze skin lesion images and predict the likelihood of skin cancer using Artificial Intelligence. The system begins with a user interface where images are uploaded or captured in real time. The prototype incorporates preprocessing techniques such as noise reduction and color correction to improve image quality, followed by lesion segmentation. A trained Convolutional Neural Network (CNN) model extracts patterns and classifies lesions as benign or malignant. The output includes confidence scores and early-warning alerts. This prototype demonstrates the feasibility of automated, mobile-based, and accessible skin cancer screening using AI.

D. System Architecture

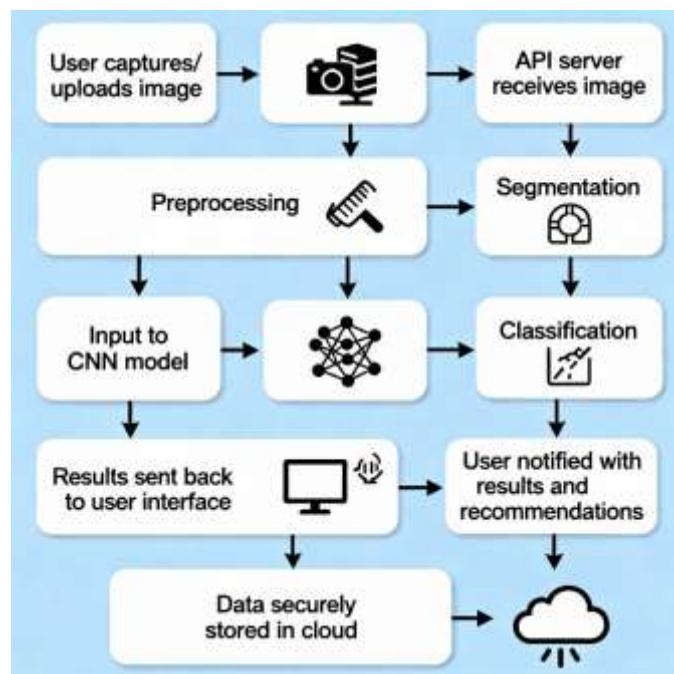
The system architecture is designed to seamlessly process skin images and provide accurate disease predictions using AI. It consists of five main layers: Input Layer for capturing or uploading skin lesion images, Preprocessing Layer to enhance quality and remove noise, Segmentation Layer to isolate the lesion area, and Deep Learning Layer using CNNs for feature extraction and classification. A Backend Server/Cloud Module handles image processing and model computation, while the User Interface Layer

displays results, confidence scores, and recommendations. The architecture ensures efficient data flow, real-time processing, remote accessibility, and scalability for future enhancements..

Fig 2. Architecture Of System

E. Model Training and Validation

Convolutional Neural Networks (CNN) combined with Long Short-Term Memory (LSTM) layers form the backbone of the sign recognition model, trained on the prepared dataset using cross-entropy loss and the Adam optimizer. The speech-to-text model leverages OpenAI's Whisper fine-tuned for regional language nuances. Validation performed via k-fold cross-validation achieved an average sign recognition accuracy of 97.25% and speech recognition accuracy of 95%. Model hyperparameters like learning rate, batch size, and sequence length were tuned using grid search. Early stopping was applied to prevent overfitting.


F. User Interface Design

The UI will be designed using HTML and CSS for web application. The User Interface (UI) is designed to be simple, intuitive, and user-friendly, allowing users to upload or capture skin images easily. It displays diagnostic results, risk levels, and suggestions clearly along with the doctors support. The interface supports smooth navigation, real-time alerts, history tracking, and accessibility features for both medical professionals and general users.

G. Implementation Details

The system is implemented using Python, where TensorFlow and Keras are used to build and deploy the Convolutional Neural Network (CNN) model for skin disease classification. Image preprocessing and segmentation are performed using OpenCV and NumPy to

enhance accuracy. A lightweight backend API is developed using Flask/FastAPI to handle user requests and model predictions. Firebase is used for secure authentication, image storage, and real-time database handling. The user interface is designed in Flutter/React for cross-platform support, providing smooth image input and result display. The system is deployed on cloud services such as Google Cloud or AWS, ensuring scalability, fast response time, and secure access.

Fig 3. Implementation Of System

H. Performance Evaluation

Performance evaluation is conducted to measure the accuracy, reliability, and efficiency of the AI-based skin disease detection system. The trained CNN model is tested using a separate validation dataset to ensure strong generalization ability. Key metrics such as accuracy, precision, recall, F1-score, and confusion matrix are used to assess classification performance. Receiver Operating Characteristic (ROC) curves and Area Under the Curve (AUC) analysis help determine sensitivity in detecting malignant lesions. In addition, system response time, prediction latency, and user experience are evaluated to ensure real-time usability.

5. APPLICATIONS

The AI-based skin cancer and dermatological disease detection system has a wide range of applications across healthcare, research, and personal health monitoring. In clinical environments, dermatologists can use the system

as a diagnostic support tool to analyze lesions rapidly, improving accuracy and reducing diagnostic subjectivity. Hospitals and skin clinics can integrate the platform for initial screening, prioritizing high-risk patients and improving workflow efficiency. The system is also valuable in **rural and remote areas** where access to dermatologists is limited, providing tele-dermatology services and remote consultation support. For **individual users**, the system enables self-screening and continuous skin monitoring using a smartphone, promoting early detection and timely medical intervention. It can be used in preventive health applications, sending alerts for suspicious lesions.

6. CONCLUSION AND FUTURE SCOPE

In conclusion, the AI-based skin cancer and skin disease detection system provides an efficient, accessible, and reliable method for early diagnosis. By leveraging deep learning techniques and image analysis, the system can identify melanoma and other common skin conditions with high accuracy, supporting timely medical intervention and enhancing healthcare accessibility, particularly in underserved regions. Its user-friendly interface and cloud integration make it suitable for both clinical and personal use, promoting proactive skin-health management.

In the future, the system can be enhanced by incorporating larger and more diverse datasets to improve accuracy across different skin tones and conditions. Integration of real-time dermoscopy devices, augmented-reality guidance, and wearable UV-monitoring sensors can further expand its capabilities. Additionally, enabling tele-consultation, multilingual support, and AI-driven personalized skincare recommendations will make the platform more comprehensive. With continuous advancements, this system has the potential to become a mainstream digital dermatology solution worldwide.

7. REFERENCES

- 1 Kristen Delans, BS^{1*}, Elianna Goldstein, BS², James M. Grichnik, MD, PhD³, Beth Goldstein, MD and Adam O. Goldstein, MD, MPH⁵¹Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA; International Research Journal of Engineering and Technology (IRJET) e - ISSN: 2395
— 0056 Volume: 04 Issue: 04 — Apr -2017 Volume: 04 Issue: 04 — Apr -2017, IRJET
— Impact Factor value: 5.181 — ISO 9001: 2008 Certified Journal – Page 2881.
- 2 C.Nageswara Rao, S. SreehariSastry and K.B. Mahalakshmi “Co-Occurrence Matrix and Its Statistical Features an Approach for Identification of Phase Transitions of Mesogens,” International Journal of Innovative Research in Engineering and Technology, Vol. 2, Issue 9, September 2013
- 3 Santosh Achakanalli G. Sadashivappa,” Statistical Analysis of Skin Cancer Image –A Case Study “, International Journal of Electronics and Communication Engineering (IJECE), Vol. 3, Issue 3, May 2014
- 4 “Digital image processing” by Jayaraman. Page 244,254-247,270-273. (gray level, median filter)
- 5 Algorithm For Image Processing and Computer Vision. Page 142- 145. (Thresholding)