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Abstract 

As global energy consumption continues to rise, the demand 

for intelligent systems that can accurately forecast usage and 

suggest optimization strategies has become increasingly 

urgent. This research presents a novel AI-based framework 

that integrates Long Short-Term Memory (LSTM) networks 

for time series forecasting with K-Means clustering to 

analyze usage patterns. The proposed model processes 

historical energy data, predicts future consumption, and 

generates actionable recommendations tailored to specific 

user behaviors. Through effective preprocessing, deep 

learning modeling, and unsupervised pattern recognition, the 

system achieves high forecasting accuracy and enables 

personalized energy optimization strategies. The 

implementation is evaluated using real-world energy 

consumption data, and the results show  the system’s 

potential for integration into smart grid and building 

management platforms, thereby proving their worth  to 

sustainable energy practices. 
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1. Introduction 

In the era of digital transformation, the energy sector faces 

two converging challenges: the increasing demand for 

electricity and the urgent need to reduce carbon emissions. 

Smart technologies offer the best  path forward by accesing  

efficient energy forecasting and consumption management. 

Modern energy systems provide  vast quantities of data 

through sensors, smart meters, and IoT devices. Effectively 

leveraging this data is important  for achieving energy 

efficiency and sustainability goals. 

Traditional forecasting models such as ARIMA and 

Exponential Smoothing have been widely applied in the past, 

but they often fail  in capturing complex, nonlinear patterns 

inherent in energy consumption data [1] . Moreover, these 

models assume data stationarity and depend  completely  on 

human parameter tuning, limiting their adaptability to 

dynamic environments. 

Recent advances in machine learning and deep learning have 

revolutionized forecasting and pattern recognition tasks. In 

particular, Recurrent Neural Networks (RNNs) and their 

variant, Long Short-Term Memory (LSTM), have shown 

great  performance in modeling temporal dependencies in 

sequential data [2] . LSTMs are especially well-suited for 

energy forecasting because they retain long-term memory 

and can adapt to fluctuating usage patterns  generated or 

created by behavioral and environmental changes [3] . 

Parallel to forecasting, understanding consumption patterns 

through clustering techniques allows system designers to 

create  personalized optimization strategies. K-Means 

clustering, a popular unsupervised learning algorithm, helps 

in grouping  similar user behaviors , enabling targeted 

interventions such as load shifting or automated appliance  

scheduling [4] . 

In this study, we propose a hybrid AI-based system that 

combines LSTM for energy consumption forecasting with K-

Means clustering for pattern analysis and optimization. This 

dual approach not only increases prediction precision  but 

also provides interpretable results  into user behavior for 

proper or complete  energy usage. 

The main contributions of this research are as follows: 

• Development of an LSTM-based forecasting model 

trained on historical energy data. 

• Integration of K-Means clustering to identify 

different  consumption patterns. 

• Automated creation  of optimization strategies 

based on cluster profiles. 

• Full pipeline implementation with reproducible 

results and visualization. 

2. Literature Review and Related Works 

2.1 Traditional Statistical Forecasting Techniques 

Past  efforts in energy forecasting completely  relied on 

statistical models such as Autoregressive Integrated Moving 

Average (ARIMA), Holt-Winters exponential smoothing, 

and regression-based methods. These techniques provided 

reasonable accuracy for linear and stationary data but often 

failed to capture non-linear and dynamic behavior. 

It  offered a comprehensive review comparing neural 

networks and statistical methods in short-term load 

forecasting, noting ARIMA's sensitivity to noise and 

inability to model complex patterns [1]. This  improved 

seasonal exponential smoothing for load prediction, but the 

model still required manual training and performed poorly 

under complex  conditions [5] . Similarly, paper of 1997  

applied regression techniques with weather variables for 

forecasting peak demand, but the models lacked adaptability 
[6] . 

Although computationally efficient, these methods did not 

scale well for granular, high-frequency data now prevalent in 

smart energy systems [7] . 

2.2 Machine Learning Approaches for Energy 

Forecasting 

The emergence of machine learning (ML) brought 

improvements in accuracy and adaptability for energy 

forecasting. Algorithms such as Support Vector Machines 

(SVM), Random Forests (RF), Gradient Boosting, and k-

Nearest Neighbors (k-NN) have been widely explored. 

Some  used SVM for residential energy forecasting, 

demonstrating its worthiness  in capturing non-linear 

relationships between variables [8]. Similarly, applied tree-

based models like Random Forests to predict load in 

residential microgrids and reported increased robustness 

http://www.ijsrem.com/


              International Journal of Scientific Research in Engineering and Management (IJSREM) 
                        Volume: 09 Issue: 05 | May - 2025                            SJIF Rating: 8.586                                     ISSN: 2582-3930                                                                                                                    

 

© 2025, IJSREM      | www.ijsrem.com                                 DOI: 10.55041/IJSREM47702                                     |        Page 2 
 

compared to linear models [7] . This paper  compared decision 

trees, SVMs, and XGBoost for energy forecasting, 

concluding that ensemble techniques like XGBoost provided 

the best results for short-term prediction [9] . 

However, ML models typically depend  on static features 

and struggle to handle sequential temporal dependencies 

unless additional feature engineering is performed [10] . They 

are deprived of  built-in memory, limiting their capacity to 

learn from long-term historical trends—an area where deep 

learning models excel. 

2.3 Deep Learning and LSTM for Time Series 

Forecasting 

Recurrent Neural Networks (RNNs), particularly Long 

Short-Term Memory (LSTM) networks, have gained 

prominence in recent years for their ability to model long-

term dependencies in time series data. It introduced LSTM 

to overcome the vanishing gradient problem in traditional 

RNNs [2] , enabling stable training across long sequences. 

This  demonstrated the effectiveness of LSTM networks in 

predicting building-level energy demand, outperforming 

both ARIMA and feedforward neural networks [11]  . It  

developed a deep LSTM model for short-term load 

forecasting using weather and time data, achieving lower 

mean absolute percentage error (MAPE) than conventional 

models [3] . 

Gensler  applied LSTMs to smart home data and captured 

periodicity and trend shifts more effectively than shallow 

networks [12] . In a study by Smyl , hybrid LSTM-ETS 

models topped the M4 competition in forecasting accuracy, 

validating LSTM’s superiority in time series tasks [13] . 

When exogenous features like weather, occupancy, and 

holidays are integrated, LSTM performance improves even 

further. For instance, Abdelhay  showed that LSTM with 

temperature and humidity inputs improved peak prediction 

in HVAC energy loads [14] . 

The ability to remember long-term patterns, adapt to 

seasonality, and handle noisy input make LSTM a strong 

candidate for building energy forecasting systems. 

2.4 Clustering for Energy Pattern Recognition and 

Optimization 

While forecasting is essential, identifying behavioral 

consumption patterns is equally important for energy 

optimization. Clustering algorithms, especially K-Means, 

are widely used for grouping users with similar usage 

profiles to offer personalized energy-saving 

recommendations. 

Fazelpour  utilized K-Means clustering to classify residential 

users based on energy load curves, aiding in demand-side 

management strategies [4] . Mocanu  combined deep 

autoencoders with K-Means to detect anomalies in energy 

consumption across multiple buildings [15]. 

Himeur  proposed an unsupervised framework that clustered 

user profiles to reduce energy waste in smart buildings, 

noting K-Means’ simplicity and interpretability as 

significant advantages [12] . Similarly, Ryu clustered 

operational days in commercial buildings to optimize HVAC 

schedules, resulting in significant energy savings [16] . 

Studies by Kavousian  and Beckel further support the idea 

that clustering improves both the personalization and 

efficiency of feedback systems in energy platforms [17][18] . 

Recently, Li  introduced an intelligent energy management 

framework that jointly used LSTM and clustering for 

prediction and recommendation. Their hybrid system 

improved operational efficiency by dynamically adjusting 

energy controls based on real-time usage patterns [19] . 

 

2.5 Gaps in Existing Literature 

Despite the progress, several challenges remain unaddressed: 

• Most LSTM-based models are not coupled with 

behavioral analysis or recommendation systems. 

• Clustering and forecasting are often developed in 

silos, lacking integration into unified platforms. 

• Few systems provide modular and reproducible 

implementations that are easily adaptable to real-

world deployments. 

This study addresses these gaps by developing a complete, 

integrated pipeline that combines LSTM-based forecasting 

with K-Means-based pattern analysis. The model not only 

predicts future consumption but also offers optimization 

suggestions tailored to cluster behaviors. The codebase is 

designed to be modular, extensible, and accessible for 

practical use. 

 

3. Methodology 

3.1 Data Preprocessing 

Energy consumption datasets often contain noise, missing 

values, and inconsistent time intervals. To ensure model 

robustness, we applied a series of preprocessing steps. 

Missing values were interpolated using linear methods, while 

outliers were detected and removed using the Z-score 

method. The time series was resampled to an hourly 

frequency to maintain granularity without overwhelming the 

model, consistent with practices in recent studies [5] . 

Feature engineering was conducted to enrich the dataset with 

time-based (hour of day, day of week), environmental 

(temperature, humidity), and categorical (weekend/holiday) 

variables. Studies have shown that these features 

significantly enhance model accuracy in building-level 

forecasting [8][14] . 
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3.2 LSTM-Based Energy Forecasting 

LSTM networks were chosen for their ability to handle long 

sequences and learn complex temporal dependencies. The 

model architecture consists of: 

• An input layer feeding sequences of past energy 

readings. 

• Two LSTM layers with 128 and 64 units 

respectively. 

• Dropout layers (rate = 0.2) to reduce overfitting [12] 

. 

• A dense output layer predicting the energy 

consumption for the next hour. 

This architecture was optimized using the Adam optimizer 

and Mean Squared Error (MSE) loss function, as commonly 

used in energy prediction tasks [20][21] . 

The model was trained on sliding windows of 24-hour 

sequences to forecast the next hour. Hyperparameter tuning 

was performed using grid search across epochs (50–200), 

batch size (32–128), and learning rate (0.001–0.01). Early 

stopping criteria and validation loss monitoring were used to 

avoid overfitting [13] . 

 

3.3 K-Means Clustering for Consumption Profiling 

Once predictions were generated, K-Means clustering was 

applied to historical and predicted consumption vectors to 

identify behavioral patterns. The optimal number of clusters 

(k) was determined using the Elbow Method and Silhouette 

Score, following the recommendations by Xu and Wunsch 

(2005) [22] . 

The clustering focused on daily consumption curves 

normalized to account for scale differences. Users were then 

segmented into profiles such as “constant high usage,” 

“peak-evening usage,” and “variable usage,” similar to 

approaches in demand-side energy management literature. 

3.4 Optimization Strategy Generation 

Based on cluster profiles, customized optimization 

suggestions were derived. For instance: 

• Users in the "peak-evening" group were advised to 

shift non-essential loads to off-peak hours. 

• "Constant high usage" profiles received appliance-

level usage breakdowns and recommendations for 

energy-efficient replacements. 

These suggestions align with smart grid feedback strategies 

proposed in prior works  enhancing user engagement and 

compliance. 

 

4. Dataset Description 

For this study, we used a public dataset from the UCI 

Machine Learning Repository, containing energy 

consumption data for multiple households [23] . The dataset 

includes: 

• Power consumption readings (in kWh) recorded at 

10-minute intervals. 

• Sub-metering information for appliances (kitchen, 

laundry, HVAC). 

• Temperature and humidity data for the 

corresponding periods. 

To maintain consistency and reduce noise, the dataset was: 

• Filtered for complete years (e.g., 2012–2014). 

http://www.ijsrem.com/
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• Resampled to hourly intervals using mean 

aggregation. 

• Normalized using Min-Max scaling, a technique 

validated by previous LSTM studies for stabilizing 

training . 

The final dataset comprised over 25,000 hourly records, 

providing ample diversity and temporal depth for model 

training and validation. 

5. Model Architecture and Implementation 

The implementation was done using Python, with key 

libraries including TensorFlow, Scikit-learn, Pandas, and 

Matplotlib. The architecture is divided into three modules: 

5.1 Forecasting Module 

The LSTM forecasting model accepts a sequence of 24 

hourly values and predicts the next hour’s consumption. This 

sliding window is continuously updated, enabling multi-step 

forecasting as needed. The model achieved a training MSE 

of 0.003 and validation MSE of 0.005, aligning with 

benchmarks in recent LSTM-based forecasting literature . 

5.2 Clustering and Analysis Module 

The K-Means clustering model was applied on daily profiles 

(24 values each), with k = 3 yielding the highest silhouette 

score (0.68). Cluster centers represented typical usage 

curves, and each user-day was labeled accordingly. 

Cluster interpretation was enhanced with PCA (Principal 

Component Analysis) for visualization, a method employed  

to simplify complex energy patterns [10]  . 

 

5.3 Optimization Insights Engine 

This module generated customized insights using rule-based 

logic mapped to cluster types. Suggestions were embedded 

into user dashboards and visualized using Seaborn charts, 

improving interpretability—a critical aspect of user-centric 

energy systems. 

The complete system was encapsulated into a GUI, enabling 

real-time forecasting, historical trend analysis, and 

optimization tips per user. This integration bridges the gap 

b\w predictive modeling and actionable feedback,  [18]  

 

6. Results and Analysis 

The model’s performance was evaluated across multiple 

metrics, visualization techniques, and clustering quality 

indicators. The analysis demonstrates the effectiveness of the 

combined LSTM-KMeans approach in both prediction 

accuracy and optimization support. 

 

6.1 Forecasting Performance 

The LSTM model was trained and tested on a 70:30 split of 

the hourly dataset. Performance was measured using: 

• Mean Squared Error (MSE) 

• Root Mean Squared Error (RMSE) 

• Mean Absolute Error (MAE) 

• Mean Absolute Percentage Error (MAPE) 

Metric Training Set Test Set 

MSE 0.0031 0.0054 

RMSE 0.0557 0.0735 

MAE 0.0429 0.0631 

MAPE 4.28% 6.72% 

The test MAPE of 6.72% indicates strong predictive power, 

especially for residential data with high variance. These 

results are consistent with prior studies by Kong et al. (2019), 

where MAPE values below 7% were deemed highly accurate 

for smart grid contexts [3] . 

Time-series plots comparing predicted vs actual values over 

multiple days also showed alignment, particularly in peak 

and base load patterns. This confirms the LSTM’s ability to 

capture both trend and seasonality components—critical for 

HVAC and lighting load modeling [11][12] . 

 

 

6.2 Clustering Performance 

The K-Means clustering algorithm identified three distinct 

usage profiles: 

1. Cluster 0: Consistent high consumption throughout 

the day. 

2. Cluster 1: Morning and evening peaks, likely due 

to occupant activity. 

3. Cluster 2: Low usage with occasional spikes—

possibly low-occupancy homes. 

Silhouette analysis was used to validate cluster quality, 

yielding an average score of 0.68, which is acceptable for 

multidimensional consumption patterns [33]. PCA-based 

visualization (Fig. 3) showed clear separation between 

clusters, echoing findings from Fazelpour  and Mocanu  [4][15] 
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. 

6.3 Optimization Insights Evaluation 

Post-clustering, energy optimization recommendations were 

generated. For example: 

• Cluster 0 users received alerts to reduce non-

essential daytime consumption and suggestions for 

appliance upgrades. 

• Cluster 1 users were encouraged to reschedule 

energy-intensive tasks (e.g., laundry) to off-peak 

hours. 

• Cluster 2 users were advised to adopt smart 

automation to reduce idle consumption. 

User engagement was simulated via scenario-based 

evaluations. Adoption of recommendations hypothetically 

yielded energy savings between 8–15% monthly—

comparable to prior smart feedback studies like those by 

Himeur  and Beckel  (2014) [12][18] . 

 

7. Conclusion and Future Work 

This paper presents a comprehensive approach for 

smart energy forecasting and optimization using a 

hybrid LSTM and clustering framework. Unlike siloed 

systems, the proposed model provides: 

• Accurate, fine-grained energy consumption 

forecasts. 

• Behavior-based clustering of users. 

• Custom optimization recommendations for 

energy savings. 

By combining temporal modeling and behavioral 

analysis, the framework enhances both forecast 

accuracy and user-centric energy feedback, 

addressing major gaps in current research. 

 

7.1 Key Contributions 

• Development of a robust LSTM model tailored 

for hourly energy prediction. 

• Integration of unsupervised K-Means 

clustering for user profiling. 

• Real-time recommendation generation to 

reduce energy waste. 

• Deployment-ready Python implementation 

with modular codebase. 

7.2 Limitations and Future Directions 

Despite promising results, the study has some 

limitations: 

• The dataset was limited to residential users; 

commercial/industrial patterns may differ. 

• Optimization was rule-based; reinforcement 

learning could improve adaptation. 

• Real-time deployment and user testing were 

not conducted in this phase. 

Future work will include: 

• Extending to multi-building or city-wide 

energy networks. 

• Integrating with IoT data sources like 

thermostats and occupancy sensors. 

• Creating a dynamic feedback loop using 

reinforcement learning agents for continuous 

optimization, building on the ideas  [19]. 
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