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Abstract - Deepfake technology has emerged as one of the
most pressing challenges to digital media authenticity, creating
hyper-realistic synthetic content that can deceive even trained
observers. The rapid advancement of generative Al models,
particularly Generative Adversarial Networks (GANs) and
diffusion models, has made it increasingly difficult to
distinguish between genuine and manipulated audio-visual
content. This literature review examines recent developments
in multimodal deepfake detection systems that leverage
artificial intelligence to identify forged media by analyzing
inconsistencies across multiple data streams. The review
focuses on detection frameworks that integrate audio and
visual features through advanced fusion techniques, employ
deep learning architectures for feature extraction, and
incorporate explainable Al mechanisms to provide transparent
reasoning behind classification decisions.By synthesizing
findings from recent representative research studies, this
review highlights the effectiveness of multimodal approaches
over unimodal methods, discusses various fusion strategies
and network architectures, examines benchmark datasets used
for evaluation, and identifies current challenges and future
directions in the field.

Key Words: Deepfake detection, multimodal learning, audio-
visual fusion, explainable Al, cross-modal learning.

1.INTRODUCTION

The emergence of advanced generative Al technologies,
including Generative Adversarial Networks, diffusion models,
and neural voice synthesis systems, has enabled the creation of
highly  realistic  deepfakes that are increasingly
indistinguishable from authentic media. These synthetic audio-
visual manipulations present significant threats across multiple
domains, facilitating financial fraud, political disinformation,
identity theft, and social engineering attacks that undermine
individual privacy, institutional security, and public trust.
Conventional detection approaches relying on human
perception or unimodal analysis have proven insufficient.
Human evaluators, including trained forensic experts,
frequently fail to detect subtle artifacts in advanced deepfakes.
Similarly, single modality detectors analyzing only audio or
video independently are vulnerable to hybrid attacks where one
modality remains authentic while the other is synthetically
altered, rendering them ineffective against cross modal
manipulations.

Al powered multimodal deepfake detection has emerged as
a promising solution by leveraging cross modal inconsistencies

that unimodal systems cannot capture. These approaches
analyze synchronized audiovisual features such as lip sync
accuracy, emotional congruence between voice and facial
expressions, temporal alignment patterns, and physiological
plausibility to identify manipulation artifacts that remain
invisible to single stream detectors. Despite their improved
performance, current state of the art models face several critical
limitations. Most operate as black boxes, providing detection
verdicts without interpretable justification for their decisions.
They also exhibit poor generalization when encountering novel
manipulation techniques not seen during training and often
demand computational resources that preclude real time
deployment. The integration of explainable Al techniques
addresses these transparency concerns by revealing which
specific features and patterns drive detection decisions, thereby
enabling validation and fostering trust in high stakes
applications including forensic investigations, legal
proceedings, and platform content moderation.

A comprehensive review of Al-based multimodal deepfake
detection systems is presented, with a particular focus on
explainability. We examine deep learning architectures
including convolutional neural networks, recurrent networks,
transformers, and multimodal fusion models that integrate
audio and visual features to exploit cross modal inconsistencies
for improved detection. We identify key challenges that include
poor performance across datasets, adversarial vulnerability,
computational efficiency, and inconsistent evaluation metrics.
This review provides researchers with a comprehensive
understanding of current methods and future directions for
developing practical and interpretable deepfake detection
systems.

2. LITERATURE SURVEY
A.Evolution of Deepfake Detection Approaches

Deepfake detection started with simple CNN models working
on single modalities like video frames alone. Over time,
combining audio and visual information gives much better
results against advanced forgeries [1]. ResNet-50 models
reached 97.2% accuracy on FaceForensics++, Celeb-DF and
DFDC datasets using Grad-CAM heatmaps to show facial
forgery artifacts [1]. InceptionResNetV2 combined with
DenseNet201 achieved 99.87% accuracy using LIME to
highlight texture problems typical in GAN-generated faces [3].
Network dissection methods proved attention mechanisms
focus on biologically meaningful facial features [4]. MIS-
AVoiDD approach got AUC 0.973 on FakeAVCeleb by
learning features common across audio and video streams [2].
Cross-modal attention pushed this to AUC 0.989 by perfectly

© 2026, IJSREM | https://ijsrem.com

DOI: 10.55041/IJSREM56499 |

Page 1


https://ijsrem.com/
mailto:anamikasuresh8590@gmail.com
mailto:jayalakshmimm2004@gmail.com
mailto:krishnapriyar2004@gmail.com
mailto:sandrasthelly@gmail.com
mailto:rekhaks@ce-kgr.org

J".", ‘33‘
¢ TISREM 3!

W Volume: 10 Issue: 02 | Feb - 2026

- g7 INternational Journal of Scientific Research in Engineering and Management (IJSREM)

SJIF Rating: 8.659 ISSN: 2582-3930

matching audio-visual timing [6]. Checking emotions between
lip movements and voice catches talking-head fakes [5]. These
overcome single-modality limitations against synchronized
forgeries [8]. As deepfake generators get smarter, detection
methods must keep pace [10].

B. Audio-Visual Feature Extraction and Preprocessing

Visual preprocessing uses CNNs trained on huge face datasets.
Mask R-CNN detects faces first, then improved Xception
network extracts features getting 99.50% accuracy. Depthwise
separable convolutions capture spatial patterns very well [1].
Xception works great for learning face hierarchies [1][5]. For
practical use, optimized to run at 45 frames per second using
TensorRT [1].

Audio processing converts raw sound into mel-spectrograms
or MFCC features [2][4][5][8]. MFCCs fed into CNN-LSTM
networks got 98.2% accuracy detecting fake audio by catching
unnatural voice patterns [9]. Salvi et al. showed time-aware
networks looking at audio features across time work much
better for multimodal detection, especially catching lip-sync
problems [8].
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Fig.1 Pipeline of audio-visual sequence
extraction and deepfake detection [3]

C. Multimodal Fusion Strategies and Architectures

Three main fusion strategies combine audio and video
information: early fusion mixes raw features before feeding
into classifier, late fusion combines separate modality
decisions at end, hybrid uses both approaches. Early fusion
consistently works best achieving AUC over 0.90 across
datasets [8]. This beats single-modality detectors by 10% AUC
on FakeAVCeleb dataset and 0.13 AUC improvement on
DFDC benchmark [8]. Combining modalities catches different
forgery artifacts - visual blending problems plus audio-visual
sync failures happening together [8].

MIS-AVoiDD specifically handles differences between audio
and video data types [2]. Normal concatenation fails because
audio spectrograms and video frames have completely
different statistical properties. MIS-AVoiDD learns both
shared features working across modalities AND unique
features specific to each data type. Final fusion happens after
aligning these representations. This gets AUC 0.973 on
FakeAVCeleb - 8% better than simple concatenation baselines
and 5% better than standard multi-stream networks [2].
Explicitly modeling modality gaps makes huge performance
difference.

Cross-modal attention mechanisms let network decide which
modality carries more reliable information frame-by-frame
[6]. Contextual cross-attention reached AUC 0.989 and 97.9%
accuracy using video frames, lip movement tracking, and

audio spectrograms together [6]. Dropping video dropped
AUC by 6.2 points. Removing audio hurt by 4.8 points. Lip
movement alone failed completely proving all three modalities
needed for robust detection [6]. Attention mechanism
automatically down-weights unreliable modalities during
inference.

RNNs, LSTMs, and bidirectional GRUs capture temporal
patterns across video frames and audio clips [2][9][6]. Lip-
sync detection needs looking at 3-5 second windows to catch
unnatural movement patterns. Temporal modeling particularly
helps with reenactment attacks where face swap quality
excellent but timing slightly off [7][6]. Hybrid spatial-
temporal attention combining frame-level fusion with
sequence modeling shows most promise for real-world
deployment balancing accuracy and computational cost [6].
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Fig.2 MMMS-BA approach for deepfake detection and
localization [6]

D. Advanced Detection Architectures

Complete detection pipeline starts with Mask R-CNN
detecting faces across video frames even with extreme poses,
lighting changes, or partial occlusions [1]. Detected face
regions feed into improved Xception network using depthwise
separable convolutions extracting spatial-hierarchical features.
Final classification uses XGBoost boosted trees with Bayesian
optimization systematically testing 100 hyperparameter
combinations. This maximizes Fl-score while controlling
model complexity getting 99.50% accuracy and 99.21%
AUROC across challenging CelebDF and FaceForensics++
datasets [1]. Bayesian search automatically balances learning
rate, tree depth, and subsample ratio preventing overfitting
during ensemble training [1].

Fine-grained detection targets tiny local inconsistencies
missed by global approaches. Attention modules automatically
discover small problem regions within frames measuring
"spatially-local distance" between expected vs observed pixel
patterns [7]. Model learns which face areas (eyes, mouth
edges, lighting reflections) typically show forgery artifacts
through self-attention mechanisms. Spatially-local processing
examines 32%32 pixel patches identifying unnatural blending
boundaries or inconsistent lighting [7].

Training includes temporally-local pseudo fake augmentation
creating synthetic examples with subtle timing inconsistencies
(0.1-0.3 second lip-sync shifts) [7]. This forces model learning
generalizable temporal patterns rather than dataset-specific
artifacts.  Cross-dataset  evaluation shows  superior
generalization - AUC 97.7% on FakeAVCeleb when trained
only on DFDC dataset dropping only 2.1% from in-domain
performance [7].

Multi-scale fusion combines global face features with local
patch analysis through cascaded refinement. First stage detects
potential fakes globally, second stage verifies specific
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problematic regions. Progressive approach reduces false
positives by 14.3% compared to single-stage detectors while
maintaining real-time inference [1][7]..

Fig. 3. An architecture showing the detection of deepfake
images [3]

E. Explainable Al in Deepfake Detection

Deep learning-based detectors often function as black boxes,
undermining user trust. Mansoor and Iliev, addressed this by
introducing network dissection algorithms to enhance
interpretability in deepfake detection. Their two-stage
approach first detected forged images using advanced CNNss,
then applied network dissection to understand internal
decision-making processes . By analyzing facial features
learned by models, they provided explainable results for
classifying images, achieving 99.87\% accuracy with
InceptionResNetV2 [1].

MMMS-BA,introduced ExDDV, the first dataset and
benchmark for Explainable Deepfake Detection in Video,
comprising approximately 5.4K real and deepfake videos
manually annotated with text descriptions and clicks to explain
artifacts [10]. Their evaluation showed that both text and click
supervision are required to develop robust explainable models
capable of localizing and describing observed artifacts [10].

Multiple explainability techniques have been explored: Grad-
CAM highlights regions influencing classification decisions,
LIME provides local explanations through linear
approximations, attention visualization reveals important
features in attention-based models [8][9], and network
dissection identifies neurons responding to specific semantic
concepts [1][3].

Importantly, integrating explainability does not degrade
detection performance. Reported that CNN architectures
(InceptionResNetV2, DenseNet201, ResNet152V2,
InceptionV3) all surpassed 99\% accuracy while maintaining
strong interpretability through XAI techniques [1]. This
demonstrates that detection accuracy and explainability can be
achieved simultaneously [1].
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Fig. 5. Overview of the in-context learning pipeline, which
retrieves deepfake annotations from visually similar training
frames using a k-NN based on a ResNet backbone. Best
viewed in color. [10]

F. Benchmark Datasets and Evaluation

FakeAVCeleb

Fig. 6. Sample frames from FakeAVCeleb [2]

Several benchmark datasets drive deepfake detection research.
FakeAVCeleb stands out for multimodal work containing
explicit audio-visual manipulations—face swaps alone, lip-
sync fakes alone, or both combined [5]. Deepfake Detection
Challenge (DFDC) includes nearly 120,000 videos covering
diverse manipulation techniques, actors, lighting conditions
[1]. FaceForensics++ tests multiple compression attacks and
manipulation types. Celeb-DF provides high-resolution
celebrity deepfakes [1].

Dataset diversity critically impacts detector generalization.
Training across varied datasets prevents overfitting to specific
forgery artifacts [7]. Cross-dataset evaluation exposes true
performance—AUC drops from 99.8% to 97.7% moving from
DFDC training to FakeAVCeleb testing [7]. This gap shows
importance of learning generalizable inconsistency patterns
rather than dataset-specific clues.
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Standard metrics include accuracy, precision, recall, F1-score,
and AUC-ROC for binary classification [1]. Cross-dataset
testing—training on one dataset, evaluating on another—
provides crucial generalization indicator for real-world
deployment scenarios.

3. COMPARATIVE STUDY

The comparative analysis highlights that attention based
multimodal approaches consistently achieve superior
performance in deepfake detection by explicitly modeling
cross modal relationships. Methods such as MMMS BA and
MIS AVoIDD demonstrate that learning modality invariant
and modality specific representations significantly improves
both accuracy and generalization, addressing the inherent
distributional gap between audio and visual data. Fine grained
detection strategies focusing on localized spatial and temporal
artifacts further enhance robustness, achieving strong cross
dataset performance and indicating that deepfake traces are
often confined to specific regions and time segments.
Importantly, the results also confirm that explainability and
high performance are not mutually exclusive, as interpretable
models can maintain state of the art accuracy while providing
transparent decision making.

Table -1:Comparison Of Multimodal Deepfake Detection
Methods

BA- LAV- Audio | AUC9S: Temporal [5]
TFD DF - 96.3% localization,
Visual | AR100: boundary
81.6% detection
MFCC- | Custom | Audio ACC: Audio [9]
LSTM - 98.2% LSTM+visual
Visual CNN
XAI Image | Visual ACC: Network [4]
CNN Datasets 99.87% dissection,
interpretability
4. CONCLUSIONS
Multimodal deepfake detection significantly

outperforms unimodal approaches by 10-15% AUC
across datasets like FakeAVCeleb and DFDC. Early
fusion achieves AUC >0.90 consistently beating single-
modality CNNs that drop from 97-99% on
FaceForensics++ to 82-87% AUC against perfect audio-
visual sync. Cross-modal attention reaches AUC 0.989
by weighting reliable modalities frame-by-frame while
fine-grained analysis hits 97.7% cross-dataset AUC
targeting local artifacts. Explainable AI maintains
accuracy—InceptionResNetV2 achieves 99.87% with
network dissection. Grad-CAM validates focus on
genuine forgery regions. Performance hierarchy clear:
MMMS-BA (0.989) > MIS-AVoIDD (0.973) > early
fusion (=0.90). Cross-dataset drops of 10-15% reveal
generalization challenges alongside evolving GANs and
missing adversarial robustness. Real-time deployment
works at 45 FPS using optimized pipelines. Future work
needs adversarial defense, unified benchmarks, and real-
time XAI. Best systems combine ResNet visual analysis,
CNN-LSTM audio processing, early fusion, and Grad-
CAM explanations proving accuracy, interpretability,
and practicality coexist for trustworthy deployment.
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