

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 08 | Aug - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com | Page 1

AI Web Scraping for Data Extraction

Harshith R 1 , Prof. Seema Nagaraj2

1 Student, Department of MCA, Bangalore Institute of Technology, Karnataka, India
2 Assistant Professor, Department of MCA, Bangalore Institute of Technology, Karnataka, India

ABSTRACT

The fast-paced changes in the modern web characterized

by its lively, JavaScript-driven content and ever-more

sophisticated anti-bot measures have turned automated

data extraction into quite a tricky endeavor. Many of the

old-school web scraping methods struggle on sites that

use IP bans, behavior analysis, or challenge-response

systems like Cloudflare, which can block access to

valuable information. To tackle this issue, we’re excited

to introduce a specialized web scraping tool crafted in

Python, complete with a user-friendly Streamlit

interface. This tool empowers users to extract text,

images, PDFs, and links, even from sites that are

typically off-limits. It employs a range of advanced anti-

detection strategies, such as rotating user-agent strings to

mimic different browsers, routing requests through

various proxies to hide their origin, and adding random

delays to imitate human browsing behavior. Plus, it

includes techniques to bypass Cloudflare’s JavaScript

checks, boosting its reliability in challenging anti-

scraping environments. Designed for both resilience and

accessibility, this scraper makes data collection a breeze

for research, analysis, and business purposes, all while

promoting ethical best practices. Not only does the

framework ensure dependable extraction from complex

websites, but it also highlights the importance of

responsible use by providing guidance on respecting site

policies, privacy, and rate limits. Our tool stands as a

solid, user-friendly solution in the ever-changing

landscape of web data extraction.

Key Words: Web Scraping, Data Extraction, Anti-

Detection, Python, Streamlit, Ethical Scraping, Bot

Detection, Web Crawling.

1. INTRODUCTION

In today's world, data has become one of the most prized

possessions for businesses and researchers alike. The

ability to automatically collect and make sense of

information from the vast ocean of the internet is now

more crucial than ever. Various industries, from the

bustling realm of e-commerce—where keeping an eye on

competitive pricing is key—to finance, which gauges

market sentiment through news and social media, and

scientific research that often needs extensive datasets, all

rely on a steady flow of accurate and timely web data to

inform their decisions and spark innovation. This is

where web scraping comes into play; it’s the automated

method of pulling this data, acting as the backbone of

this essential process. It’s the crucial first step in any

modern data pipeline, paving the way for analysis,

machine learning, and business intelligence. Without

effective data extraction, these later stages lack the raw

material necessary to uncover valuable insights. But the

internet isn’t the straightforward, static place it used to

be. The modern web has transformed into a lively

ecosystem, largely driven by client-side JavaScript

frameworks like React, Angular, and Vue. This

evolution means that content often isn’t available in the

initial HTML document; instead, it loads

asynchronously after the page has rendered in a user’s

browser. This shift has brought about advanced security

measures aimed at differentiating between genuine

human visitors and automated bots. These anti-scraping

technologies are complex and create significant hurdles

for traditional data extraction methods. They include IP-

based rate limiting, which restricts too many requests

from a single source; sophisticated browser

fingerprinting, which examines a unique mix of

attributes like screen resolution, fonts, and plugins to

spot headless browsers; and CAPTCHA challenges,

designed to be easily solved by humans but not by

machines.

In today’s fast-paced tech landscape, the race to develop

advanced tools has left many traditional web scrapers in

the dust. These older models, which often struggle with

JavaScript and have easily traceable digital footprints,

are becoming increasingly ineffective, sometimes unable

to carry out their tasks at all. This paper presents a robust

solution to this issue: the Anti-Detection Web Scraper.

This innovative tool is designed from the ground up to

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 08 | Aug - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com | Page 2

thrive in this tough environment. It lays out a roadmap

for the future of web scraping, emphasizing smart

evasion techniques and ethical practices rather than sheer

force. Drawing from the framework detailed in the

project guide, this tool employs a variety of evasion

strategies to adeptly navigate the complexities of the

modern web and extract data with impressive reliability.

2. RELATED WORK

The world of web scraping has come a long way,

evolving right alongside the rapid advancements in web

technology. We can break this evolution down into three

key phases, each bringing its own set of challenges and

requiring increasingly sophisticated methods for data

extraction. In the beginning, during the static web era,

extracting data was a pretty straightforward engineering

task. Websites were mainly built using static HTML and

CSS, meaning all the content was served up in the initial

HTTP response from the server. As a result, early

methods relied on simple yet effective tools. HTTP

clients like the command-line utility cURL or Python

libraries such as requests and urllib were more than

enough to grab the complete source code of a webpage.

Once the HTML was in hand, developers could use

libraries like BeautifulSoup or lxml to parse it, turning

that raw text into a navigable Document Object Model

(DOM) tree. This made it easy for developers to select

and extract data using familiar CSS selectors or XPath

expressions. While this approach was quick, efficient,

and light on system resources, it had a major limitation:

it couldn't handle client-side scripts.

The widespread use of JavaScript and the emergence of

client-side rendering frameworks like React, Angular,

and Vue.js ushered in a new era for the web,

transforming it into a dynamic experience. Nowadays,

when you visit a modern website, the initial HTML

document often serves as just a shell, with the real

content being loaded asynchronously through JavaScript

after the page has already rendered in your browser. This

shift made traditional static scraping methods outdated.

The answer? Browser automation tools like Selenium,

which have become the go-to solution. Initially created

for automated web application testing, Selenium allows

scripts to take control of a real web browser, enabling

them to run JavaScript, manage user interactions like

clicks and scrolling, and wait for dynamic content to load

before pulling it in. While this approach tackled the issue

of dynamic content, it did come with a trade-off: a

significant increase in resource usage and slower

performance compared to straightforward HTTP

requests. This enhanced capability in scrapers has led us

into the third and current phase: an ongoing "arms race"

between data extractors and website administrators. To

safeguard their proprietary data and server resources,

websites have started implementing sophisticated anti-

bot systems. These systems scrutinize a variety of signals

to distinguish between human users and automated

scripts. Common tactics include strict IP-based rate

limiting, thorough inspection of HTTP headers to

identify non-standard user agents, and advanced browser

fingerprinting, which generates a unique signature based

on numerous attributes like installed fonts, screen

resolution, and WebGL rendering patterns. Some of the

more advanced systems even use behavioral analysis to

monitor mouse movements and interaction timings. So,

the cutting edge of web scraping today isn't just about

how to extract data; it's also about evading detection and

building resilience. This project is firmly rooted in this

contemporary landscape, where the main goal is to create

a framework that can effectively navigate these defenses.

3. PROBLEM STATEMENT

The main issue this project tackles is the fragility and

high detection rates of traditional web scraping methods

when they’re used on today’s websites. Standard tools

just can’t keep up with the complexities of the modern

web, which often leads to frustrating operational failures

and incomplete data collection. We can break this big

problem down into several specific, yet related, technical

challenges:

First up is the challenge of accessing dynamically loaded

content. Nowadays, many websites have moved from

server-side rendering to client-side rendering. This

means that a lot of the content on a page—often the most

important data—isn’t included in the initial HTML

source code. Instead, it gets loaded asynchronously

through JavaScript after the page is displayed in a

browser. Traditional scraping tools, which usually rely

on basic HTTP clients like requests, can’t run JavaScript.

So, they end up with just a bare-bones version of the page

and miss out on all that dynamically loaded data, making

them pretty ineffective for a lot of modern websites.

Another major hurdle is the extreme vulnerability to IP-

based blocking. Website admins often use IP-based

blocking and rate-limiting as their first line of defense

against automated traffic. These systems monitor how

many requests come from a single IP address over a

certain time frame. A typical scraper, which sends out

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 08 | Aug - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com | Page 3

requests quickly from one server or machine, can easily

exceed these limits. This triggers an automated response

that can range from temporary throttling to a permanent

IP ban, completely stopping the data extraction process

in its tracks.

Easy Detection Due to Predictable Digital Footprints:

Automated scripts often leave behind clear, non-human

traces that make them easy to spot. One of the biggest

red flags is a static or default user-agent string, which

immediately signals that the traffic is coming from a

script instead of a regular web browser. Plus, the

machine-like speed and rhythm of automated requests—

making calls at consistent, sub-second intervals—are

easily picked up by behavioral analysis systems. This

predictable pattern stands out as a stark contrast to the

irregular, more relaxed browsing habits of a human user.

Immediate Failure When Encountering Security

Gateways: A large chunk of the web is safeguarded by

Content Delivery Networks (CDNs) and security

services like Cloudflare. These services act as a barrier,

intercepting traffic before it reaches the intended server.

They often throw up an automated JavaScript challenge

or a CAPTCHA that needs to be solved to confirm that

the visitor is indeed human. A typical scraper can't tackle

these challenges and gets blocked before it even has a

chance to access the website's content, rendering a

significant portion of the web completely off-limits.

High Maintenance Overhead from Brittle Selectors:

Traditional scrapers usually rely on hardcoded selectors,

like CSS classes or XPath expressions, to find and pull

specific data points. This method is incredibly fragile.

The moment a website's developers make even a small

tweak to the site's layout—like renaming a class or

changing an HTML element's structure—the selectors

break, and the scraper fails. This means constant, tedious

manual upkeep is required to refresh the extraction logic,

making these scrapers unreliable for any long-term or

large-scale data collection efforts.

4. PROPOSED SYSTEM

The proposed system is an Anti-Detection Web Scraper,

a standalone software tool crafted to tackle the issues

mentioned earlier. It's built on Python and boasts a user-

friendly graphical interface (GUI) created with

Streamlit, making its powerful features accessible even

to those who aren't tech-savvy. The main aim is to deliver

a strong and dependable framework for data extraction

that can function effectively against typical anti-scraping

tactics. This system is capable of pulling a diverse range

of data—including text, embedded links, images, and

PDF files—while keeping a low profile to evade

detection. By integrating advanced evasion techniques

into an easy-to-use tool, this system seeks to make web

data more accessible for research and analysis.

5. METHODOLOGY

The effectiveness of the proposed web scraper lies in a

clever, multi-layered approach that allows it to navigate

the web intelligently instead of just relying on brute

force. The main idea is to mimic human browsing

behavior while cleverly hiding the fact that the script is

automated. This strategy goes beyond simple data

requests, creating a more natural and less detectable

interaction with the target website. Here are the key

methods used:

Identity Masking: One of the primary objectives is to

avoid showing a static, easily recognizable digital

signature. This is accomplished through two main

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 08 | Aug - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com | Page 4

techniques. First, the system uses dynamic user-agent

rotation, assigning a random, legitimate browser

signature to each request from a pre-compiled list of

common agents. This helps prevent detection based on

repetitive or unusual user-agent patterns. Second, the

tool incorporates strong IP address obfuscation with

configurable proxy support. By routing traffic through

various proxy servers, the scraper makes its requests

seem like they’re coming from multiple users in different

locations, effectively sidestepping IP-based blocking and

rate-limiting measures.

Behavioral Mimicry: To steer clear of automated

systems that monitor browsing habits, the scraper

cleverly adds random delays between its requests. Unlike

a bot that zips through tasks at lightning speed, a human

user naturally takes breaks to read and engage with

content. By mixing in these variable pauses, the scraper's

request rhythm becomes less predictable and more

human-like, effectively dodging behavioral analysis.

Plus, this approach has the added benefit of keeping the

target server from being bombarded with a flood of rapid

requests.

Technical Challenge Resolution: A big chunk of today’s

web is safeguarded by security measures like Cloudflare,

which throw automated JavaScript challenges at simple

bots to keep them at bay. Regular HTTP libraries can’t

handle this JavaScript and end up getting blocked. To

tackle this, the system uses specialized libraries like

cloudscraper, which are built to automatically interpret

and solve these challenges. This clever workaround

allows the scraper to access a wide array of websites that

would otherwise be off-limits to standard scripts.

Error Resilience: Web connections can be a bit shaky,

and requests might fail due to temporary hiccups like

network congestion or server issues. To keep data intact,

the request process includes an automatic retry feature.

If a request doesn’t go through, instead of giving up, the

system takes a short pause and then tries again.

6. REQUIREMENT ANALYSIS AND DESIGN

Architecture

1. Frontend (User Interface):

The frontend features a sleek, web-based interface

crafted with Streamlit, a contemporary Python

framework that’s perfect for quickly developing data

applications. Choosing Streamlit was a smart move, as it

enables the creation of an intuitive and interactive user

experience without the hassle of traditional web

development stacks. Through this interface, users can:

- Enter a target URL for scraping.

- Adjust all anti-detection settings, like enabling proxy

rotation or setting the delay range between requests.

- Pick the desired scraping function (e.g., extract text,

download images).

- Start the scraping task with just one click and see the

results in real-time as the backend processes them.

2. Backend Engine:

The backend serves as the heart of the application,

entirely written in Python and made up of several

distinct, collaborative modules. Each module has its own

specific role, creating a logical and efficient processing

pipeline:

Configuration Manager: This module serves as the link

between the Streamlit UI and the backend. It captures all

user inputs the target URL, anti-detection settings, and

selected function and compiles them into a structured

configuration object that gets passed along to the other

modules.

Scraping Engine: Think of this as the backbone of the

application. It takes in the configuration object and

handles all the web requests. By weaving together the

user's settings, it dynamically builds requests, using tools

like fake-useragent to create random browser signatures

and cloudscraper to tackle security hurdles, especially

those posed by Cloudflare. Plus, it takes care of rotating

proxies and adds in some random delays between

requests to keep things smooth.

Parsing Module: Once the Scraping Engine has pulled in

the raw HTML from a webpage, it hands it off to the

Parsing Module. This part of the system leverages the

powerful BeautifulSoup4 library to convert the messy

HTML into a structured, navigable Python object,

known as a parse tree. This transformation makes it easy

to pinpoint and extract specific data, whether it’s links,

text, or image sources.

Results Handler: After the Parsing Module has done its

job and extracted the data, the Results Handler steps in.

It’s responsible for tidying up the data (like removing

extra spaces from text), organizing it neatly, and then

presenting it back to the user through the Streamlit

interface. It also takes care of creating downloadable

files, whether that means zipping up images or compiling

text into a single document.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 08 | Aug - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com | Page 5

Implementation

The tool is built using Python 3.13, which was chosen

for its rich ecosystem of powerful, open-source libraries

that are perfect for web scraping and data processing.

The implementation is based on a thoughtfully curated

selection of these libraries, each playing a vital role:

streamlit: This is the backbone of the user interface.

requests: The essential library for making standard

HTTP requests to fetch web page content.

cloudscraper: A specialized library that builds on

requests and is crucial for getting around Cloudflare's

anti-bot measures.

beautifulsoup: The main tool for parsing and navigating

the HTML content we retrieve.

fake-useragent: A handy utility that generates random,

legitimate user-agent strings to help avoid detection as a

bot.

We've made the installation process as straightforward as

possible. As outlined in the user guide, you can install all

the necessary dependencies using a series of pip

commands, which are usually grouped into a

requirements.txt file for a production-ready project. This

way, any user can quickly and easily set up a consistent

and functional environment to run the application.

7. PROTOTYPE FUNCTIONALITY AND

RESULT

Functionality

The current prototype is a fully functional application

that showcases the system's core features through a user-

friendly Graphical User Interface (GUI). As outlined in

the user guide, users can carry out several essential data

extraction tasks, each tailored to tackle common scraping

scenarios:

Extract Embedded Links: This feature methodically

analyzes the HTML of a specified webpage to find all

anchor (<a>) tags and pulls out their corresponding href

attributes. The outcome is a neat, organized list of all

hyperlinks on the page, which is crucial for mapping

website structures or uncovering new pages to explore.

Extract Main Website Text: This is the go-to function for

text extraction. It focuses on the content of a single,

specified URL, removing HTML tags, scripts, and

styling details to provide the raw text from that page.

This is perfect for single-page data collection, like

archiving an article or capturing product descriptions.

Extract Complete Website Text: This is a more

sophisticated, "deep-scraping" function. It starts by

scraping the text from the initial URL and then follows

the embedded links it discovers to scrape text from those

additional pages. This allows for a thorough extraction

of all textual content across an entire website, although

it's best suited for smaller sites to keep things

manageable.

Download PDF and Image Files: This handy function is

designed to collect non-HTML resources. It scans the

page for links that lead directly to PDF files or for image

() tags, extracts the source URLs, and then

downloads these files to the user's local machine,

organizing them for easy access.

Result

To really test how well the system works, we put it

through its paces in a tough real-world situation: a

website that had both Cloudflare's anti-bot protections

and strict IP-based rate limits in place. We broke the

experiment into two phases to make the comparison

clear.

In the first phase, known as the control run, we launched

the scraper without its anti-detection features. The

result? It failed almost immediately. The scraper got

blocked after just a few requests, unable to get past the

initial Cloudflare JavaScript challenge and quickly

triggering the IP rate limiter. This led to a data extraction

success rate of less than 15%.

In the second phase, the experimental run, we activated

the scraper's anti-detection features. This time, we used

a careful delay of 2–5 seconds between requests and

routed the traffic through a rotating pool of proxies. The

outcome was a resounding success. The tool managed to

navigate the Cloudflare challenge and, by masking its IP

and mimicking human-like behavior, it avoided

triggering the rate limiter. The scraper operated

continuously without getting blocked, achieving an

impressive 98% success rate in extracting the target data.

This clearly shows that the project's multi-layered

approach is highly effective at overcoming the defenses

of today’s web.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 08 | Aug - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com | Page 6

8. DISCUSSION, LIMITATION AND

FUTURE WORK

Discussion

The project has shown that by cleverly combining

various evasion techniques, we can effectively tackle

many of the typical challenges that come with modern

web scraping. The experimental findings are impressive,

revealing a jump in success rates from below 15% to an

astonishing 98% once the anti-detection features were

activated, which really backs up our main approach. By

using proxy rotation, user-agent spoofing, and random

delays, the tool managed to navigate a real-world

environment protected by Cloudflare and IP rate-

limiting—something a standard scraper would struggle

to get through.

One important takeaway from these results is the

necessary balance between speed and stealth. While

adding delays does slow down the data extraction

process, this intentional, human-like pacing is what

ultimately ensures the scraper's long-term effectiveness

and reliability. This project demonstrates that for

ongoing data collection, a "low and slow" strategy is far

better than a fast-paced one that gets detected and

blocked quickly.

Additionally, creating the tool with a user-friendly

Streamlit interface is a significant step toward making

advanced data extraction more accessible. By

simplifying the underlying code complexity, the tool

enables users from various backgrounds like researchers,

market analysts, and journalists to gather data

legitimately without needing specialized programming

knowledge.

Limitations

Even with its achievements, the current prototype has a

few notable limitations that set the limits of what it can

do:

Inability to Overcome Enterprise-Grade Bot Protection:

While the system's evasion techniques work well against

many standard anti-bot systems, it struggles with more

advanced, enterprise-level bot protection services like

those from Akamai, Imperva, or DataDome. These

sophisticated platforms utilize machine learning for in-

depth behavioral analysis and advanced browser

fingerprinting methods, which can often spot even the

most cleverly disguised automated scripts.

Absence of an Automated CAPTCHA Solving Feature:

The current version doesn’t include any way to tackle

CAPTCHA challenges. As mentioned in the

troubleshooting section of the user guide, if a website

throws up a CAPTCHA, the scraping process will hit a

dead end. This is a major hurdle since CAPTCHAs are

specifically designed to act as a Turing test to block

automated scripts, making any site that uses them largely

off-limits for the current tool.

Scalability for Massive Tasks: Although effective, the

tool's dependence on programmed delays means that

large-scale scraping tasks can take a lot of time. For

instance, scraping tens of thousands of pages with a

cautious delay of several seconds between each request

could stretch into hours or even days. The current setup

isn’t really built for this kind of heavy-duty data

extraction.

Future Work

The current platform lays a strong groundwork for

several important enhancements that can tackle the

limitations mentioned earlier and greatly boost the tool's

functionality:

Integration of Automated CAPTCHA Solving: One

major improvement to address the CAPTCHA hurdle

would be to incorporate a third-party CAPTCHA-

solving service, like 2Captcha or Anti-Captcha. This

would mean developing a module that can recognize a

CAPTCHA, send the challenge to the service's API, and

then input the solution it receives back, effectively

automating what is currently a major roadblock for the

scraper.

Implementation of a Hardened Headless Browser Mode:

To combat more sophisticated fingerprinting techniques,

we could introduce an optional mode that utilizes a

"hardened" headless browser through libraries like

Playwright or Selenium Stealth. These tools are crafted

to tweak a browser's properties at a fundamental level,

making it nearly indistinguishable from a real human

user's browser, which would significantly enhance our

defenses against high-level bot detection.

Development of a Distributed Architecture for

Scalability: To tackle the speed issue for large-scale

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 08 | Aug - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com | Page 7

operations, we could redesign the tool to support

distributed crawling. By integrating a distributed task

queue like Celery with a message broker such as

RabbitMQ, we could break down a single scraping job

into thousands of individual tasks (like one URL per

task) and spread them across a cluster of machines. This

would enable massively parallel execution, allowing us

to extract hundreds of thousands of pages in a fraction of

the time it would take on just one machine.

9. CONCLUSION

This paper has laid out the complete design,

implementation, and evaluation of an Anti-Detection

Web Scraper—a specialized tool crafted to tackle the

significant hurdles of data extraction from today’s web.

In a landscape where dynamic, JavaScript-rendered

content and advanced anti-bot measures are the standard,

this project goes beyond traditional methods to provide a

smarter and more resilient solution. By incorporating a

multi-layered suite of anti-detection strategies—

including dynamic user-agent rotation, customizable

proxy support for IP masking, randomized request delays

to mimic human behavior, and a dedicated Cloudflare

bypass module—into a user-friendly application, the

project establishes a solid framework for reliably

collecting web data.

The system's impressive success during the experimental

phase, where it managed to bypass common defenses

like Cloudflare's security gateways and IP-based rate

limiting with a remarkable 98% success rate, serves as a

strong endorsement of its core approach. It demonstrates

that in the ongoing technological "arms race" of the web,

a strategic focus on stealth and mimicking human

behavior outperforms older, more fragile techniques.

In the end, this project represents a practical and

effective framework for web scraping that is both

technically robust and ethically aware. By bundling

advanced features into an intuitive interface, it opens up

access to web data for legitimate research and analysis.

More importantly, by incorporating features and offering

guidance that encourage responsible scraping practices,

it provides a valuable and timely tool for the fields of

data science, market research, and digital humanities,

showcasing how to balance the need for data with respect

for the digital ecosystem.

REFERENCE

1) "Web Scraping Using Natural Language

Processing: Exploiting Unstructured Text for Data

Extraction and Analysis," ScienceDirect, 2023.

2) "AI WEB SCRAPER," JETIR, 2025.

3) "Web Scraper for Data Extraction and Threat

Intelligence," SSRN, 2023.

4) "Comparative Analysis of Web Scraping Tools for

Low-Resource Languages," IJETT Journal, 2024.

5) "Use of Artificial Intelligence And Web Scraping

Methods," IJERA, 2018.

6) "Anti-Scraping Techniques," IJARSCT, 2023.

7) "A Survey on the Web Scraping: In the Search of

Data," IJSRCSEIT, 2023.

8) "NLP-enhanced inflation measurement using BERT

and web scraping," Frontiers in Artificial Intelligence,

2025.

9) "Hybrid Approach for Scraping HTML within JSON

Structure," IJARSCT, 2023.

10) "Bibliometric Insights into Web Scraping and

Advanced AI-Models Integration," SCITEPRESS, 2024.

11) "Detection of Web Scraping using Machine

Learning," IJCRT, 2023.

12) "JavaScript Web Scraping Tool for Extraction

Information," BIO-Conferences, 2024.

13) "IMPLEMENTATION OF WEB SCRAPING FOR

E-COMMERCE WEBSITES," JETIR, 2021.

14) "AI - Based Solution for Web Crawling," IJSR, 2023.

15) "Intellectual property issues in artificial intelligence

trained on scraped data," OECD, 2025.

http://www.ijsrem.com/

