

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 09 Issue: 03 | March - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM42592 | Page 1

AIRA : AI-Powered Code Review & Bug Detection System

Manish Kumar1, Manish Kumar Shah2

Guided By: Prof. Aparajita Biswal & Prof. Amit Kumar

Dept. of Computer Science and Engineering

Parul University

Vadodara, Gujarat - 391760

Abstract— The increasing complexity of software develop-
ment presents significant challenges for developers, including
bug detection, code inefficiencies, and security vulnerabilities.
Traditional methods of code review and debugging often result
in increased workload and reduced productivity. To address
these issues, AI-powered tools are emerging as a solution to
enhance code quality, streamline development, and minimize
human error.

Introducing AIRA (AI-powered Intelligent Review Assistant),
an advanced AI-driven code review and bug detection system
designed to assist developers in improving code quality and
ensuring robust security. AIRA leverages advanced AI models,
including Pylint, SonarQube, and Bandit, to perform real-
time static and dynamic code analysis. It identifies bugs,
security vulnerabilities, and performance bottlenecks, providing
actionable insights to enhance code efficiency.

AIRA is built on a Flask-based Python backend integrated
with a React.js frontend, offering a high-performance and
intuitive interface. The system supports real-time code analysis,
automated code optimization, and AI-based refactoring, en-
abling developers to identify and resolve issues efficiently. AIRA
also features a secure authentication system using Firebase,
providing multi-platform support and seamless user experience
with light and dark mode options.

AIRA empowers developers by automating repetitive tasks,
reducing the time required for code review, and enhancing
overall code quality. By combining AI-driven analysis with an
intuitive user interface, AIRA aims to transform the software
development process, making it faster, more secure, and highly
efficient.

Index Terms: AI-powered Code Review, Bug Detection, Python
Development, Flask API, Security Analysis, Static Code Anal-
ysis, AI-Based Code Optimization, Code Efficiency, Software
Security, AIRA.

I. INTRODUCTION

The increasing complexity of software development

presents significant challenges for developers, including diffi-

culties in identifying bugs, resolving security vulnerabilities,

and optimizing code efficiency. Traditional methods of code

review and debugging are often time consuming and prone to

human error, leading to increased workload and reduced pro-

ductivity. As software development processes become more

complex, the need for intelligent and automated solutions to

enhance code quality and streamline the development lifecy-

cle becomes more evident. AI-powered tools are emerging as

a promising solution to address these challenges by providing

automated code analysis, bug detection, and performance

optimization.

Introducing AIRA (AI-powered Intelligent Review Assis-

tant), a next-generation AI-driven system designed to en-

hance the code review and bug detection process for de-

velopers. AIRA leverages advanced artificial intelligence

techniques to identify and resolve coding issues in real time.

It combines the power of static and dynamic code analysis

to detect security vulnerabilities, inefficiencies, and potential

bugs, providing actionable recommendations to improve code

quality. AIRA empowers developers to focus on higher-

level problem solving by automating repetitive code review

tasks and minimizing the time required for debugging and

troubleshooting.

The AIRA project aims to create a sophisticated AI-based

code review assistant that integrates seamlessly with mod-

ern development environments. Built using Flask for the

backend and React.js for the frontend, AIRA delivers a

high-performance, responsive, and visually engaging user

interface. The system supports real-time code analysis and

automatic code optimization, enhancing developer productiv-

ity and code efficiency. AIRA also includes secure authen-

tication using Firebase, providing multi-platform access and

a consistent user experience. The primary objectives of the

AIRA project are as follows:

1) Develop a High-Performance User Interface: Create

an intuitive and responsive user interface using React.js

and Material-UI, allowing developers to seamlessly

interact with the code review system.

2) Implement AI-Driven Code Analysis: Integrate AI-

based tools such as Pylint, SonarQube, and Bandit to

perform comprehensive static and dynamic code analy-

sis for bug detection, security vulnerability assessment,

and performance improvement.

3) Provide Real-Time Feedback and Suggestions: En-

able real-time analysis of code, providing developers

with actionable insights and suggestions to improve

code quality and fix issues on the fly.

4) Enhance Security and Data Integrity: Imple-

ment Firebase-based secure authentication (supporting

email, Google, and GitHub) to protect user data and

provide secure access to code review features.

5) Enable Code Refactoring and Optimization: In-

corporate AI-powered code refactoring capabilities to

automatically suggest and apply code improvements,

enhancing overall code structure and maintainability.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 09 Issue: 03 | March - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM42592 | Page 2

6) Create a Modern Developer Experience: Implement

features such as as light and dark mode, history

tracking for code analysis, and a user-friendly

interface to provide a seamless and productive

development environment.

AIRA aims to redefine the code review process by

combining the power of artificial intelligence with an

intuitive, developer-focused interface. It minimizes the

manual effort required for code analysis, reduces the

likelihood of human error, and enhances overall code

quality and security.

II. LITERATURE REVIEW

The development of AI-based code review and bug

detection systems has gained significant attention in recent

years, driven by the increasing complexity of modern

software development. Several research studies have

explored the use of artificial intelligence in improving code

quality, enhancing security, and automating the debugging

process. This section reviews relevant research papers

and compares existing systems with our project, AIRA

(AI-powered Intelligent Review Assistant), highlighting the

unique features and improvements we’ve introduced.

One of the foundational studies on AI-driven code analysis,

AI-Powered Static Code Analysis for Bug Detection

(IEEE), explores the use of machine learning models

to identify bugs and vulnerabilities in code. The paper

discusses the limitations of traditional static analysis tools,

such as false positives and limited scalability, which often

hinder developer productivity. AIRA addresses these issues

by integrating AI-based tools like Pylint, SonarQube, and

Bandit, which combine static and dynamic analysis to

improve the accuracy and depth of code inspection. AIRA

enhances this approach by providing real-time feedback and

suggestions, ensuring a more efficient debugging process.

Similarly, the paper Automated Bug Fixing Using

Machine Learning (ACM) investigates the potential of

machine learning-based models to automate the process of

bug detection and correction. The study emphasizes the

challenge of generating accurate fixes without introducing

new issues. AIRA builds upon these insights by incorporating

AI-powered code refactoring capabilities, which not only

detect bugs but also suggest optimized code structures

to improve overall performance and maintainability. This

automated refactoring feature sets AIRA apart from existing

solutions, offering developers a more comprehensive toolset

for code improvement.

The study AI-Driven Security Vulnerability Detection in

Source Code (Journal of Software Engineering) examines

how AI techniques can enhance security vulnerability

detection in source code. It highlights the limitations of

conventional security scanners in handling complex code

structures and emerging threat patterns. AIRA addresses

these gaps by integrating Bandit and SonarQube for

security vulnerability analysis, enabling the system to

identify potential security threats in real-time. The system’s

ability to provide contextual recommendations for fixing

vulnerabilities enhances the overall security posture of the

codebase.

Additionally, the paper Code Quality Improvement

Through AI-Assisted Code Review (Springer) explores

the role of AI in streamlining the code review process. The

study suggests that most AI-based code review systems

focus primarily on syntax and style, overlooking deeper

logical and performance issues. AIRA differentiates itself

by combining AI-based static and dynamic analysis,

allowing the system to detect logical errors, performance

bottlenecks, and structural inefficiencies. The system’s

real-time feedback mechanism ensures that developers

receive immediate insights, facilitating a more responsive

development workflow.

Lastly, the paper Real-Time Code Metrics and

Performance Monitoring (IEEE) discusses the

implementation of real-time performance monitoring

tools to improve software quality. It outlines the challenges

of integrating such tools with existing development

environments and maintaining low latency. AIRA addresses

these challenges by offering a dashboard of real-time code

metrics, providing developers with detailed information on

code performance, error rates, and potential improvements.

This feature allows developers to track performance trends

and make data-driven decisions to enhance code quality and

efficiency.

In summary, the reviewed literature underscores the in-

creasing importance of AI-driven solutions in improving

code quality, detecting bugs, and enhancing security. How-

ever, most existing systems focus on isolated aspects of code

analysis. AIRA differentiates itself by combining AI-based

static and dynamic code analysis, real-time performance

monitoring, security vulnerability detection, and automated

code refactoring into a unified system, offering a compre-

hensive solution tailored for modern software development.

III. METHODOLOGY

AIRA is an AI-powered Code Review & Bug Detection

System designed to provide developers with deep insights

into their code quality, detect vulnerabilities, and suggest im-

provements. The development of this project involved several

key technologies, methodologies, and tools that enabled the

creation of a robust and efficient system.

A. Technologies Used

The core technologies utilized in the development of

AIRA include:

1) Natural Language Processing (NLP): Used to ana-

lyze and understand the context of the code, enabling

meaningful insights and intelligent suggestions.

2) Machine Learning Models: Trained to detect patterns,

identify bugs, and provide recommendations based on

previous analysis.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 09 Issue: 03 | March - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM42592 | Page 3

3) Flask Framework: A lightweight Python web frame-

work used to develop the backend of the system,

facilitating fast and scalable deployment.

4) React.js with Material-UI: Used to develop the fron-

tend interface, providing a modern and responsive user

experience.

5) Pylint, SonarQube, Bandit: Used for code quality

checks, vulnerability detection, and security analysis.

6) Firebase: Used for authentication, enabling secure

login using Email, Google, and GitHub.

B. System Architecture

The architecture of AIRA is composed of three primary

layers:

• Analyzed project requirements for bug detection

and code analysis.

• Researched static code analysis tools (Pylint,

SonarQube, Bandit).

• Explored AI integration techniques for code re-

view systems.

3) Design and Architecture (Weeks 5–6)

• Designed the AI processing pipeline for bug de-

tection and performance analysis.

• Planned frontend-backend interaction.

• Designed the database schema for storing analysis

reports.

Fig. 1. AIRA: System Architecture

1) Frontend Layer: Developed using React.js and

Material-UI, the frontend handles user interaction and

displays the analysis results in an intuitive format. It

also includes real-time metrics, dark/light mode, and

responsive UI components.

2) Backend Layer: Built with Flask, the backend han-

dles request processing, AI-based code analysis, and

interaction with the database. It integrates Pylint,

SonarQube, and Bandit to provide comprehensive code

review and vulnerability detection.

3) AI Processing Layer: The AI processing layer in-

cludes trained machine learning models that analyze

code structure, detect issues, and suggest improve-

ments.

C. Development Phases

The development of AIRA followed these key phases:

1) Training and Onboarding (Weeks 1–3)

• Focused on understanding company processes and

goals.

• Trained on Python libraries, frameworks, and ver-

sion control.

• Got familiar with project management and com-

munication tools.

2) Planning and Research (Weeks 4–5)

Fig. 2. AIRA: Timeline Chart

4) Core Development (Weeks 7–10)

• Developed backend logic for code review and bug

detection using Flask.

• Trained AI models for code complexity analysis

and best-practice suggestions.

5) Integration and Testing (Weeks 11–13)

• Connected the frontend (React.js) with backend

APIs.

• Conducted functional, security, and performance

testing.

• Optimized real-time code analysis.

6) Deployment and Documentation (Week 14)

• Deployed the system in a controlled environment.

• Created detailed documentation.

• Presented the final project to stakeholders.

D. Workflow

The workflow of AIRA is designed to provide a seamless

and intuitive user experience, ensuring thorough code anal-

ysis and actionable feedback through a structured process:

1) User Authentication:

• The user starts by either Logging in or Signing up.

• If authentication fails, the user is prompted to Try

Again.

• If successfully authenticated, the user proceeds to

AIRA.

2) Post-Login Navigation:

• After logging in, users are redirected to the Post

Login Homepage.

• The homepage provides the following sections:

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 09 Issue: 03 | March - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM42592 | Page 4

– Profile: Update Info, Email Subscription,

Change Password.

– History: View past code analysis reports.

– Logout: Exit the application.

– Features: Bug Detection, Code Review, Code

Analysis, Security Check, AI Suggestions.

3) Code Submission and AI-Powered Analysis:

• The user submits Code for analysis.

• AI models (powered by Pylint, SonarQube, and

Bandit) analyze the code for:

– Bug Detection

– Security Vulnerabilities

– Code Quality and Best Practices

4) Report Generation:

• A comprehensive report is generated, highlighting:

– Detected issues

– Suggested fixes

– Code complexity insights

Fig. 3. AIRA Flowchart Representation

5) User Interaction and Feedback:

• The user reviews the generated report and applies

suggested fixes.

• If needed, the user can resubmit the code for

further analysis.

6) Completion and Storage:

• Upon finalization, the user can:

– Download the report.

– Save the report for future reference and histor-

ical tracking.

This workflow outlines AIRA’s structured flowchart, from

authentication to code analysis, feature selection, and report

generation. The system ensures efficient code evaluation and

provides AI-driven suggestions for improvement.

E. UML Diagrams

1) Class Diagram: The class diagram states a well-

structured system for handling code-based interactions

through AIRA. The system consists of multiple classes,

including user interface handlers, AI processors, and data

models.

Fig. 4. AIRA: Class Diagram

2) Use Case Diagram: The use case diagram of AIRA

outlines the core functionalities and interactions between the

user and the system. It highlights how users can upload code,

receive detailed analysis, and access real-time performance

metrics, ensuring a streamlined and intuitive experience.

Fig. 5. AIRA: Use Case Diagram

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 09 Issue: 03 | March - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM42592 | Page 5

3) Sequence Diagram: The sequence diagram of AIRA

depicts the structured interaction flow between the user,

frontend, backend, and AI models. It demonstrates how

user input is processed, analyzed, and how the generated

results are delivered back to the user, ensuring a seamless

and efficient process.

Fig. 6. AIRA: Sequence Diagram Diagram

IV. RESULTS AND DISCUSSION

The AIRA project successfully achieved its core

objectives by providing an AI-powered platform for

automated code review and bug detection. The system

efficiently analyzed code for syntax errors, logical flaws,

and security vulnerabilities, offering detailed suggestions

for improvement. The AI-driven analysis ensured high

accuracy in identifying coding issues and providing

actionable recommendations to enhance code quality and

maintainability.

The integration of real-time code metrics allowed users

to monitor performance and complexity, offering insights

into areas of improvement. The seamless frontend-backend

interaction, facilitated by Flask APIs and React.js, ensured

smooth user experience and fast processing. The use of

AI models (Pylint, SonarQube, Bandit) enabled deep code

analysis, identifying vulnerabilities and recommending best

practices.

The system’s user interface was highly responsive and

modern, incorporating Material-UI components and Framer

Motion for smooth animations and transitions. The dark and

light mode toggle provided a customizable user experience,

and the real-time dashboard allowed users to track analysis

results effectively. The authentication system, implemented

using Firebase, ensured secure access and protected user

data.

Quantitatively, the system demonstrated high accuracy in

detecting bugs and code issues, with a consistent reduction

in coding errors and improved performance following AI-

based suggestions. User feedback highlighted the system’s

ease of use, detailed reporting, and the value of real-time

insights.

In comparison with initial goals, AIRA met and, in some

cases, exceeded expectations in terms of accuracy and

analysis depth. However, certain limitations were observed,

including the need for enhanced AI model training for

more complex codebases and improving processing speed

for larger files. The system’s ability to provide real-time

feedback and actionable insights positioned it as a valuable

tool for developers seeking to improve code quality and

maintain secure coding standards.

Overall, AIRA delivered a robust and high-performing

AI-powered code review and bug detection system. Further

improvements in AI model training, expanded language

support, and enhanced user customization options would

elevate the system’s capabilities to meet more advanced

industry standards.

V. CONCLUSION

In conclusion, the development of AIRA represents a sig-

nificant milestone in the field of automated code review and

bug detection. By integrating advanced AI-based analysis

tools and real-time performance monitoring, AIRA provides

a comprehensive and efficient platform for improving code

quality and security. The system is designed to handle com-

plex code structures, analyze code in real-time, and deliver

accurate feedback to developers, making it a valuable tool for

professional and large-scale software development projects.

AIRA effectively analyzes code for syntax errors, logical

flaws, and security vulnerabilities by utilizing AI-driven

models like Pylint, SonarQube, and Bandit. It offers ac-

tionable insights to developers, enabling them to fix issues

promptly and enhance the overall performance and maintain-

ability of their codebase. The system’s ability to detect and

address issues at an early stage helps in reducing technical

debt and improving long-term code quality.

One of AIRA’s standout features is its ability to provide

real-time feedback and generate detailed analysis reports.

Developers can instantly identify issues and take corrective

actions without needing to manually inspect large codebases.

The seamless interaction between the Flask-based backend

and the React.js-based frontend ensures a fast, responsive,

and user-friendly experience. The inclusion of real-time code

metrics and performance dashboards allows developers to

monitor complexity, identify bottlenecks, and track improve-

ments over time, enhancing productivity and code reliability.

Throughout the development process, key priorities included

usability, accuracy, and scalability. The authentication sys-

tem, implemented using Firebase, ensures secure and reliable

access control, protecting sensitive data and user sessions.

The modern and intuitive user interface (UI), built with

Material-UI and Framer Motion, enhances user engagement

and simplifies navigation. The system’s ability to detect

and resolve security vulnerabilities using AI-driven models

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 09 Issue: 03 | March - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM42592 | Page 6

ensures that the codebase remains secure and compliant with

industry standards.

Moreover, AIRA’s automated code refactoring capabilities

enable developers to optimize their code based on AI-

generated suggestions. This not only improves code effi-

ciency but also aligns it with best coding practices. AIRA’s

modular architecture allows for easy integration with external

tools and future scalability, making it suitable for both small

and large-scale software development projects.

In summary, AIRA represents a transformative solution for

AI-powered code review and bug detection, combining ac-

curacy, speed, and user-centric design. Future enhancements,

including expanded language support, improved AI training,

and more advanced security features, will further strengthen

AIRA’s capabilities and establish it as a leading tool in the

software development industry.

VI. FUTURE WORK

The future development of AIRA will focus on enhancing

functionality, improving user experience, and expanding AI

capabilities to make it more powerful and adaptive. The key

areas of future work are as follows:

1) Advanced AI-Based Code Refactoring: Introduce

AI-driven automated code refactoring to optimize code

quality, improve performance, and reduce complexity

without manual intervention.

2) Enhanced Context Awareness: Implement context-

awareness to allow AIRA to understand past interac-

tions and apply that knowledge for more accurate and

consistent code analysis.

3) Multi-Language Support: Expand language sup-

port beyond popular programming languages, enabling

comprehensive code analysis across diverse coding

environments.

4) Real-Time Collaboration and Feedback: Develop a

feature to allow multiple developers to work simulta-

neously on the same codebase with real-time feedback

and conflict resolution.

5) Customizable Rules and Policies: Enable users to

define and modify custom rules and coding standards,

allowing AIRA to adapt to specific project guidelines

and industry practices.

6) Performance and Complexity Dashboard Enhance-

ments: Improve the real-time dashboard to provide

more granular insights into code complexity, memory

usage, and execution time.

7) User Feedback System and Adaptive Learning: Im-

plement a feedback mechanism to gather user insights

and enable AIRA to refine its analysis models based

on real-world usage and user feedback.

8) Security Vulnerability Prediction and Prevention:

Enhance AI models to predict and prevent potential

security vulnerabilities by analyzing code patterns and

emerging threats.

VII. APPENDICES

The appendix includes supplementary materials such as

the folder structure of the AIRA project, screenshots demon-

strating key functionalities, and detailed explanations of the

algorithms used in the system.

A. Appendix A: Folder Structure

Fig. 7. AIRA: Folder Structure

B. Appendix B: Detailed Algorithm Explanation

1) Bug Detection and Code Analysis Algorithm: The

bug detection and code analysis algorithm leverages AI

models and tools like Pylint, SonarQube, and Bandit

to identify bugs, code smells, and security vulnerabilities.

The process follows these steps:

• Code Input: User uploads the source code for analysis.

• Preprocessing: Code is cleaned and formatted for con-

sistency.

• AI-Based Analysis: The AI model scans the code for

issues and vulnerabilities.

• Pattern Recognition: Predefined patterns and anoma-

lies are detected.

• Result Compilation: A detailed report is generated

with issues and suggestions.

2) Security Vulnerability Scanner: The security scanner

is based on Bandit and custom AI models. It evaluates the

code for potential security threats and generates a security

report. The process includes:

• Input Processing: Code is analyzed for common secu-

rity flaws.

• Threat Identification: AI models flag potential vulner-

abilities.

• Severity Analysis: Detected issues are classified based

on severity.

• Recommendation Generation: Suggestions for resolv-

ing vulnerabilities are provided.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 09 Issue: 03 | March - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM42592 | Page 7

3) Code Refactoring and Optimization Algorithm: The

refactoring algorithm uses machine learning techniques to

optimize code structure and improve performance. The pro-

cess follows:

• Structural Analysis: Code is scanned for inefficiencies

and redundant patterns.

• Pattern Matching: The AI model identifies and sug-

gests alternative approaches.

• Performance Testing: Proposed changes are evaluated

for performance gains.

• Refactoring Suggestions: Users are provided with op-

timized code suggestions.

C. Appendix C: Screenshots of Functionalities

Fig. 8. AIRA: Feature Page

Fig. 9. AIRA: AI Security Check

REFERENCES

[1] J. Patel and S. Singh, ”AI-Based Code Review and Bug Detection
System,” International Journal of Software Engineering, vol. 45, no.
3, pp. 123-145, 2023.

[2] M. Johnson, K. Lee, and R. Kumar, ”Advanced AI Techniques for
Static Code Analysis,” IEEE Transactions on Software Engineering,
vol. 58, no. 1, pp. 24-35, 2022.

[3] H. Tanaka and L. Smith, ”Machine Learning for Code Optimization
and Error Detection,” Journal of Artificial Intelligence Research, vol.
67, pp. 345-360, 2021.

[4] P. Verma and A. Gupta, ”Automated Bug Detection Using Deep
Learning Models,” ACM Transactions on Software Engineering, vol.
43, no. 2, pp. 78-95, 2022.

[5] K. Shah and N. Patel, ”AI-Powered Static Code Analysis and Security
Scanning,” Proceedings of the International Conference on AI in
Software Engineering, pp. 123-132, 2023.

[6] Ian Sommerville. ”Software Engineering.” Addison-Wesley, 9th edi-
tion, 2011.

[7] Glenford J. Myers. ”The Art of Software Testing.” Communications
of the ACM, vol. 22, no. 9, pp. 690–700, 1979.

[8] Boris Beizer. ”Software Testing Techniques.” Van Nostrand Reinhold,
New York, NY, USA, 2nd edition, 1990.

[9] S. Kim, E. Whitehead, and Y. Zhang. ”Classifying Software Changes:
Clean or Buggy?” IEEE Transactions on Software Engineering, vol.
34, no. 2, pp. 181-196, 2008.

[10] P. V. S. Rao, M. V. Prasad, and K. K. Reddy. ”Deep Learning-Based
Static Code Analysis for Bug Detection.” Journal of Machine Learning
and Data Mining, vol. 44, no. 1, pp. 78-90, 2022.

[11] D. Zhang and L. Huang. ”AI-Assisted Code Review: Challenges and
Opportunities.” Proceedings of the International Conference on AI in
Software Engineering, pp. 211-220, 2022.

[12] L. Xu and H. Lin. ”Security Vulnerability Detection Using Machine
Learning.” IEEE Transactions on Cybersecurity, vol. 15, no. 4, pp.
287-298, 2022.

[13] J. Brown and R. Kaur. ”Optimizing Code Performance Using AI-Based
Code Refactoring.” ACM Transactions on Programming Languages
and Systems, vol. 41, no. 5, pp. 145-163, 2022.

[14] A. Singh and P. Kumar. ”Static Code Analysis Using AI-Based
Models.” Proceedings of the International Conference on Software
Engineering, pp. 134-141, 2021.

[15] L. Patel and K. Sharma. ”Enhancing Code Quality with AI-Powered
Static Code Analyzers.” Journal of Software Engineering and Appli-
cations, vol. 55, no. 2, pp. 132-148, 2023.

Fig. 10. AIRA: Code Analysis Report

http://www.ijsrem.com/

