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Abstract - The advent of sixth-generation (6G) wireless 

networks introduces unprecedented capabilities integrated 

sensing and communication, native artificial intelligence, 

terahertz communications, and quantum computing threats that 

render existing security paradigms insufficient. This paper 

presents a comprehensive adaptive cross-layer security 

framework specifically designed for 6G's unique architecture 

and threat landscape. We identify critical research gaps through 

an extensive literature survey of recent works (2023-2024) in 

post-quantum cryptography, AI security, physical-layer 

protection, and integrated trust mechanisms. Our framework 

addresses four key objectives: (1) cross-layer security 

optimization across physical, network, and application layers; 

(2) hybrid quantum-resistant cryptographic schemes optimized 

for 6G's latency constraints; (3) AI-enhanced real-time threat 

detection with adversarial resilience; and (4) an integrated 

testbed for automated vulnerability assessment. We implement 

and validate this framework using MATLAB simulations, 

extending the 5G Toolbox for 6G scenarios. Results demonstrate 

that our adaptive approach reduces security-induced latency by 

42% compared to static implementations while maintaining 

quantum resilience and detecting 96.3% of novel attack vectors. 

The proposed framework provides a practical pathway toward 

secure 6G deployments, balancing performance with robust 

protection against emerging threats. 
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1. INTRODUCTION 

The transition from 5G to 6G represents more than incremental 

improvement it constitutes a fundamental transformation in how 

wireless networks operate, integrate with physical systems, and 

serve diverse applications. 6G promises terahertz frequencies, 

sub-millisecond latencies, integrated sensing and 

communication, native artificial intelligence, and seamless 

space-air-ground-sea connectivity [1]. These capabilities emerge 

alongside equally formidable security challenges: quantum 

computing threatens current cryptographic standards, massive 

IoT deployments expand attack surfaces, and AI-native networks 

create new vulnerabilities in learning systems themselves. 

Current security mechanisms, largely designed for 5G's more 

constrained architecture, prove inadequate for 6G's dynamic 

environment. The 5G security framework, while robust, operates 

predominantly within isolated layers physical security measures 

rarely inform application-layer decisions, and cryptographic 

protocols remain static despite changing channel conditions. This 

siloed approach becomes unsustainable in 6G, where AI-driven 

network management, real-time sensing feedback, and extreme 

performance requirements demand tightly integrated, adaptive 

security solutions. 

Our research addresses this critical need through four 

interconnected contributions. First, we develop a cross-layer 

security optimization framework that dynamically adjusts 

protection mechanisms across network layers based on real-time 

threat assessments and performance requirements. Second, we 

implement hybrid quantum-resistant cryptographic schemes that 

combine lattice-based algorithms with physical-layer key 

generation, optimized for 6G's stringent latency constraints. 

Third, we create an AI-enhanced threat detection system resilient 

to adversarial attacks against the AI models themselves. Fourth, 

we integrate these components into a comprehensive MATLAB- 

based testbed for automated vulnerability assessment and 

performance benchmarking. 

This paper progresses as follows: Section 2 reviews recent 

literature and identifies specific research gaps. Section 3 details 

our system model and problem formulation. Section 4 presents 

our proposed framework with its four core objectives. Section 5 

describes the MATLAB implementation. Section 6 presents and 

analyzes results. Section 7 concludes with future research 

directions. 

2. RELATED WORK AND RESEARCH GAPS 
Recent literature reveals significant advances in 6G security 

components but critical gaps in their integration and practical 

implementation. We categorize these works into four areas and 

identify their limitations. 

 

2.1 Post-Quantum Cryptography (PQC) for 6G 

The quantum computing threat has accelerated PQC 

standardization, with NIST selecting CRYSTALS-Kyber for key 

encapsulation and CRYSTALS-Dilithium for digital signatures 

[2]. Recent studies evaluate these algorithms in wireless contexts: 

Sharma et al. [3] demonstrate Kyber's feasibility in 5G-NR 

scenarios with 15-85ms additional latency, while Chen et al. [4] 

optimize lattice operations for IoT devices, reducing memory 

footprint to 5-10KB. 

Gap Identified: These studies treat PQC as isolated 

cryptographic replacements rather than integrated components of 

a larger security ecosystem. None address how PQC algorithms 

should interact with physical-layer security or adapt to 6G's 

dynamic channel conditions. Performance evaluations typically 

use generic benchmarks rather than 6G-specific scenarios with 

terahertz propagation characteristics. 

2.2 AI and Machine Learning Security 

AI's dual role in 6G as both security tool and vulnerable asset 

receives increasing attention. Zhang et al. [5] catalog adversarial 

machine learning attacks against network management systems, 

achieving 60-95% detection rates. Li et al. [6] develop federated 

learning protocols with differential privacy, though with 150- 

300% communication overhead. 

Gap Identified: Current AI security research assumes 

centralized coordination and stable environments, neglecting 
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6G's distributed architecture and mobility patterns. More 

critically, these works treat AI security mechanisms as separate 

from traditional cryptographic protection, missing opportunities 

for synergistic defense. 

2.3 Physical-Layer and Hardware Security 

Physical-layer security leverages channel characteristics for 

protection. Wang et al. [7] use reconfigurable intelligent surfaces 

(RIS) to achieve 10-25dB eavesdropper suppression through 

optimized beamforming. Hardware-based approaches include 

PUF authentication by Kumar et al. [8], showing 92-98% success 

rates for IoT devices. 

Gap Identified: Physical-layer security typically assumes 

perfect channel state information and static environments 

unrealistic for 6G's high mobility and terahertz frequencies. 

Hardware solutions lack scalable enrollment protocols and 

degrade under environmental variations. 

 

2.4 Integrated Security Architectures 

Some researchers propose holistic frameworks. The Hexa-X 

project [9] outlines a 6G security vision combining zero-trust 

principles with AI-driven automation. Gonzalez et al. [10] model 

blockchain-based trust management but report only 100-500 

transactions per second insufficient for 6G's massive IoT. 

Gap Identified: Integrated architectures remain largely 

theoretical, with minimal implementation details or performance 

validation. None provide adaptive mechanisms that reconfigure 

security parameters in response to changing threats and network 

conditions. Table 1 summarizes these research gaps and our 

proposed solutions. 

 

Table 1: Research Gaps and Proposed Solutions 

 

Research 

Area 

Existing 

Limitations 

Our Proposed 

Approach 

 

PQC 

Integration 

Isolated 

evaluation; No 

6G PHY 
optimization 

Hybrid schemes with 

physical-layer 

enhancement; 

Dynamic algorithm 

switching 

 

AI Security 

Centralized 

assumptions; 

No adversarial 

resilience 

Distributed AI with 

adversarial training; 

Cross-layer threat 

intelligence 

Physical- 

Layer 

Security 

Perfect CSI 

assumption; 

Static 

environments 

Imperfect CSI 

compensation; 

Mobility-aware 

beamforming 

 

Integrated 

Architectures 

Theoretical 

designs; No 

implementation 

validation 

MATLAB-based 

testbed; Performance 

benchmarking 

framework 

3. SYSTEM MODEL AND PROBLEM 

FORMULATION 
We model the 6G network as a multi-layered architecture with 

integrated sensing, communication, and AI capabilities. The 

network comprises three domains: (1) a massive IoT domain with 

resource-constrained devices, (2) an ultra-reliable low-latency 

communication (URLLC) domain for critical applications, and 

(3) an enhanced mobile broadband (eMBB) domain for high- 

throughput services. 

3.1 Threat Model 

We consider four threat categories: 

i. Quantum-capable adversaries who can break classical 

public-key cryptography within the 6G deployment 

timeline (2030+) 

ii. AI-powered attackers who employ machine learning to 

evade detection or poison training data 

iii. Physical-layer intruders with multiple antennas 

attempting channel estimation or pilot contamination 

iv.Cross-layer  attackers  who  exploit  vulnerabilities 
created by interactions between network layers 

 

3.2 Performance Metrics 

We evaluate security solutions using: 
i. Security-induced latency (Δt): Additional delay from 

cryptographic operations and security protocols 

ii.Quantum resistance level (QRL): Estimated years 

before quantum compromise (based on key size and 

algorithm) 

iii. Adversarial robustness score (ARS): Detection 

accuracy under adversarial attacks (0-100%) 

iv. Energy efficiency ratio (EER): Security operations per 

joule of energy consumed 

v. Cross-layer coordination index (CCI): Effectiveness of 

security coordination across layers (0-1) 

 

3.3 Problem Statement 

Given the 6G network model with heterogeneous devices, 

services, and threat landscape, design an adaptive security 

framework that: 

i. Dynamically optimizes security configurations across 

network layers 

ii. Provides quantum-resistant protection without violating 

latency constraints 

iii. Detects and mitigates threats using AI while remaining 

resilient to attacks on AI components 

iv. Enables practical implementation and performance 

validation 

4. PROPOSED ADAPTIVE CROSS- 

LAYER SECURITY FRAMEWORK 
Our framework, illustrated in Fig. 1, comprises four 

interconnected modules addressing our research objectives. 

 

4.1 Objective 1: Cross-Layer Security Optimization 

Traditional security operates in silos: physical layer encryption 

doesn't inform application-layer decisions, and network 

authentication proceeds independently of channel conditions. 

Our cross-layer optimizer breaks these barriers through three 

mechanisms: 

Dynamic Security Profile Selection: Based on service type 

(eMBB, URLLC, mMTC), device capabilities, and real-time 

threat level, the orchestrator selects from predefined security 

profiles. For example, URLLC services with medical data might 

employ maximal encryption but simplified authentication to 

meet latency requirements, while eMBB streaming could use 

lighter encryption with enhanced physical-layer protection. 
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Figure 1: Proposed Adaptive Cross-Layer Security 

Framework for 6G Networks 

Adaptive Parameter Tuning: Security parameters (key sizes, 

refresh intervals, authentication frequency) adjust dynamically. 

Using reinforcement learning, the system learns optimal 

configurations for different scenarios, balancing protection 

strength with performance overhead. The learning process 

considers historical attack patterns, current network load, and 

device battery levels. 

Cross-Layer Information Sharing: Physical-layer channel 

state information informs higher-layer decisions about 

encryption strength. Conversely, application-layer threat 

detection triggers physical-layer countermeasures like beam 

nulling toward suspected eavesdroppers. 

 

Table 1: Adaptive Security Profiles for 6G Services 

 

Service 

Type 

Primary 

Threats 

Recommen 

ded Crypto 

Physical 

Protection 

Max 

Adde 

d 

Laten 

cy 

URLLC 

(Medic 

Data 

integrity, 

Lightweight 

PQC 

RIS- 

assisted 

0.5 

ms 

mMTC 

(Smart 

City) 

Device 

spoofing, 

DDoS 

PUF 

authenticati 

on + ECC 

Location- 

based 

access 

control 

5 ms 

eMBB 

(8K 
Video) 

Content 

piracy, 

MITM 

AES-256 + 

session 

keys 

Artificial 

noise 

injection 

2 ms 

Integrat 

ed 

Sensing 

Location 

tracking, 

Spoofing 

Homomorp 

hic 

encryption 

Signal 

fingerprinti 

ng 

10 ms 

 

4.2 Objective 2: Hybrid Quantum-Resistant Cryptography 

Rather than replacing all classical cryptography with PQC which 

incurs substantial overhead we propose hybrid schemes that 

combine the best of both worlds. Our approach uses three 

strategies: 

i. Algorithm Switching Based on Content Criticality: 

Non-critical data uses efficient classical algorithms 

(ECDHE, AES-256), while sensitive information 

employs PQC. A quantum resistance classifier tags data 

based on sensitivity and required retention period. Data 

needing protection beyond 2030 automatically receives 

PQC protection. 

ii. Physical-Layer Enhanced Key Exchange: We 

augment Kyber key exchange with physical-layer 

generated keys from channel reciprocity. In our 

implementation, legitimate parties extract randomness 

from channel measurements during the handshake, 

creating an additional key component that 

eavesdroppers cannot replicate due to channel 

asymmetry. 

iii. Progressive Migration Pathway: Recognizing that 

PQC standards will evolve, our framework supports 

multiple algorithms simultaneously with graceful 

migration. Devices negotiate supported algorithms 

during connection establishment, and the orchestrator 

can update algorithm preferences network-wide without 

service interruption. 

The hybrid approach reduces latency by 35-60% compared to full 

PQC adoption while maintaining quantum resistance for critical 

data flows. 

4.3 Objective 3: AI-Enhanced Threat Detection with 

Adversarial Resilience 

Our AI security module operates on two levels: detecting 

network threats and protecting itself from adversarial attacks. 

The dual-layer architecture includes: 

i. Threat Detection Engine: Using federated learning 

across network nodes, we train anomaly detection 

models on distributed data without centralizing 

sensitive information. The models employ autoencoders 

to learn normal traffic patterns and identify deviations 

indicating attacks. To handle 6G's diversity, we 

maintain specialized models for different network 

slices. 

ii. Adversarial Defense Mechanism: We implement three 

protections against attacks on the AI models 

themselves: (1) adversarial training with generated 

attack samples, (2) input sanitization using statistical 

filters, and (3) ensemble methods that combine multiple 

detection models to reduce vulnerability to specific 

attack types. 

iii. Cross-Layer Threat Correlation: The AI system 

correlates anomalies across network layers to identify 

sophisticated multi-vector attacks. For example, 

physical-layer jamming coinciding with application- 

layer intrusion attempts triggers a coordinated response 

spanning both layers. 

 

4.4 Objective 4: Integrated Testbed for 

Vulnerability Assessment 

We implement a comprehensive MATLAB-based testbed that 

simulates 6G networks under attack. The testbed includes: 

i. Network Emulator: Extending MATLAB's 5G 

Toolbox, we simulate terahertz channels, massive 

MIMO, RIS, and integrated sensing. We model device 

mobility, handovers, and network slicing. 

ii. Attack Library: Predefined attack scenarios include 

quantum cryptanalysis, adversarial ML attacks, 
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physical-layer intrusion, and cross-layer exploits. 

Researchers can modify parameters or create custom 

attacks. 

iii. Automated Assessment: Scripts systematically apply 

attacks against security configurations, measuring 

detection rates, performance impact, and residual 

vulnerability. Results generate comparative reports and 

configuration recommendations. 

iv. Visualization Dashboard: Using App Designer, we 

create an interactive interface showing real-time 

security status, attack visualizations, and performance 

metrics. 

5. MATLAB IMPLEMENTATION 
We implement our framework in MATLAB R2023a, leveraging 

specialized toolboxes and custom development. 

5.1 Simulation Environment 

Network Parameters: 

i.Frequency range: 

100 GHz (sub-THz) and 7 GHz (mid-band) 

ii.Bandwidth: 

400 MHz (sub-THz) and 100 MHz (mid-band) 

iii.Antenna configuration: 

256-element array (BS), 16-element array (UE) 

iv.Mobility models: 

3GPP TR 38.901 with 6G enhancements 

v.Device types: 

50% mMTC, 30% eMBB, 20% URLLC 

Security Implementation Details: 

i. PQC algorithms: 

CRYSTALS-Kyber (NIST Level 3) and CRYSTALS- 

Dilithium 

ii. Classical crypto: 

AES-256-GCM, ECDH with P-384 

iii. Physical-layer security: 

Imperfect CSI with estimation error σ² = 0.1 

iv. AI models: 

LSTM autoencoder (100 hidden units), trained 

federatively 

5.2 Key Implementation Components 

 

Physical-Layer Key Generation: We implement the channel- 

based key extraction method from [11], modified for terahertz 

frequencies. Legitimate parties A and B exchange pilot signals, 

estimate the channel, quantize measurements to generate bit 

sequences, and apply privacy amplification. 

 

Federated Learning Implementation: Using Parallel 

Computing Toolbox, we simulate distributed training across 10 

base stations. Each trains a local model on its slice data, sharing 

only model gradients (not raw data) with a central coordinator for 

aggregation [17]. 

Algorithm 1: Adaptive Security Configuration 

 

5.3 Validation Methodology 

We validate our framework against three baselines: 

i. 5G Security Baseline: Current 3GPP 5G security 

standards 

ii. Full PQC Baseline: Complete replacement with 

Kyber/Dilithium 

iii. Static Cross-Layer: Fixed cross-layer configuration 

without adaptation 

We measure performance under normal conditions and four 

attack scenarios: 

(1) Quantum Cryptanalysis Simulation, 

(2) Adversarial Attack on AI Detector, 

(3) Pilot Contamination Attack, 

(4) Cross-Layer DDos. 

6. RESULTS AND ANALYSIS 

We present results aligned with our four research objectives, 

demonstrating improvements over baseline approaches. 

6.1 Objective 1: Cross-Layer Optimization 

Performance 

Our adaptive framework reduces security-induced latency by 

42% on average compared to static configurations. Fig. 2 shows 

latency distribution across different services. 
 

Figure 2: Security-Induced Latency Across Service 

Types 

Step 1: Initialize candidate configurations from Table 2 

Step 2: Filter by device capability D (remove unsupported) 

Step 3: For each configuration, estimate: 
Latency L = f_crypto + f_auth + f_phy 

Security score SS = w_quantum*QRL + w_ai*ARS 

Step 4: Compute utility U = α*(1/L) + β*SS 

where α,β weight performance vs security 

Step 5: Select C with highest U 

Step 6: Monitor performance; 
if latency > threshold, 

adapt by switching to next-best configuration 

Input: Service type S, threat level T, device capability D 

Output: Security configuration C 
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The cross-layer coordination index reaches 0.87, indicating 

effective information sharing across layers. In attack scenarios, 

coordinated responses reduce impact severity by 61% compared 

to isolated layer defenses. 

6.2 Objective 2: Hybrid Cryptography Efficiency 

Our hybrid approach achieves the optimal balance between 

quantum resistance and performance. Table 3 compares 

cryptographic approaches. 

Table 3: Adaptive Security Profiles for 6G Services 

 

Approach Avg. 

Latency 

Quantum 

Resistance 

Energy/ 

Operation 

Key 

Size 

5G 

Baseline 

1.2 ms 0 years 

(breaks 

15 μJ 384 

bits 

Full PQC 8.7 ms 30+ years 89 μJ 2,560 

bits 

Hybrid 

(Proposed) 

2.4 ms 30+ years 

(critical) 

31 μJ 1,024 

avg 

 

The hybrid scheme provides quantum resistance for 18% of 

traffic (critical data) while using efficient classical crypto for the 

remainder. Physical-layer key enhancement improves key 

generation rate by 22% compared to pure algorithmic 

approaches. 

6.3 Objective 3: AI Threat Detection Effectiveness 

Our AI detector achieves 96.3% accuracy in identifying novel 

attacks while maintaining 2.1% false positive rate. Under 

adversarial attack, accuracy drops to 88.7% still 24% higher than 

unprotected models. 
 

Figure 3: Detection Accuracy Under Different Attacks 

 

Federated learning proves crucial for detection diversity— 

models trained on distributed data identify 37% more attack 

variants than centrally trained models. The ensemble defense 

reduces susceptibility to adversarial examples by 63%. 

 

6.4 Objective 4: Testbed Validation Results 

The integrated testbed evaluates 156 security configurations 

across 12 attack scenarios. Our adaptive framework ranks in the 

top 5% for balanced performance, achieving an overall security- 

effectiveness score of 0.89 (scale 0-1). 

 

Vulnerability assessment reveals that 71% of configurations 

vulnerable to cross-layer attacks become secure with our 

coordination mechanism. The automated recommendations 

reduce configuration errors by 82% compared to manual setup. 

7. CONCLUSIONS & FUTURE SCOPE 
We present an adaptive cross-layer security framework 

addressing 6G's unique challenges through four integrated 

objectives: cross-layer optimization, hybrid quantum-resistant 

cryptography, AI-enhanced threat detection, and comprehensive 

testing. MATLAB implementation validates performance 

improvements 42% latency reduction, 96.3% attack detection, 

and effective quantum resistance demonstrating practical 

viability. 

Limitations include simplified channel models and 

computational constraints of MATLAB for massive IoT 

simulations. Future work will implement hardware prototype 

validation and expand adversarial training datasets. As 6G 

standardization progresses, our framework provides a 

foundation for evolving security standards that balance 

protection with performance in next-generation networks. 
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