

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 10 | Oct - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | https://ijsrem.com DOI: 10.55041/IJSREM53169 | Page 1

An Adversarial Testing Framework for Multi-Agent Red–Blue Systems in

Automated Software Hardening

Muthukrishnan Thukkaram

Senior Engineering Manager , Sanas AI Inc.

Email: muthukrishnan.t@hotmail.com
---***---

Abstract - Software testing has advanced significantly, yet most
automated methods remain limited to rule-based coverage rather than
adversarial resilience. This paper introduces a Multi-Agent Adversarial
Testing Framework (ATF) that simulates a Red–Blue team dynamic to
continuously discover and patch vulnerabilities in software systems.
Red Team agents generate targeted attacks and edge cases using
adversarial reasoning and fuzzing. Blue Team agents respond with
automated patch generation, refactoring, and test reinforcement. A
Judge Agent evaluates both attack effectiveness and defense quality,
forming a continuous self-improvement cycle. Our implementation
integrates a large lan- guage model (LLM)-based reasoning with
reinforcement learning and static analysis pipelines. Preliminary
experiments on open- source projects show a 47% increase in unique
bug discovery and a 33% reduction in recurring vulnerabilities
compared with baseline fuzzers. These results suggest that adversarial
multi-agent systems can significantly advance the robustness and
adaptability of automated software testing.

Keywords: Adversarial Testing, Multi-Agent Systems, Soft- ware
Hardening, Reinforcement Learning, AI Agents, Continuous
Integration.

I. INTRODUCTION

Modern software systems are growing in complexity, with

increasing reliance on machine-generated code and distributed

architectures. While automated testing frameworks and fuzzers

have improved efficiency, they primarily target static correct-

ness and coverage metrics. They seldom simulate adversarial

conditions where intelligent agents actively seek to exploit

weaknesses in logic or validation.

This paper presents the Adversarial Testing Framework

(ATF), a multi-agent ecosystem that employs Red–Blue team

dynamics for automated vulnerability discovery and reme-

diation. Red Team agents act as intelligent adversaries that

probe for faults, while Blue Team agents defend by analyzing,

refactoring, and hardening code. A Judge Agent evaluates both

sides, guiding them toward continuous improvement.

A. Contributions

This paper makes the following contributions:

1) A novel Red–Blue–Judge multi-agent

architecture for adversarially driven software testing and

self-hardening.
2) Integration of LLM-based reasoning with

reinforcement learning for code analysis, patching, and

adaptive response generation.
3) A working prototype demonstrating

autonomous at- tack–defense cycles within a CI/CD

environment.

4) Empirical evidence showing substantial gains

in vulner- ability discovery and code robustness over

traditional testing methods.

II. RELATED WORK

A. Adversarial Agents and Testing

Qin et al. [1] introduced reusable adversarial agents for testing

autonomous systems, using reinforcement learning to generate

failure cases. Their approach demonstrated that adversarial

strategies can uncover hidden vulnerabilities. Our work

generalizes this to software testing at the code level.

B. Adversarial Learning for Software

The 2025 literature review on constrained adversarial learn-

ing for software testing [2] identified a gap in adaptive feedback

loops between attack and defense modules. The ATF

framework closes this gap through bidirectional learning cycles

between Red and Blue agents.

C. Multi-Agent Software Testing

Joshi and Gala [3] proposed an agentic architecture for

automated test generation using LLMs. While effective at

generating cases, it lacked defensive feedback. Our system adds

continuous self-hardening via defense agents.

D. Red Teaming and AI Security

Recent research on red teaming AI systems [4] highlights the

role of adversarial validation in improving robustness. ATF

extends this concept to software testing, unifying attack,

defense, and evaluation in one closed-loop environment.

III. SYSTEM ARCHITECTURE

A. Overview

The Adversarial Testing Framework consists of three agent

classes:

• Red Team Agents: Generate adversarial inputs, exploit

scenarios, and fuzzing strategies using LLM reasoning and

static analysis.
• Blue Team Agents: Respond by refactoring code,

insert- ing validation, and reinforcing weak components.
• Judge Agent: Scores Red and Blue performance using

multi-metric evaluation and directs subsequent learning

cycles.

https://ijsrem.com/
mailto:muthukrishnan.t@hotmail.com

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 10 | Oct - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | https://ijsrem.com DOI: 10.55041/IJSREM53169 | Page 2

Fig. 1. Architecture of the Multi-Agent Adversarial Testing Framework. The

Red–Blue–Judge cycle forms a continuous feedback loop for software
resilience.

B. Communication and Memory

Agents communicate via a structured message bus

(implemented with LangGraph). Each message includes test

case data, failure traces, and reasoning summaries. A shared

knowl- edge store maintains past evaluations, enabling

reinforcement signals for learning improved strategies.

C. Learning Loop

At the end of each iteration:

1) Red Agent proposes adversarial input or code

mutation.
2) Target software executes test cases.
3) Blue Agent analyzes results, generates

patches, and updates regression tests.
4) Judge Agent evaluates metrics and updates

agent re- wards.

IV. IMPLEMENTATION DETAILS

A. Technology Stack

The prototype was implemented in Python with the follow-

ing components:

• Agent orchestration: LangGraph, CrewAI
• Static analysis: SonarQube, Bandit
• Fuzzing: AFL++
• LLM reasoning: OpenAI GPT-4/5 API with domain-

specific prompts
• Code manipulation: Tree-Sitter, RefactorAI
• Pipeline: GitHub Actions for continuous integration

B. Evaluation Function

The Judge Agent applies a composite scoring function:

Srobustness = w1Ccoverage + w2(1 − Ffailures) + w3Ddefense

(1
)

where Ccoverage represents coverage gain, Ffailures denotes

residual failures, and Ddefense measures patch effectiveness.

C. Reinforcement Learning

Each agent maintains a policy π(a|s) updated via reward

feedback from the Judge. Rewards are assigned for generating

unique vulnerabilities (Red) or valid patches (Blue). This

adaptive cycle promotes co-evolution between attacking and

defending strategies.

V. EXPERIMENTAL EVALUATION

A. Datasets and Baselines

We evaluated ATF on:

• Open-source projects: Flask, FastAPI, and SQLite

parsers
• Synthetic repositories with seeded logic and input vali-

dation bugs

We compared against three baselines:

1) Random-input fuzzing (AFL++)
2) Static analysis (Bandit)
3) LLM-based test generation (CodeT5)

B. Metrics

• Unique bugs discovered: distinct failure signatures

per iteration
• Patch recurrence: reappearance of previously fixed

bugs
• Coverage gain: incremental line coverage increase
• False positives: incorrectly applied patches

TABLE 1

PERFORMANCE COMPARISON WITH BASELINES

Metric Baseline

Avg.

ATF Improvemen

t

Unique bugs

discovered

124 182 +47%

Patch recurrence 19% 12.7

%

-33%

Coverage gain 66% 80% +21%

False positives 7.2% 4.8% -34%

VI. DISCUSSION

The results demonstrate that adversarially coordinated Red–

Blue agents can uncover more hidden vulnerabilities and

improve long-term resilience compared to traditional automa-

tion tools. However, challenges remain. LLM-based Blue

Agents may generate syntactically correct but semantically

invalid patches, requiring additional safety filters. Another

limitation is compu- tational cost: maintaining continuous

multi-agent interactions consumes significant resources during

large-scale testing.
Future work will address these through:

• Human-in-the-loop verification of Blue patches
• Lightweight simulation modes for incremental

retraining

https://ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 10 | Oct - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | https://ijsrem.com DOI: 10.55041/IJSREM53169 | Page 3

VII. CONCLUSION

This paper presented the Adversarial Testing Framework, a

novel multi-agent system for autonomous software hardening.

By orchestrating Red–Blue adversarial dynamics with a Judge

feedback loop, ATF enables continuous co-evolution of attack

and defense capabilities. Experimental results show measur-

able gains in vulnerability detection and defense robustness.

The proposed approach demonstrates the feasibility of trans-

forming software testing into a self-improving ecosystem.

ACKNOWLEDGMENT

We thank the open-source contributors whose tools (Lang-

Graph, AFL++, SonarQube) enabled this research. Future

versions of ATF will be released under an open-source license

to encourage replication and extension.

REFERENCES

[1] X. Qin, et al., “Automatic Testing With Reusable
Adversarial Agents,” arXiv preprint arXiv:1910.13645, 2019.
[2] “Constrained Adversarial Learning for Automated

Software Testing: A Literature Review,” SpringerOpen, 2025.
[3] T. Joshi and D. Gala, “Architecting Agentic AI for

Modern Software Testing,” JISEM, 2025.
[4] “Red Teaming AI Systems for Security Validation,”

International Jour- nal of AI, Big Data, and Cloud Computing, 2025.
[5] H. Li et al., “A Systematic Review of Fuzzing Based on

Machine Learning Techniques,” IEEE Access, vol. 8, 2020.

BIOGRAPHY

Muthukrishnan is a Senior Engineering Manager with over

sixteen years of experience in designing and scaling high-

performance software systems. His professional background

spans SaaS platforms, AI tooling, analytics infrastructure, and

enterprise-grade applications. He has authored multiple patents

in software architecture and intelligent automation. His current research and

professional focus center on Agentic Artificial Intelligence, where he leads the

Agentic AI Transformation program within his organization. His work

emphasizes the development of multi-agent frameworks, autonomous testing

systems, and self-improving AI-driven software pipelines. Prior to his current

role, he founded and led a technology startup, gaining extensive experience in

product development, engineering management, and innovation strategy.

https://ijsrem.com/

