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Abstract - Software testing has advanced significantly, yet most
automated methods remain limited to rule-based coverage rather than
adversarial resilience. This paper introduces a Multi-Agent Adversarial
Testing Framework (ATF) that simulates a Red—Blue team dynamic to
continuously discover and patch vulnerabilities in software systems.
Red Team agents generate targeted attacks and edge cases using
adversarial reasoning and fuzzing. Blue Team agents respond with
automated patch generation, refactoring, and test reinforcement. A
Judge Agent evaluates both attack effectiveness and defense quality,
forming a continuous self-improvement cycle. Our implementation
integrates a large lan- guage model (LLM)-based reasoning with
reinforcement learning and static analysis pipelines. Preliminary
experiments on open- source projects show a 47% increase in unique
bug discovery and a 33% reduction in recurring vulnerabilities
compared with baseline fuzzers. These results suggest that adversarial
multi-agent systems can significantly advance the robustness and
adaptability of automated software testing.

Keywords: Adversarial Testing, Multi-Agent Systems, Soft- ware
Hardening, Reinforcement Learning, Al Agents, Continuous
Integration.

L INTRODUCTION

Modern software systems are growing in complexity, with
increasing reliance on machine-generated code and distributed
architectures. While automated testing frameworks and fuzzers
have improved efficiency, they primarily target static correct-
ness and coverage metrics. They seldom simulate adversarial
conditions where intelligent agents actively seek to exploit
weaknesses in logic or validation.

This paper presents the Adversarial Testing Framework
(ATF), a multi-agent ecosystem that employs Red-Blue team
dynamics for automated vulnerability discovery and reme-
diation. Red Team agents act as intelligent adversaries that
probe for faults, while Blue Team agents defend by analyzing,
refactoring, and hardening code. A Judge Agent evaluates both
sides, guiding them toward continuous improvement.

A. Contributions

This paper makes the following contributions:

1) A novel Red-Blue—Judge multi-agent
architecture for adversarially driven software testing and
self-hardening.

2) Integration of LLM-based reasoning with
reinforcement learning for code analysis, patching, and

4) Empirical evidence showing substantial gains
in vulner- ability discovery and code robustness over
traditional testing methods.

1L RELATED WORK

A. Adversarial Agents and Testing

Qin et al. [1] introduced reusable adversarial agents for testing
autonomous systems, using reinforcement learning to generate
failure cases. Their approach demonstrated that adversarial
strategies can uncover hidden vulnerabilities. Our work
generalizes this to software testing at the code level.

B. Adversarial Learning for Sofiware

The 2025 literature review on constrained adversarial learn-
ing for software testing [2] identified a gap in adaptive feedback
loops between attack and defense modules. The ATF
framework closes this gap through bidirectional learning cycles
between Red and Blue agents.

C. Multi-Agent Software Testing

Joshi and Gala [3] proposed an agentic architecture for
automated test generation using LLMs. While effective at
generating cases, it lacked defensive feedback. Our system adds
continuous self-hardening via defense agents.

D. Red Teaming and Al Security

Recent research on red teaming Al systems [4] highlights the

role of adversarial validation in improving robustness. ATF
extends this concept to software testing, unifying attack,
defense, and evaluation in one closed-loop environment.

III. SYSTEM ARCHITECTURE
A. Overview

The Adversarial Testing Framework consists of three agent
classes:

- Red Team Agents: Generate adversarial inputs, exploit
scenarios, and fuzzing strategies using LLM reasoning and
static analysis.

- Blue Team Agents: Respond by refactoring code,
insert- ing validation, and reinforcing weak components.

- Judge Agent: Scores Red and Blue performance using
multi-metric evaluation and directs subsequent learning

adaptive response generation. cycles.
3) A working  prototype  demonstrating
autonomous at- tack—defense cycles within a CI/CD
environment.
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Fig. 1. Architecture of the Multi-Agent Adversarial Testing Framework. The
Red-Blue-Judge cycle forms a continuous feedback loop for software
resilience.

B. Communication and Memory

Agents communicate via a structured message bus
(implemented with LangGraph). Each message includes test
case data, failure traces, and reasoning summaries. A shared
knowl- edge store maintains past evaluations, enabling
reinforcement signals for learning improved strategies.

C. Learning Loop

At the end of each iteration:

1) Red Agent proposes adversarial input or code
mutation.

2) Target software executes test cases.

3) Blue Agent analyzes results, generates
patches, and updates regression tests.

4) Judge Agent evaluates metrics and updates

agent re- wards.

IV. IMPLEMENTATION DETAILS

A. Technology Stack

The prototype was implemented in Python with the follow-
ing components:
- Agent orchestration: LangGraph, CrewAl
- Static analysis: SonarQube, Bandit
« Fuzzing: AFL++
- LLM reasoning: OpenAl GPT-4/5 API with domain-
specific prompts
- Code manipulation: Tree-Sitter, RefactorAl
- Pipeline: GitHub Actions for continuous integration
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B. Evaluation Function

The Judge Agent applies a composite scoring function:

Srobustness = w1Ccoverage + ZUZ(]. - Ffailures) + w3Ddefense
(1
where Ceoverage T€presents coverage gain, Frires denotes
residual failures, and Dgefense measures patch effectiveness.

C. Reinforcement Learning

Each agent maintains a policy 7(als) updated via reward
feedback from the Judge. Rewards are assigned for generating
unique vulnerabilities (Red) or valid patches (Blue). This
adaptive cycle promotes co-evolution between attacking and
defending strategies.

V. EXPERIMENTAL EVALUATION

A. Datasets and Baselines

We evaluated ATF on:
- Open-source projects: Flask, FastAPI, and SQLite
parsers
- Synthetic repositories with seeded logic and input vali-
dation bugs
We compared against three baselines:
1) Random-input fuzzing (AFL++)
2) Static analysis (Bandit)
3) LLM-based test generation (CodeT5)

B. Metrics

- Unique bugs discovered: distinct failure signatures
per iteration

- Patch recurrence: reappearance of previously fixed
bugs

- Coverage gain: incremental line coverage increase

- False positives: incorrectly applied patches

TABLE 1
PERFORMANCE COMPARISON WITH BASELINES
Metric Baseline ATF Improvemen
Avg. t
Unique bugs 124 182 +47%
discovered
Patch recurrence 19% 12.7 -33%
%
Coverage gain 66% 80% +21%
False positives 7.2% 4.8% -34%

VI.  DISCUSSION

The results demonstrate that adversarially coordinated Red—
Blue agents can uncover more hidden vulnerabilities and
improve long-term resilience compared to traditional automa-
tion tools. However, challenges remain. LLM-based Blue
Agents may generate syntactically correct but semantically
invalid patches, requiring additional safety filters. Another
limitation is compu- tational cost: maintaining continuous
multi-agent interactions consumes significant resources during
large-scale testing.
Future work will address these through:

- Human-in-the-loop verification of Blue patches

- Lightweight simulation modes for incremental

retraining
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VII. CONCLUSION

This paper presented the Adversarial Testing Framework, a
novel multi-agent system for autonomous software hardening.
By orchestrating Red—Blue adversarial dynamics with a Judge
feedback loop, ATF enables continuous co-evolution of attack
and defense capabilities. Experimental results show measur-
able gains in vulnerability detection and defense robustness.
The proposed approach demonstrates the feasibility of trans-
forming software testing into a self-improving ecosystem.
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