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Abstract - Software testing has advanced significantly, yet most 
automated methods remain limited to rule-based coverage rather than 
adversarial resilience. This paper introduces a Multi-Agent Adversarial 
Testing Framework (ATF) that simulates a Red–Blue team dynamic to 
continuously discover and patch vulnerabilities in software systems. 
Red Team agents generate targeted attacks and edge cases using 
adversarial reasoning and fuzzing. Blue Team agents respond with 
automated patch generation, refactoring, and test reinforcement. A 
Judge Agent evaluates both attack effectiveness and defense quality, 
forming a continuous self-improvement cycle. Our implementation 
integrates a large lan- guage model (LLM)-based reasoning with 
reinforcement learning and static analysis pipelines. Preliminary 
experiments on open- source projects show a 47% increase in unique 
bug discovery and a 33% reduction in recurring vulnerabilities 
compared with baseline fuzzers. These results suggest that adversarial 
multi-agent systems can significantly advance the robustness and 
adaptability of automated software testing. 
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I. INTRODUCTION 

Modern software systems are growing in complexity, with 

increasing reliance on machine-generated code and distributed 

architectures. While automated testing frameworks and fuzzers 

have improved efficiency, they primarily target static correct- 

ness and coverage metrics. They seldom simulate adversarial 

conditions where intelligent agents actively seek to exploit 

weaknesses in logic or validation. 

This paper presents the Adversarial Testing Framework 

(ATF), a multi-agent ecosystem that employs Red–Blue team 

dynamics for automated vulnerability discovery and reme- 

diation. Red Team agents act as intelligent adversaries that 

probe for faults, while Blue Team agents defend by analyzing, 

refactoring, and hardening code. A Judge Agent evaluates both 

sides, guiding them toward continuous improvement. 

A. Contributions 

This paper makes the following contributions: 

1) A novel Red–Blue–Judge multi-agent 

architecture for adversarially driven software testing and 

self-hardening. 
2) Integration of LLM-based reasoning with 

reinforcement learning for code analysis, patching, and 

adaptive response generation. 
3) A working prototype demonstrating 

autonomous at- tack–defense cycles within a CI/CD 

environment. 

4) Empirical evidence showing substantial gains 

in vulner- ability discovery and code robustness over 

traditional testing methods. 

II. RELATED WORK 

A. Adversarial Agents and Testing 

Qin et al. [1] introduced reusable adversarial agents for testing 

autonomous systems, using reinforcement learning to generate 

failure cases. Their approach demonstrated that adversarial 

strategies can uncover hidden vulnerabilities. Our work 

generalizes this to software testing at the code level. 

B. Adversarial Learning for Software 

The 2025 literature review on constrained adversarial learn- 

ing for software testing [2] identified a gap in adaptive feedback 

loops between attack and defense modules. The ATF 

framework closes this gap through bidirectional learning cycles 

between Red and Blue agents. 

C. Multi-Agent Software Testing 

Joshi and Gala [3] proposed an agentic architecture for 

automated test generation using LLMs. While effective at 

generating cases, it lacked defensive feedback. Our system adds 

continuous self-hardening via defense agents. 

D. Red Teaming and AI Security 

Recent research on red teaming AI systems [4] highlights the 

role of adversarial validation in improving robustness. ATF 

extends this concept to software testing, unifying attack, 

defense, and evaluation in one closed-loop environment. 

III. SYSTEM ARCHITECTURE 

A. Overview 

The Adversarial Testing Framework consists of three agent 

classes: 

• Red Team Agents: Generate adversarial inputs, exploit 

scenarios, and fuzzing strategies using LLM reasoning and 

static analysis. 
• Blue Team Agents: Respond by refactoring code, 

insert- ing validation, and reinforcing weak components. 
• Judge Agent: Scores Red and Blue performance using 

multi-metric evaluation and directs subsequent learning 

cycles.
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Fig. 1. Architecture of the Multi-Agent Adversarial Testing Framework. The 

Red–Blue–Judge cycle forms a continuous feedback loop for software 
resilience. 

 

 

B. Communication and Memory 

Agents communicate via a structured message bus 

(implemented with LangGraph). Each message includes test 

case data, failure traces, and reasoning summaries. A shared 

knowl- edge store maintains past evaluations, enabling 

reinforcement signals for learning improved strategies. 

C. Learning Loop 

At the end of each iteration: 

1) Red Agent proposes adversarial input or code 

mutation. 
2) Target software executes test cases. 
3) Blue Agent analyzes results, generates 

patches, and updates regression tests. 
4) Judge Agent evaluates metrics and updates 

agent re- wards. 

IV. IMPLEMENTATION DETAILS 

A. Technology Stack 

The prototype was implemented in Python with the follow- 

ing components: 

• Agent orchestration: LangGraph, CrewAI 
• Static analysis: SonarQube, Bandit 
• Fuzzing: AFL++ 
• LLM reasoning: OpenAI GPT-4/5 API with domain- 

specific prompts 
• Code manipulation: Tree-Sitter, RefactorAI 
• Pipeline: GitHub Actions for continuous integration 

B. Evaluation Function 

The Judge Agent applies a composite scoring function: 

Srobustness = w1Ccoverage + w2(1 − Ffailures) + w3Ddefense 

(1
) 

where Ccoverage represents coverage gain, Ffailures denotes 

residual failures, and Ddefense measures patch effectiveness. 

C. Reinforcement Learning 

Each agent maintains a policy π(a|s) updated via reward 

feedback from the Judge. Rewards are assigned for generating 

unique vulnerabilities (Red) or valid patches (Blue). This 

adaptive cycle promotes co-evolution between attacking and 

defending strategies. 

V. EXPERIMENTAL EVALUATION 

A. Datasets and Baselines 

We evaluated ATF on: 

• Open-source projects: Flask, FastAPI, and SQLite 

parsers 
• Synthetic repositories with seeded logic and input vali- 

dation bugs 

We compared against three baselines: 

1) Random-input fuzzing (AFL++) 
2) Static analysis (Bandit) 
3) LLM-based test generation (CodeT5) 

B. Metrics 

• Unique bugs discovered: distinct failure signatures 

per iteration 
• Patch recurrence: reappearance of previously fixed 

bugs 
• Coverage gain: incremental line coverage increase 
• False positives: incorrectly applied patches 

TABLE 1 

PERFORMANCE COMPARISON WITH BASELINES 

Metric Baseline 

Avg. 

ATF Improvemen

t 

Unique bugs 

discovered 

124 182 +47% 

Patch recurrence 19% 12.7

% 

-33% 

Coverage gain 66% 80% +21% 

False positives 7.2% 4.8% -34% 

VI. DISCUSSION 

The results demonstrate that adversarially coordinated Red–

Blue agents can uncover more hidden vulnerabilities and 

improve long-term resilience compared to traditional automa- 

tion tools. However, challenges remain. LLM-based Blue 

Agents may generate syntactically correct but semantically 

invalid patches, requiring additional safety filters. Another 

limitation is compu- tational cost: maintaining continuous 

multi-agent interactions consumes significant resources during 

large-scale testing. 
Future work will address these through: 

• Human-in-the-loop verification of Blue patches 
• Lightweight simulation modes for incremental 

retraining
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VII. CONCLUSION 

This paper presented the Adversarial Testing Framework, a 

novel multi-agent system for autonomous software hardening. 

By orchestrating Red–Blue adversarial dynamics with a Judge 

feedback loop, ATF enables continuous co-evolution of attack 

and defense capabilities. Experimental results show measur- 

able gains in vulnerability detection and defense robustness. 

The proposed approach demonstrates the feasibility of trans- 

forming software testing into a self-improving ecosystem. 
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