
 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 01 | Jan - 2025 SJIF Rating: 8.448 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM40725 | Page 1

An AI-Driven Approach to Automatic Code Analysis and Summarization

for Enhanced Software Understanding

Aditya K V S1, Kishore Gowda A1, Sanjay K S1, Prof. Akshatha Preeth P2

1Third Year Student, Department of Information Science and Engineering, Global Academy of Technology
2Assistant Professor, Department of Information Science and Engineering, Global Academy of Technology

---***---

Abstract - The AI-Driven Code Analyzer is an innovative

tool designed to address the challenges developers, students,

and educators face in understanding complex code. With

programming becoming an integral part of various industries,

the need for accessible tools that simplify code comprehension

has never been greater. This tool allows users to input code and

receive detailed, step-by-step explanations of its functionality,

helping to demystify programming logic and enhance

understanding. Whether it’s a beginner struggling with

foundational concepts or an experienced programmer dealing

with an unfamiliar codebase, the AI-Driven Code Analyzer

serves as a valuable resource for improving productivity and

learning efficiency.

At the heart of this tool lies its integration with the Gemini API,

a sophisticated backend system that processes inputted code

and generates human-readable explanations. This integration

ensures a seamless and efficient user experience, providing

accurate and insightful breakdowns of even the most complex

algorithms. The modular design of the platform allows it to

handle diverse programming languages and concepts, making

it a versatile solution for various user needs. Complementing

its technical prowess is a user-friendly interface that simplifies

interaction, enabling users to focus solely on understanding the

code rather than navigating the tool itself.

The applications of the AI-Driven Code Analyzer extend far

beyond individual use. In educational settings, it can be

leveraged as a teaching aid, helping students grasp difficult

programming concepts through real-world examples. In

professional environments, it can assist developers in

debugging, code reviews, and understanding legacy systems,

significantly reducing time spent on manual analysis. By

streamlining the process of code explanation, this tool not only

fosters a deeper understanding of programming but also

addresses the growing demand for accessible and intelligent

software solutions in an increasingly tech-driven world.

Key Words: Code Analysis, Code Summarization, Code

Comprehension, Human-Readable Explanations, Natural

Language Processing (NLP), Programming Logic,

Collaborative Development, Productivity Enhancement,

Educational Applications, System Architecture, Learning

Efficiency

1. Introduction
In today’s fast-paced technological landscape, the demand for

software tools that enhance code understanding has grown

significantly. Developers often face challenges when working

with codebases they did not create, while students and

beginners struggle to grasp foundational concepts in

programming. These difficulties highlight the need for

innovative solutions that simplify code comprehension and

provide meaningful insights into its logic and functionality.

The AI-Driven Code Analyzer emerges as a solution to this

problem by offering a platform that deciphers programming

logic for its users. By transforming inputted code into detailed,

human-readable explanations, it provides a practical way to

overcome the barriers of unfamiliarity and complexity. This

approach not only supports users in understanding individual

pieces of code but also enhances their ability to engage with

programming concepts more holistically.

A key feature of the tool is its reliance on advanced AI-driven

methodologies, integrated seamlessly through the Gemini API.

This powerful backend processes the code and generates

explanations that are both accurate and context-aware. Unlike

traditional tools that rely solely on static analysis, the AI-

Driven Code Analyzer leverages machine intelligence to

deliver dynamic and adaptable solutions tailored to the specific

input provided by the user.

The interface of the tool has been thoughtfully designed to cater

to a broad audience. Its intuitive layout ensures accessibility for

students, while its robust capabilities appeal to professional

developers managing complex projects. The ability to support

a wide variety of programming languages further enhances its

utility, making it a versatile resource for individuals and teams

alike.

This tool also holds immense potential for educational and

professional applications. Educators can integrate it into their

teaching methods to help students navigate challenging

programming topics, while teams can use it to foster

collaboration and understanding in their workflows. By

addressing real-world challenges in code comprehension, the

AI-Driven Code Analyzer sets the stage for a future where

programming is more accessible, productive, and efficient.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 01 | Jan - 2025 SJIF Rating: 8.448 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM40725 | Page 2

2. System Overview
The AI-Driven Code Analyzer simplifies code understanding

by providing detailed, human-readable explanations. Users

input code, which is processed through the Gemini API to

generate insights into its structure and function. This helps

developers, students, and educators better understand complex

code. The user interface is

simple and intuitive, with a clear input field for code and an

output area for the explanation. Its minimalistic design

ensures ease of use, making the tool accessible to both

beginners and professionals.

3. Methodology
The core of the AI-Driven Code Analyzer lies in its integration

with the Gemini API, which powers the analysis and

explanation of inputted code. The Gemini API is an advanced

AI-powered service designed to process code by evaluating its

syntax, structure, and logic. When users submit a block of code,

the API parses it to identify key elements such as variables,

functions, loops, and conditional statements. By understanding

the relationships between these elements, the Gemini API

generates an explanation of how the code operates, highlighting

its purpose, key actions, and potential outcomes. This allows

users to gain insights into both the individual components of

the code and the overall flow of execution.

The explanation process begins once the code is passed through

the Gemini API. First, the API breaks down the code into

smaller, manageable parts, analyzing each line and its context

within the broader program. It identifies functions, variables,

data structures, and logic pathways, mapping out how they

interact. Next, the API generates a natural language description

of these elements, explaining their function in simple terms.

This transformation from raw code to explanation involves

interpreting complex programming syntax and converting it

into an understandable narrative that does not require prior

knowledge of the language or code structure.

Following the analysis, the system refines the output to ensure

clarity and relevance. The Gemini API organizes the

explanation into sections, each addressing different parts of the

code, such as loops, conditionals, and functions. This

segmentation allows users to quickly navigate through the

explanation and focus on the parts of the code that are most

relevant to them. In addition, the system might include

comments or suggestions about common issues in the code,

such as potential optimizations or areas that could benefit from

further explanation, enhancing the learning experience.

The overall goal of this explanation process is to make code

more accessible to a wider audience. Whether the user is a

beginner trying to learn basic programming concepts or a

seasoned developer looking to understand a new codebase, the

tool provides a clear, step-by-step breakdown of the code’s

functionality. By using natural language, the tool removes the

barriers posed by complex programming languages, allowing

users to focus on the logic rather than struggling with syntax.

This methodology ensures that code understanding is

simplified, making learning and development more efficient

and effective.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 01 | Jan - 2025 SJIF Rating: 8.448 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM40725 | Page 3

4. Implementation
The implementation of the AI-Driven Code Analyzer relies

heavily on React, a popular JavaScript library for building user

interfaces, to create a dynamic and responsive frontend. React

allows for efficient state management and updates, making it

an ideal choice for building interactive web applications like

this one. In this tool, the user can input code into a text area,

press a button to trigger an API call, and receive an explanation

of the provided code's functionality. The application is

designed as a client-side web app, meaning that it runs entirely

in the user’s browser, providing a fast and responsive

experience with minimal delay.

The Gemini API is at the core of the tool’s functionality,

responsible for analyzing the provided code and generating

detailed, human-readable explanations. Once the user inputs

their code and presses the “Explain Code” button, the

application constructs a structured request containing the code

and sends it to the API. The API, powered by advanced AI,

processes the code and returns a comprehensive breakdown of

how it works. This explanation is then parsed and displayed on

the user interface. The process of sending data and receiving

the explanation is handled via HTTP requests, using fetch to

make a POST request to the Gemini API endpoint. The

response from the API is a JSON object, which contains the

explanation text, which is then extracted and shown to the user.

The user interface is intentionally simple yet functional,

ensuring that users can easily navigate the tool regardless of

their experience with programming. The main components of

the interface include an input text area, where users paste their

code, and a button that triggers the API request. Additionally,

there is an area where the explanation is displayed once it is

returned from the API. To provide a more intuitive and

engaging experience, visual feedback is given while the request

is being processed. For example, when the user clicks on the

"Explain Code" button, the button text changes to

"Generating..." and a loading spinner appears, signaling that the

system is working. This prevents user frustration by indicating

that the application is actively processing their request. Upon

receiving the response from the Gemini API, the explanation is

displayed below the input area in a scrollable container,

ensuring that even lengthy explanations remain easy to read and

navigate.

A major challenge in this implementation was maintaining a

smooth, responsive experience while handling asynchronous

requests. Since the time it takes for the Gemini API to process

and respond to a code request can vary depending on the

complexity of the input, the application needed to handle these

delays without affecting user experience. React’s useState and

useEffect hooks were crucial in managing the state of the

application during this process. The useState hook is used to

track the input code, the current state of the request (whether

it's being sent or not), and the explanation to be displayed. The

useEffect hook could be utilized for any side effects, such as

triggering the explanation process when the user presses the

button. By updating the state based on user interaction and API

responses, React ensures that the UI remains in sync with the

application’s logic.

To further enhance the user experience, the design is carefully

structured to be both visually appealing and functional. The

input area is spacious enough to accommodate longer code

snippets, and the explanation section is designed to present the

output in a clean and readable format. Styling is consistent

across the interface, with a dark background and contrasting

text to reduce eye strain. The overall design ensures that the

content is easily accessible and legible, regardless of the user's

experience with coding. This attention to both aesthetic and

usability ensures that the AI-Driven Code Analyzer is not only

effective in providing code explanations but also a pleasant tool

to interact with.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 01 | Jan - 2025 SJIF Rating: 8.448 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM40725 | Page 4

5. Results
The AI-Driven Code Analyzer has demonstrated its capability

to generate clear, detailed explanations of code, making it a

valuable tool for both novice and experienced programmers.

For example, when a user inputs a simple code snippet such as

a function for calculating the Greatest Common Divisor

(GCD), the tool provides an in-depth breakdown. The

explanation might describe how the function uses the Euclidean

algorithm to iteratively reduce the values of two numbers until

the greatest common divisor is found. It could detail how the

modulo operation is employed in the loop and how the code

structure allows for an efficient calculation of the GCD. This

type of clear, understandable explanation allows users to not

only understand the specific code but also learn about

underlying algorithms and best practices.

In another example, if a user inputs a code involving modular

exponentiation, the tool explains how the algorithm efficiently

computes powers modulo a number using a method called

"exponentiation by squaring." The explanation might cover the

concept of reducing the exponent in steps, halving it in each

iteration to make the computation more efficient. It could also

clarify the role of modular arithmetic in preventing overflow

and ensuring the result fits within a defined range. Such

explanations help users understand the logic behind the code,

rather than just providing a superficial output, which is a crucial

aspect for educational purposes and code comprehension.

User feedback on the clarity and usefulness of the explanations

has been overwhelmingly positive. Many users, particularly

those who are new to programming, found the breakdowns to

be exceptionally helpful in understanding both basic and

advanced coding concepts. The step-by-step nature of the

explanations, as provided by the Gemini API, helped demystify

complex topics. For example, beginners reported that having a

simple, jargon-free explanation of what each line of code does

was immensely valuable in improving their understanding of

how programs work. Experienced developers also appreciated

the depth of explanation, as it helped them quickly grasp the

purpose and function of unfamiliar code, particularly in cases

where they were dealing with new libraries or algorithms.

The UI design also contributed to the tool's effectiveness. The

ability to input code and immediately receive an organized,

readable explanation was praised. The layout, with a dedicated

area for both the input code and the explanation, ensured that

users could focus on learning without distractions.

Additionally, the real-time feedback, such as the loading

spinner and "Generating..." state, provided users with

confidence that their request was being processed, minimizing

frustration during the wait time. Users noted that these features,

combined with the clarity of the explanations, made the tool an

effective aid in both learning new programming concepts and

reviewing existing code.

Overall, the AI-Driven Code Analyzer has proven to be a useful

tool for developers and learners alike. It not only simplifies the

process of understanding code but also enhances the learning

experience by providing detailed and easily digestible

explanations.

6. Applications
The AI-Driven Code Analyzer offers significant potential for

teaching programming, especially for beginners. By providing

clear, step-by-step explanations of code, it helps students

understand fundamental programming concepts, such as

variables, loops, functions, and algorithms. In a classroom

setting, instructors can use the tool as a supplementary resource

to explain code examples, enabling students to grasp the logic

behind the code they encounter. It allows learners to explore

different coding patterns and algorithms without needing

extensive prior knowledge, making it an ideal resource for self-

paced learning or classroom exercises. Additionally, it can

serve as a quick reference for students when they encounter

unfamiliar code snippets, helping them gain confidence in their

coding abilities.

Beyond education, the tool is highly beneficial in the

debugging process. When developers encounter errors or bugs

in their code, the AI-Driven Code Analyzer can provide

detailed explanations of each part of the code, helping them

identify logical flaws, inefficiencies, or misunderstood

concepts. By receiving insights into how the code functions

step-by-step, developers can quickly isolate the source of issues

and correct them more effectively. This application is

particularly useful in collaborative environments where teams

can use the tool to gain a deeper understanding of each other's

code, fostering better problem-solving and communication.

Additionally, the tool has strong potential in aiding code

reviews and understanding legacy code. Reviewing large

codebases or legacy systems can be a daunting task, especially

when dealing with complex or outdated code. The tool can be

used to break down intricate portions of code, making it easier

for developers to understand the logic, structure, and potential

areas for improvement. In legacy code, where documentation

may be scarce or incomplete, the AI-Driven Code Analyzer can

act as a valuable resource to decipher and explain how the code

works, helping teams identify refactoring opportunities or

ensuring the codebase remains maintainable over time.

7. Challenges and Future Work
Current Limitations

One of the primary limitations of the AI-Driven Code Analyzer

is its dependency on the Gemini API. While the API is capable

of generating detailed code explanations, it may not always

provide accurate or comprehensive breakdowns, especially

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 01 | Jan - 2025 SJIF Rating: 8.448 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM40725 | Page 5

when dealing with highly specialized or niche programming

languages. Additionally, the tool currently supports only a

limited set of languages, which restricts its utility for users

working with less common or domain-specific programming

languages. This reliance on an external service also introduces

the risk of service disruptions or limitations on API usage,

which could impact the tool’s availability and functionality.

Future Enhancements

Looking ahead, there are several enhancements that could

significantly improve the tool. One major area for development

is the expansion of language support. By integrating additional

programming languages, the tool could cater to a broader

audience, including those who work with languages like Rust,

Go, or Swift. Another enhancement involves improving the

depth of explanations provided by the Gemini API. While the

current explanations are useful, they could be expanded to

cover more advanced topics, such as performance optimization,

best coding practices, or architectural patterns. Additionally,

incorporating features like interactive code debugging or more

personalized explanations tailored to user experience levels

could further enhance the tool’s educational value.

8. Conclusion
The AI-Driven Code Analyzer serves as an innovative tool for

simplifying the understanding of code, offering both novice and

experienced developers a clearer view of programming

concepts. By integrating the Gemini API, the tool provides

detailed, step-by-step explanations, making it an invaluable

resource in teaching, debugging, and code review processes. Its

user-friendly interface ensures accessibility, while real-time

feedback enhances the user experience. Although the tool faces

some limitations, such as dependency on the Gemini API and

language-specific features, its potential for growth is

significant. Future enhancements, including broader language

support and deeper explanations, will further solidify its place

as an essential educational and development tool, contributing

to the advancement of programming education and code

comprehension.

REFERENCES

[1] Y. Zhu and M. Pan, "Automatic Code

Summarization: A Systematic Literature

Review," arXiv preprint, arXiv: 1909.04352,

2019.

[2] S. Birari and S. Bhingarkar, "Using Artificial

Intelligence in Source Code Summarization: A

Review," Advances in Parallel Computing, vol.

37, pp. 203–215, 2021. doi:

10.3233/APC210203.

[3] T. Zhuang and Z. Lin, "The why, what, and how

of AI-based coding in scientific research," arXiv

preprint, arXiv:2410.02156, 2024.

[4] Z. Feng et al., "CodeBERT: A Pre-trained Model

for Programming and Natural Languages," arXiv

preprint, arXiv:2002.08155, 2020.

[5] S. Fuchs, "Natural Language Processing for

Building Code Interpretation: Systematic

Literature Review Report," ResearchGate, 2021.

[6] C. Zhang, J. Wang, Q. Zhou, T. Xu, K. Tang, H.

Gui, and F. Liu, "A Survey of Automatic Source

Code Summarization," Symmetry, vol. 14, no. 3,

pp. 471, 2022. doi: 10.3390/sym14030471.

http://www.ijsrem.com/

