
 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 04 | April - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM45648 | Page 1

An AI-Powered Desktop Voice Assistant for Windows

Dilkash D. Mukadam1, Fareeha M. Majgaonkar2, Swarali K. Khot3, Trupti D. Gite 4,

Girish G. Bhide5

1, 2, 3, 4 Student /Department of Information Technology,

Finolex Academy of Management and Technology, Ratnagiri
5Faculty /Department of Electronics and Telecommunication Engineering,

Finolex Academy of Management and Technology, Ratnagiri

---***---

Abstract - This work introduces a Windows-compatible

AI assistant that executes tasks via voice commands.

Our architecture implements two key AI components:

(1) real-time language interpretation (2) adaptive

command recognition. This assistant will enable users to

perform a range of tasks, such as managing files,

opening and closing different applications, searching the

information on web, setting reminders, creating a note,

opening and managing the files, opening various AI

tools, managing the drive, opening the calculator and do

some basic calculations and even controlling system

settings all through voice commands. The voice assistant

leverages advanced speech recognition technology to

accurately interpret and process human voice

commands. Upon receiving user input, the system

dynamically executes requested tasks or retrieves

relevant information. Key capabilities include real-time

voice-to-text conversion, context-aware natural language

understanding, and seamless integration with third-party

APIs to extend its functionality. Designed for universal

accessibility, the intuitive interface ensures effortless

interaction for users of all technical proficiencies. The

user interface is designed to be intuitive and user-

friendly, providing a seamless experience for both

novice and experienced users. By creating a personal

desktop assistant that combines convenience,

automation, and personalized features, this project aims

to enhance users' productivity and efficiency in their

day-to-day computer tasks.

Key Words: Desktop, Voice-based, Integration,

Language, Voice Assistant, Action, Response, GUI

1. INTRODUCTION

What is voice assistant and how it works. Many of us

might have already known about this voice assistant and

we use this in our day-to-day life. A voice assistant is a

digital assistant that uses voice recognition, language

processing algorithms, and voice synthesis to listen to

specific voice commands and return relevant information

or perform specific functions as requested by the user.

These personal assistants can be easily configured to

perform many of your regular tasks by simply giving

voice commands. The Most famous application of

iPhone is “SIRI” which helps the end user to

communicate end user mobile with voice and it also

responds to the voice commands of the user. Same kind

of application is also developed by the Google that is

“Google Voice Search”

which is used for in Android Phones. But this

Application mostly works on the desktop.

It accepts spoken commands via microphone array or

typed queries through the GUI. Modern AI voice

assistants boost productivity by enabling hands-free PC

control, reducing task time by 30-40%. Through AI-

powered voice automation we save our time and

contribute in other works.

1.1 LITERATURE REVIEW

This study examines the acceptability of voice-

activated personal assistants (VAPA) in public areas and

emphasizes the concerns of users related to privacy,

social norms and usability. Research emphasizes the

importance of VAP design, which is in line with the

expectation of users and public labels. It also discusses

the potential of VAP to increase the interaction with the

human computer in a shared environment. These findings

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 04 | April - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM45648 | Page 2

provide valuable knowledge for developers aimed at

improving public usability of voice assistants [1].

 This article represents an AI -based voice assistant

to improve users' interaction through natural language

and machine learning. The authors discuss the technical

architecture and functionality of the system and

emphasize its potential applications in intelligent

environments. The study emphasizes the growing role of

AI in increasing more intuitive and efficient assistants. It

also deals with challenges such as user accuracy and

adaptability [2].

 This research focuses on the development of a AI-

powered voice assistant developed with Python’s speech

recognition libraries (Speech Recognition, PyAudio) and

NLP frameworks (NLTK, spaCy) for intent processing

and describes in detail the implementation of speech

recognition and text functions on speech. The post

emphasizes the simplicity and efficiency of Python

libraries, such as speech recognition and pyaudio in

building voice systems. It also discusses potential

applications in automation and user. The study serves as

a practical guide for developers who are interested in

creating voice solutions [3].

 This work examines the creation of A Python-

based ASR system leveraging Speech Recognition and

PyAudio and emphasizes the integration of libraries such

as PytSX3 and speech recognition. The authors discuss

the ability of the system to perform tasks such as voice

commands and text conversions. The contribution

emphasizes the growing availability of speech

technology for developers. It also emphasizes the

potential of such systems in increasing productivity and

user experience [4].

 This study represents the development of AI

assistant on the area using Python focusing on its ability

to perform tasks through voice commands. The authors

discuss the integration of AI processing and natural

language to improve the user interaction. The

contribution emphasizes the potential of the system in

automating routine tasks and improving efficiency. It

also deals with challenges such as accuracy and response

time [5].

 This research focuses on designing a voice personal

assistant for PCS using Python and emphasizes its

application in simplifying user interactions. The authors

discuss the use of Python libraries to achieve speech

recognition and automation of tasks. The contribution

emphasizes the potential of the system to increase

availability and productivity. It also deals with

restrictions on internet connection and language support

[6].

 The study discusses the integration of a

combination of NLP techniques and machine learning

models, and voice recognition technologies to create

responsive and context-aware personal assistants. The

authors examine various existing intelligent assistants,

such as Apple’s Siri, Google Assistant, and Amazon

Alexa, comparing their functionalities, architectures, and

limitations. Additionally, the paper highlights challenges

like data privacy, user adaptation, and multilingual

support, while also speculating on future advancements,

including enhanced contextual understanding and

emotion recognition. This work contributes to the

broader discourse on human-computer interaction and

AI-driven automation. [7].

 The study explores the integration of automatic

speech recognition (ASR) paired with NLP, and

automation techniques to enhance user interaction with

computers. The authors describe the development

process, including the use of Python libraries such as

Speech Recognition, pyttsx3, and nltk to enable voice

command execution. The paper highlights various

functionalities of the assistant, such as web searches,

email automation, and smart home control. Additionally,

it discusses challenges related to accuracy, response

time, and security, providing insights into future

enhancements for more efficient and intelligent virtual

assistants [8].

1.2 TECHNOLOGIES USED:

a. Python: Python is a well-liked programming language

at a high level that is recognized for its

straightforwardness, comprehensibility, and user-

friendliness. Python 3.10.0 is being utilized in the

development of this AI powered voice assistant.

 b. Visual Studio Code: Microsoft's Visual Studio Code

(VS Code), the extensible code editor, provides

comprehensive

language support including Python, JavaScript, and

C++ through its modular extension system.

2. METHODOLOGY

There are three modules in this assistant. The first

step is for the assistant to bring the voice user input.

Second, analysing the user's input and translate it into the

appropriate intention and function. The third is an

assistant who provides the user with the result all the

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 04 | April - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM45648 | Page 3

time through speech. The assistant first begins to receive

human entry. When the assistant receives an input, he

transforms an analog voice input into digital text. If the

assistant is unable to turn the voice into text, he will ask

the user to enter again. After transformation, it begins to

process input and mapping into a certain function. The

output will then be provided by the user with a voice

order. This basic workflow of model is shown in Fig.1.

Users require or query to get cuttings into segregated

commands, making it easier to recognize our voice

assistant on the desktop.

Figure 1: Basic workflow of model

 • In comparison with other questions, our assistant

searches inside the command list .

• The voice assistant receives these orders via the

command list.

• Once the voice assistant has taken or received an

order, it immediately sets the appropriate measures to

submit.

• If the user's query is not understandable, then the

voice assistant asks for clarification before continuing.

• Especially, the voice assistant detects what we want

to get.

• When the voice assistant recognizes the order and

finds that it can continue, it provides the person or the

user with the necessary information.

For example, when a person says, open WhatsApp or

Wikipedia: “The voice assistant listens to the order and

takes the appropriate event such as opening the site.

After completing his speaking, the voice assistant stops

for a brief 2-3 second interval to ensure that he captures

the entire application and then searches her database for

the investigation to provide the appropriate result.

3. SYSTEM ARCHITECTURE

Virtual attendees use automated language

understanding (NLP) to match the user's text or voice

entry with executable commands. When a user calls a

virtual assistant designed to accomplish specified tasks,

then the audio representation of natural speech becomes

an executable command or digital data that the software

can analyze. Then, these data are compared to software

data to find an adequate response. The virtual wizard is

used to execute machines in the user provided

commands. For the development of the assistant, we use

Python installers packages as voice recognition, GTTS,

Pip Win, etc. Speech-to-text systems process audio

inputs through feature extraction and language modeling.

This is commonly used in voice assistants such as Alexa,

Siri, etc. Python provides an API called voice recognition

to allow the user to convert the voice or audio command

into text for subsequent processing. As illustrated in

Figure 1, users give the command to interaction entities

such as laptop or PC interaction entities listen to the

command and recognize it. For a subsequent analysis, the

process compares this command with the cloud of the

data that is already stored. If the application coincides

with the cloud data, the outputs generated in the form of

text and voice, if not, will give a related message. Look

for the function or logic that will be executed according

to the application and send the output of the backend

process in response.

3.1 ACTIVITY DIAGRAM

The overall workflow of the proposed work is

explained with the help of the activity diagram given in

Fig.2.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 04 | April - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM45648 | Page 4

Fig. 2. Activity Diagram

Initiation: The activity diagram begins with the

initialization of the voice-based virtual assistant.

• Listen for Voice Command: The virtual assistant

remains in a continuous listening state, awaiting voice

commands from the user.

• Perform Speech Recognition: The system applies

speech recognition to the user’s voice command,

converting

it into text or a structured command.

• Process Command: The system analyses the

recognized command, aiming to understand its intention

and

extract relevant information.

• Determine Action: Based on the recognized

command and extracted details, the system decides the

appropriate

action or task to be executed.

• Execute Action: The system carries out the

determined action, which may involve interacting with

others.

Software applications, performing system-level

operations, retrieving information from databases or

external

sources, or providing a response to the user.

• Generate Response: If the executed action

necessitates a response, the system generates a suitable

response,

either as text or synthesized speech.

• Output Response: The system presents the response

to the user, which could involve converting it into

speech, displaying it on a screen, or both.

• End: The activity diagram end when the virtual

assistant is terminated or deactivated.

3.2 USE CASES

The interaction of the user with the AI powered voice

assistant for performing various tasks on the desktop are

explained with the help of use case diagram given in Fig.

3.

Fig. 3. Use case Diagram

The virtual assistant system is represented by a

rectangle and consists of several use cases.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 04 | April - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM45648 | Page 5

• The user activates the assistant by initiating the”

Activate Assistant” use case.

• The user performs voice commands by engaging in

the” Perform Voice Command” use case.

• The user has the option to configure the assistant by

participating in the” Configure Assistant” use case.

• The” Perform Voice Command” use case leads to

the” Process Command” use case, where the assistant

analyses and comprehends the received voice

command.

• Upon understanding the command, the assistant

proceed to the” Execute Action” use case, where it

performs the appropriate action.

Once the action is executed, the assistant enters the”

Provide Response” use case, generating a response for

the user.

• The user can interact with the output or response

through the” Interact with Output” use case.

• The loop indicates that the user can continue

performing voice commands and interacting with the

assistant as needed.

3.3 SAMPLE CODE

Several activities based on the desktop can be

performed using this AI powered voice assistant. For

every such activities separate codes are developed. A

sample code out of these codes is given in Table 1.

Table 1. Sample code for opening a Notepad

def open_notepad():

 """Opens Notepad and listens for user commands to

open new tabs, write, or manage files."""

 try:

 open_files = [] # List to track opened files

 while True:

 speak("Do you want to open a new file, a previously

saved file, or open a new Notepad window?")

 response = takeCommand().lower()

 if "new file" in response or "open new window" in

response:

 speak("Opening a new Notepad file.")

 temp_file_path =

os.path.join(os.environ["USERPROFILE"], "Desktop",

f"Temp_Notepad_File_{len(open_files) + 1}.txt")

 subprocess.Popen(["notepad.exe",

temp_file_path])

 open_files.append(temp_file_path)

 elif "open new tab" in response:

 speak("Opening a new tab in Notepad.")

 temp_file_path =

os.path.join(os.environ["USERPROFILE"], "Desktop",

f"Temp_Notepad_File_{len(open_files) + 1}.txt")

 subprocess.Popen(["notepad.exe",

temp_file_path])

 open_files.append(temp_file_path)

 elif "previous" in response or "saved" in response:

 speak("What is the name of the file you want to

open?")

 file_name = takeCommand().strip()

 if file_name: # Only proceed if a valid file name is

given

 search_directories = {

 "Desktop":

os.path.join(os.environ["USERPROFILE"], "Desktop"),

 "Documents":

os.path.join(os.environ["USERPROFILE"],

"Documents")

 }

 found_file = None

 for location, directory in search_directories.items():

 file_path = os.path.join(directory, file_name + ".txt")

 if os.path.exists(file_path):

 speak(f"Opening the file {file_name} saved in

{location}.")

 subprocess.Popen(["notepad.exe",

file_path])

 open_files.append(file_path)

 found_file = file_path

 break

 if not found_file:

 speak(f"Sorry, I couldn't find a file named

{file_name} in your Documents or Desktop.")

 else:

 speak("I didn't understand. Opening a new Notepad

file by default.")

 temp_file_path =

os.path.join(os.environ["USERPROFILE"], "Desktop",

f"Temp_Notepad_File_{len(open_files) + 1}.txt")

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 04 | April - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM45648 | Page 6

 subprocess.Popen(["notepad.exe",

temp_file_path])

 open_files.append(temp_file_path)

 break # Proceed to listening mode

 # **Wait for additional commands**

 while True:

 print("Waiting for a command while Notepad is

open...")

 command = takeCommand().lower()

 if "open new tab" in command:

 speak("Opening a new Notepad tab.")

 temp_file_path =

os.path.join(os.environ["USERPROFILE"], "Desktop",

f"Temp_Notepad_File_{len(open_files) + 1}.txt")

 subprocess.Popen(["notepad.exe",

temp_file_path])

 open_files.append(temp_file_path)

 elif "write in notepad" in command:

 speak("Please dictate the content you want to add.")

 content = takeCommand()

 temp_file_path =

os.path.join(os.environ["USERPROFILE"], "Desktop",

f"Temp_Notepad_File_{len(open_files) + 1}.txt")

 with open(temp_file_path, "w") as f:

 f.write(content)

 subprocess.Popen(["notepad.exe",

temp_file_path])

 speak("Your dictated text is saved and opened in

Notepad.")

 open_files.append(temp_file_path)

 elif "save file" in command:

 speak("What should be the name of the file?")

 file_name = takeCommand().strip()

 if not file_name:

 file_name = "Untitled"

 speak("Where do you want to save the file? Say

'Desktop' or 'Documents'.")

 location_command = takeCommand()

 if "desktop" in location_command:

saved_file_path =

os.path.join(os.environ["USERPROFILE"], "Desktop",

file_name + ".txt")

 location = "Desktop"

 elif "documents" in location_command:

 saved_file_path =

os.path.join(os.environ["USERPROFILE"],

"Documents", file_name + ".txt")

 location = "Documents"

 else: speak("I didn't understand. Saving on

Desktop by default.")

 saved_file_path =

os.path.join(os.environ["USERPROFILE"], "Desktop",

file_name + ".txt")

 location = "Desktop"

 # Rename the last opened temp file

 if open_files:

 os.rename(open_files[-1], saved_file_path)

speak(f"File '{file_name}' has been saved on

{location}.")

 open_files[-1] = saved_file_path

 elif "save" in command:

 speak("Saving changes in the opened files.")

 elif "close notepad" in command:

 speak("Closing all Notepad windows.")

 subprocess.call(["taskkill", "/F", "/IM",

"notepad.exe"], stdout=subprocess.DEVNULL,

stderr=subprocess.DEVNULL)

 break # Exit loop once Notepad is closed

 time.sleep(1) # Small delay before checking the next

command

 return True, open_files # Return the list of opened

Notepad files

 except Exception as e:

 speak("An error occurred while opening Notepad.")

 print(f"Error: {e}")

 return False, None

For access to additional code and resources,

please refer to the following Drive link.

https://drive.google.com/drive/folders/1LUe8tC4

1OwuzzpFifu7TDmw9S21Ya6NJ

http://www.ijsrem.com/
https://drive.google.com/drive/folders/1LUe8tC41OwuzzpFifu7TDmw9S21Ya6NJ
https://drive.google.com/drive/folders/1LUe8tC41OwuzzpFifu7TDmw9S21Ya6NJ

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 04 | April - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM45648 | Page 7

4. RESULTS & FUTURE SCOPE

4.1 RESULTS

The GUI created and used for this work is shown

in Fig. 4. All the use cases were thoroughly tested for

functionality. The results are encouraging. All these

results were used then for comparison with existing voice

assistants. One of the results, which is response to “Open

Notepad” voice command is shown as a sample in Fig. 5

Fig. 4. GUI of the proposed work

Fig. 5. Response for the voice command “Open

notepad”

The comparison of proposed work with existing

voice assistants against various functionalities is shown

in Table 2.

Table 2. Proposed work against other voice assistants

– A Comparison

Functionality Proposed Work Other Voice

Assistants

(Google

Assistant, Siri,

Alexa)

Opening Apps Can open apps

like Notepad,

Calculator,

Chrome, etc.

Can open apps

but fails in 20%

of cases (e.g.,

misinterprets the

app name).

Opening

Notepad and

Asking to Save

Can open

Notepad with

multiple tabs

when asked to

open, ask to

save the file,

and specify the

file name.

Cannot handle

file-saving

commands.

Fails to

recognize

"save" or "file

name"

commands.

Opening

Calculator and

Performing

Calculations

Can open

Calculator and

perform

calculations

Can perform

calculations but

cannot open

Calculator

Increasing and

Decreasing

Volume

Can increase,

decrease, and

mute volume.

Can adjust

volume on

supported

devices (e.g.,

Siri for iPhone,

Alexa for Echo).

Video Playback

Controls

Can play, pause,

stop, fast-

forward, rewind,

and resume

videos.

Can control

playback on

compatible

services

Google Drive

Access

Can open

Google Drive

instantly.

Can assist in

searching

Google Drive

files but not

open via voice

(Copilot)

Closing

Applications

Can close apps

like Notepad,

Calculator,

Chrome, etc.

Cannot close

apps

File

Management

(Searching &

Opening Files)

Can search for

and open saved

Notepad files,

Word Files, etc.

Can search for

files in

OneDrive but

not system-wide

File

Management

Can copy, move,

and delete files

No support for

file management

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 04 | April - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM45648 | Page 8

(Copy, Move,

Delete Files)

with voice

commands.

operations.

AI-Powered

Summarization

Includes AI-

powered

summarization

and web search

functionality via

AI

Available in

Copilot for

Microsoft 365

(Word, Outlook)

but not system-

wide

Web Search via

AI

Can search the

web with AI

Available via

Copilot (Bing

AI), but no

direct voice

control

Offline

Capabilities

Works offline

for app control,

calculations,

and file

management

WSR works

offline but lacks

AI

Shutdown and

Restart Pc

Can restart and

shut down PC

via voice

commands

Not available in

Copilot or other

assistants

Take, Read and

Delete notes

Can take notes,

read saved

notes, and delete

specific notes

via voice

commands.

Not supported.

Assistants like

Siri and Alexa

do not offer

direct note

deletion.

Grammar

checking

Can check and

correct grammar

in Word

documents.

Not available in

voice assistants

or Copilot

(requires

manual input).

Taking

Screenshot

Can take

screenshots via

voice command

and save them.

Not available in

other voice

assistants.

Graphical

Control System

(GUI)

Custom GUI for

user interaction,

displaying

commands,

outputs, and

controls

Primarily voice-

only, no

customizable

GUI

The graphical representation of the above

comparison is shown in Fig. 6. The overall efficiency of

the proposed work comes out to be 92.33%, which is

very good against 52.78% efficiency of the existing

voice assistants [9, 10].

Fig. 6. Comparison of accuracy of functionalities

4.2 FUTURE SCOPE

Looking ahead, there’s a lot of exciting potential

for this work. By using machine learning, the assistant

could get even smarter, understanding conversations

better and responding more naturally. It could also be

upgraded with a text-based chatbot feature, giving users

the choice to either type or talk. Adding support for

multiple languages would make it even more accessible

to people around the world. Over time, the assistant

could learn about user preferences to offer more

personalized and helpful experience. It could also take

over everyday tasks like managing emails, setting up

calendar events, and taking notes. With web scraping, it

could bring live updates like news and weather directly

to the user. Connecting it to smart home devices would

turn it into a powerful tool for home automation. Plus,

making it available through Windows, Mac, Linux, and

mobile devices would ensure it’s always within reach. To

top it off, security could be strengthened with voice

authentication, keeping user data safe and ensuring a

more personal touch.

5. CONCLUSION

This proposed work presents an intelligent voice

interface developed for the Windows desktop platform,

integrating AI to enhance user interaction through speech

recognition and automation. The assistant efficiently

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 04 | April - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM45648 | Page 9

performs tasks such as opening and closing applications,

file management, mathematical calculations, volume

control, and video playback using voice commands.

A comparative analysis with an existing project

highlights significant improvements in accuracy and

performance. Our assistant achieves an overall accuracy

of 92.33%, compared to 52.78% for the existing system.

Notable enhancements include 100% accuracy in

opening applications, 96% accuracy in file searching,

and 92% accuracy in mathematical calculations,

outperforming previous models in every key

functionality.

The results indicate the proposed assistant offers

a more reliable and user-friendly experience, with

potential applications in productivity, automation, and

accessibility. Future work could explore AI-driven

enhancements for better contextual understanding and

expanded functionality.

REFERENCES

[1] Easwara Moorthy, Aarthi & Vu, Kim-Phuong,

“Voice Activated Personal Assistant: Acceptability

of Use in the Public Space” HIMI 2014. Lecture

Notes in Computer Science, vol 8522. Springer, pp.

324-334, 10.1007/978- 3-319-07863-2_32.J. Clerk

Maxwell, A Treatise on Electricity and Magnetism,

3rd ed., vol. 2. Oxford: Clarendon, 1892, pp.68–73.

[2] Subhash, P. N. Srivatsa, S. Siddesh, A. Ullas and B.

Santhosh, "Artificial Intelligence-based Voice

Assistant," 2020 Fourth World Conference on Smart

Trends in Systems, Security and Sustainability

(WorldS4), 2020, pp. 593-596, doi:

10.1109/WorldS450073.2020.9210344K. Elissa,

“Title of paper if known,” unpublished.

[3] Harshit Agrawal, Nivedita Singh, Gaurav Kumar,

Dr. Diwakar Yagyasen, Mr. Surya Vikram Singh

“Voice Assistant Using Python” 2021, IJIRT

Volume 8 Issue 2, ISSN: 2349-6002, pp.419-423.

[4] Mrs.A.M.Sermakani, J.Monisha, G.Shrisha,

G.Sumisha, “Creating Desktop Speech

Recognization Using Python Programming.”

IJARCCE, Vol. 10, Issue 3, March 2021, ISSN

(Online), pp.129-134

[5] Abeed Sayyed, AshpakShaikh,

AshishSancheti,Swikar Sangamnere, Prof. Jayant H

Bhangale. “Desktop Assistant AI Using Python”

(2021) International Journal of Advanced Research

in Science, Communication and Technology

(IJARSCT), Volume 6, Issue 2, June 2021. ISSN

(Online): 2581-9429

[6] V Geetha & Gomathy, C K & Kottamasu, Manasa

& Kumar, Nukala. (2021). The Voice Enabled

Personal Assistant for Pc using Python. International

Journal of Engineering and Advanced Technology.

10. 162-165. 10.35940/ijeat.D2425.0410421

[7] Aditya Sinha, Gargi Garg, GouravRajwani, Shimona

Tayal, “Intelligent Personal Assistant”, International

Journal of Informative Futuristic Research, Volume.

4, Issue 8, April 2017.

[8] Vadaboyina Appalaraju, V Rajesh, K Saikumar, P.

Sabitha” Design and Development of Intelligent

Voice Personal Assistant using Python” 2021 3rd

International Conference on Advances in

Computing, Communica- tion Control and

Networking (ICACCCN)

[9] Silky Sharma, Prof.(Dr.) Gurinder Singh,

“Comparison of Voice Based Virtual Assistants

fostering Indian Higher Education – A Technical

Perspective”, 2021 International Conference on

Technological Advancements and Innovations

(ICTAI), November 2021, DOI:

10.1109/ICTAI53825.2021.9673307

[10] Andreas M. Klein, Maria Rauschenberger, Jorg

Thomaschewski, and Maria Jos´e Escalona,

“Comparing Voice Assistant Risks and Potential

with Technology-Based Users: A Study from

Germany and Spain”, Journal of Web Engineering,

Vol. 20 7, pp 1991–2016, doi: 10.13052/jwe1540-

9589.2071, November 2021.

http://www.ijsrem.com/

