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Abstract - The healthcare industry is one of the many 

diverse businesses that depend on a functional supply chain. 

Demand forecasting and inventory control are essential 

components of supply chain management in the healthcare 

industry to ensure optimal patient outcomes, minimise costs, 

and minimise waste. The development of data analytics and 

technology has made it feasible to use several sophisticated 

techniques for demand forecasting and inventory control. This 

project aims to use these improvements to accurately estimate 

demand and regulate the surgical supply inventory, therefore 

reducing costs and improving patient care. To forecast 

medical caseloads and supplies for certain operations, an 

LSTM model grounded in literature is employed. In order to 

account for COVID-19-related variability in surgical case 

volumes in 2020, new characteristics have been added to the 

accepted model. The paper builds a dynamic replenishment 

model for various goods using Mixed Integer Programming 

(MIP). In the actual world, demand is rarely predetermined, 

and forecasting is usually erroneous. We created a Two-Stage 

Stochastic Programming (TSSP) paradigm in order to deal 

with these problems. 
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1.INTRODUCTION 
The network of institutions, procedures, and systems that work 

together to acquire and manage resources in order to guarantee 

the prompt delivery of supplies to patients and providers is 

known as the hospital supply chain. Although supply chain 

management costs account for 25% to 30% of a hospital's 

overall expenses [10], the healthcare supply chain is still in its 

infancy compared to the manufacturing and retail sectors [11]. 

Therefore, there is potential for enhancement. Hospital supply 

chains are receiving more attention than ever before because of 

the growing demand for waste reduction and competitive 

market opportunities [12]. Hospital supply chains are distinct 

from ordinary industrial supply chains and require additional 

complexity. Physicians have the most sway over purchasing 

decisions in healthcare settings. Because of their familiarity 

and training with particular products, they frequently give 

priority to particular equipment over others [13]. Furthermore, 

based on the services requested, hospitals need a vast array of 

goods and equipment, the majority of which are not included 

in a common system for classifying products that makes it 

easier to identify more affordable alternatives [14]. The 

majority of the time, handling these supplies calls for 

specialized knowledge specific to the job, which adds to the 

complexity and knowledge-intensive nature of the healthcare 

supply chain. A hospital supply chain takes a lot of time to 

build and establish because of all these complications. To 

guarantee timely delivery and prevent major disruptions, a 

hospital supply chain requires careful and regular investment 

in the system's design and upkeep [15]. Many organizations 

are crucial to the development and management of a hospital 

supply chain. These significant organizations are: 

 

1. Hospital Administration: Typically, a purchase 

order is started by the hospital administration 

department [16]. The department draughts a purchase 

order, which it then typically sends to the 

manufacturer or distributor. When supplies reach the 

point of reordering, a tracking system in some 

automated hospitals keeps track of how much is being 

used and automatically places orders. The majority of 

hospitals still run conventionally, though. In any case, 

the hospital administration department is in charge of 

starting and finishing the purchase [17]. 

2. Manufacturer: One of the important participants in 

the hospital supply chain is the manufacturer [15]. 

They procure raw materials, carry out research and 

development, and manufacture pharmaceuticals and 

other goods. From the point of production to the 

distributors and occasionally to the hospitals, they 

oversee the distribution of their goods [15]. 

3. Distributor: Another important component of the 

system is the distributor. Hospital purchases are made 

primarily through distributors. They buy medical 

supplies in bulk from the producers and store them in 

strategically important locations. Following receipt of 

a purchase order from the hospital, it checks the 

details and specifications, confirms the order if the 

requirements are available, and places the order. 

Distributors frequently concentrate on specific 

products; for instance, some may handle medical 

supplies, while others may handle equipment and 

electronics supplies. 

4. Third Party Logistic Providers: Medical supplies 

are transported and delivered between the producer, 

distributor, and hospital by third-party logistics 

companies. They make it possible to ship from local 

suppliers more frequently and affordably. Hospitals 

receive shipments of supplies at a single delivery 

point, where they are stored in a warehouse. The 

hospital then allocates the supplies according to the 

requirements of various departments and healthcare 

professionals. Occasionally, logistics providers make 

direct deliveries to the designated departments. The 

patients and the providers make use of the supplies 

and create future orders. 
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Fig -1: Hospital Supply Chain 

 

 

1.1 Surgical Case Volume Prediction 

Four probabilistic prediction models were created by the 

study's authors [31] to forecast the number of surgical cases 

per day weeks in advance. They considered the likelihood that 

a surgeon will operate on a patient on a particular day as well 

as the total number of cases in their initial model, Limited Info 

(LI). The effect of the day of the week is one of the additional 

details that their second model, Partial Info (PI), incorporates 

into the LI model. The Provider Time Away (PTA) data from 

the prior model is incorporated into the third model, Imperfect 

Info (IMI). Nevertheless, the PTA data has to be updated 

because it is frequently noisy. After processing and 

incorporating this data into their final model, Full Info (FI), the 

authors assessed the models using actual data that was 

gathered from a hospital. For an evaluation of forecasting 

methods to predict surgical case volumes in four surgical units, 

Aravazhi [21] established four forecasting models: SARIMA, 

SVR, MLP, and LSTM. The four models that were previously 

mentioned were combined by the author to create twelve 

hybrid models. The surgical case volume for each unit was 

predicted by the author ten weeks ahead of time, taking into 

account the trend and seasonality of the time series data. The 

findings indicate that no model exhibits optimal performance 

across all four units. 

 

1.2 Surgical Supplies Demand Prediction 

Professionals and academic researchers have investigated a 

range of techniques and models, such as statistical learning, 

machine learning, deep learning, queueing theory, and fuzzy 

grey forecasting, over the years to predict the demand for 

hospital supplies [33, 34]. Using three machine learning (ML) 

algorithms—random forest, linear regression, and artificial 

neural network (ANN)—Mbonyinshuti et al. [41] estimated 

the demand for different medications based on their historical 

consumption and compared their effectiveness. The RF 

algorithm outperformed the other two models, according to the 

results. That they should come as no surprise. Depending on 

the features and data structure, tree-based models frequently 

outperform neural network models in terms of performance. 

Using various types of superficial neural network (SNN) and 

deep learning neural network (DNN) models, 

Rathipriya et al. [42] predicted the demand for pharmaceutical 

products and compared their performance based on the root 

mean square error (RMSE). They predicted the demand for 

each of the eight categories they created by dividing the 

products into rather than just the demand for the individual 

products. Using past consumption data, the study's author [44] 

created an LSTM model to forecast the demand for 

medications in a hospital. The data analysis reveals that the 

number of patient visits and the types of diseases the patients 

have an impact on the demand for different drugs and 

medicines. The model's ability to forecast demand is 

demonstrated by the results. Based on past consumption, 

Permanasari et al. [45] and Galkin et al. [46] also projected 

medicine and pharmaceutical sales demand using the LSTM 

model. To predict the demand for surgical supplies, a seq2seq 

encoder-decoder LSTM model is developed in this study. The 

temporal dependencies and nonlinear pattern of the historical 

consumption time series data can both be handled by the 

suggested method. 

 

1.3 Surgical Supply Inventory Management 

A significant portion of the items in the healthcare inventory 

are medical and surgical supplies [48]. There are two 

categories of surgical supplies: disposable and reusable. 

Reusable surgical supplies require different inventory 

management than other inventory items. The reusable items 

are usually placed into trays, and even if the items are not used, 

every piece of equipment in the tray needs to undergo a routine 

sterilization procedure once it is opened in the operating room 

[8]. Reducing the overall cost of inventory can be achieved 

through effective materials and inventory control of surgical 

supplies, particularly with regard to the location and sourcing 

of sterilization facilities for reusable supplies [49, 50, 51]. The 

inventory management of a hospital that employs recyclable 

surgical instruments and sanitizes them in external facilities 

has been examined by Diamant et al. [52]. They determined 

the ideal base-stock levels for reusable instruments, the level of 

service, and implied stockout cost by modelling the hospital's 

inventory management procedure as a discrete-time Markov 

chain model. Their analysis suggested reducing the number of 

reusable instruments in stock and adding an on-site 

sterilization facility. The results indicate that choices about the 

handling of materials and the utilization of recyclable surgical 

instruments have a major influence on the quality of service 

that healthcare facilities and operating rooms provide.  

 

Three separate event simulation models have been created by 

Bhosekar et al. [53] to examine the effects of material handling 

operations and surgical equipment levels of inventory at the 

level of services. Additionally, they looked into how 

cooperative decisions affected inventory levels and activities 

related to material handling at the service level. According to 

their research, a JIT instrument Delivery lowers inventory 

levels without sacrificing the quality of service. Little and 

colleagues [54] created a model employing constraint 

programming to take into account several products and time 

periods approach and ascertain the best service, order sizes, 

and frequency number of sterile products given the limited 

space. Their model was tested using sterile goods found in a 

hospital in Ireland. The multi-item equipped dynamic lot-

sizing restocking problem is first solved in this study using a 

Mixed Integer Programming (MIP) model. Subsequently, a 
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two-stage stochastic programming model is formulated and 

solved in order to accommodate potential demand uncertainty. 

2. DATA ANALYSIS & MODEL DEVELOPMENT 
The Arkansas Clinical Data Repository provided the data 

for this investigation [66]. There are two main kinds of records 
in the dataset. The first type contains details about the surgery, 
like the day of the procedure, the kind of service provided, a 
description of the surgery, the operating room's location, and 
the names of the staff and surgeon. Additionally, it includes 
patient data such as county, height, weight, gender, and age. 
The period covered by these records is May 2014–September 
2021. 

The second category of data relates to medical and surgical 
supplies and includes information about past purchases, such 
as purchase histories, material IDs, brief summaries, purchase 
quantities, item prices, and vendor information. Purchase 
tradition from July 2019 to April 2022 is included in this 
dataset. Furthermore, a dataset covering the inward and 
outward movements of items from storage is accessible from 
January 2019 to April 2022. Additional datasets contain 
supply-related data, such as order posting date, movement type 
(in/out), preservation location, material description, 
manufacturer name, and vendor, as well as location-related 
information, such as replenishment location, delivery address, 
and unloading point. It should be mentioned that the data set 
used in this study to forecast the surgical situation volumes is 
the same one that Bui et al. [9] used. Data from 2014 to 2019 
was used to train the model, and in 2021, its performance was 
evaluated. 

 

Fig -2: Number of regular surgeries in three years 

To obtain a general sense of the effect of COVID-19 on the 
overall number of operations in 2020, the total amount of 
surgeries performed every day in 2020 was first compared with 
the surgeries performed in the preceding two years. Figure 2 
shows that, compared to 2018 and 2019, there will be fewer 
surgeries performed daily in 2020, particularly in the early 
months when all procedures were put on hold. The figure 
shows that, after approximately three and a half months, there 
were more surgeries performed overall each day. But not every 
kind of procedure was affected by the pandemic in the same 
way. While emergency surgeries cannot be postponed or 
cancelled, non-emergency surgeries may not be scheduled 
during the pandemic. Consequently, to predict surgical case 
volumes with any degree of accuracy, it is imperative to 
determine which surgical procedures were actually affected by 
the pandemic. But there isn't sufficient information about this 
in this plot. Based on the level of urgency, the total number of 
surgical procedures was split into three categories: mixed-type, 
non-emergency, and emergency or time-sensitive surgeries. 
This allowed us to determine which procedures were actually 
affected by the pandemic. Procedures classified as emergencies 
are extremely critical and cannot be postponed. The COVID-
19 pandemic had no effect on these surgeries, as shown by the 

graphs in figure 3. Rather, the number of these interventions in 
2020 is nearly the same as it was in the preceding two years. 
This graphic analysis supports the notion that an emergency 
Pandemic had no effect on surgeries. 

 

Fig -3: Emergency procedures 

At the start of 2020, figure 4. shows that there were either 
zero or almost zero surgeries performed for non-emergency 
procedures. This might be the result of the non-emergency 
surgeries being postponed or cancelled during the initial 
COVID-19 wave. But as things got better, the accumulation of 
surgeries got cleared, which increased the total number of 
surgeries. The presumption that COVID-19 has affected non-
emergency surgeries is supported by this analysis. 

 

 

Fig -4: Mixed type procedures 

The first hypothesis is supported by Figure 5, which 
demonstrates that for medical emergencies, the differences 
were roughly zero with sporadic ups and downs. This suggests 
that the average weekly frequency of surgeries was not 
substantially different in 2020. Figure 6 shows that the 
difference in the average weekly number of surgeries 
performed was less than zero at the start of the year and 
remained close to zero for the majority of weeks for certain 
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procedures that weren't emergencies, including the initial and 
final plots. Figure 3.6's second plot demonstrates that most of 
the year's variations were less than zero. Figure 7, a 
preliminary chart of the mixed-type methods, demonstrates 
that the differences increased towards the end of the year after 
primarily remaining below zero during the initial half of the 
year. In contrast, there were very little variations in the 
subsequent plot over the course of the year. Additionally, these 
analyses support the earlier hypothesis that the pandemic 
affected some non-emergency and mixed procedures. While 
the visual analyses indicate a slight decrease in the number of 
surgeries performed in 2020 compared to previous years for 
certain non-emergency and mixed-type procedures, these 
findings are not definitive. 

 

Fig -5: Variation in the amount of emergency procedures 
performed each week. 

 

Fig -6: Variation in the number of non-emergency 
procedures performed each week. 

 

Fig -7: Variation in the quantity of mixed-type procedures per 
week. 

To properly discuss the outcomes of the hypothesis test, let's 
assume a few things about the procedures that have been 
investigated thus far. The three emergency protocols are 
symbolized by the numbers XX1, XX2, and XX3. 
Representing the three non-emergency protocols are YY1, 
YY2, and YY3. ZZ1 and ZZ2 represent two distinct but mixed 
types of procedures. The results of the first hypothesis test 
show that there is a significant difference (p-values of 
0.000013, 0.0131, and 0.0142) between the population means 
of the weekly total of treatments in the years 2020 and 2019 
for both subsequent non-emergency procedures (YY2 and 
YY3) and the second mixed type procedure (ZZ2). The results 
of the second hypothesis's test indicate that the second hybrid 
procedure (ZZ2), as well as both initial non-emergency 
processes (YY1 and YY2), have significance at p-values of 
3.9128e-06, 6.312e-15, and 0.000519. According to the 
analysis above, the pandemic in 2020 influenced a few non-
emergencies and mixed-type procedures. Consequently, it is 
worthwhile investigating if the performance of the forecasting 
model is impacted in any way by the recently confirmed 
COVID-19 cases. 

 

3. RESULTS AND DISCUSSION 

The inventory replenishment models took into account nine 
items across five periods. Demand for the items was assumed 
at random and it is used to develop and solve an equivalent 
MIP model for the TSSP. In addition, the model was coded 
and solved using AMPL. Table 3.1 shows the model's optimal 
ordering decisions. The total cost is $352,191.26. 

 

Table 3.1: Optimum ordering decisions by the TSSP model 

 

To evaluate the benefits of gathering additional 
information, consider the expected value of perfect information 
(EVPI) and the value of stochastic solutions (VSS). The 
expected value of perfect information (EVPI) assesses how 
much a decision maker would be willing to pay for complete 
and precise information about uncertain variables in a problem. 
Stochastic programming can be utilised to assess the possible 
advantages of lowering uncertainty in demand scenarios 
through the use of EVPI. The expected value of the optimal 
decision without perfect information (EVwoPI), or using the 
TSSP model with uncertain demand scenarios, and the 
expected value of the optimal decision with perfect 

Item Period 1 Period 2 Period 3 Period 4 Period 5 

Total 

Quantity 

Ordered 

1 0 35 0 0 0 35 

2 189 0 0 0 0 189 

3 330 0 0 0 0 330 

4 74 0 0 0 0 74 

5 46 82 0 47 0 175 

6 66 170 0 83 0 319 

7 39 0 0 23 0 62 

8 60 104 0 45 0 209 

9 62 177 0 90 0 329 
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information (EVwwPI), or using the simple MIP model with 
known demand scenarios, are what define the EVPI [80]. 

The TSSP model considered five random demand states. 
The EVwPI was calculated by solving the five demand states 
using the simple MIP model as if demand was known, and 
then calculating the average. Here, EVwPI = 349445.17 and 
EvwoPI = 352191.26. Therefore, 

 

EVPI = 352191.26 - 349445.17 = 2746.09. 

 

The potential advantage of employing a stochastic 
optimisation model as opposed to a deterministic model is 
gauged by the value of stochastic solution, or VSS. The VSS 
can assist decision-makers in assessing the possible advantages 
of utilising a more complex stochastic model by quantifying 
the value of the additional information the stochastic model 
provides. By comparing the expected value of the optimal 
decision made using the stochastic model to the expected value 
of the optimal decision made using the deterministic model, 
that is, what the decisions made using the deterministic model 
would produce in a stochastic environment—the VSS assesses 
the possible benefits of using a stochastic optimisation model.  

A positive variance squared (VSS) suggests that the 
stochastic model offers noteworthy value, whereas a negative 
VSS suggests that the deterministic model performs better 
[80]. 

In this case, the optimal decision made with the 
deterministic model is expected to be 354519.564, and the 
optimal decision made with the stochastic model is expected to 
be 352191.26. Consequently, 

 

VSS = 354519.564 - 352191.26 = 2328.304. 

These results only apply to one demand case. To assess the 
model's robustness, ten randomly generated demand datasets 
were used in a Monte Carlo simulation, given the uncertainty 
and short range of actual demand. 

In modelling and simulation, confidence intervals are 
frequently used as a quantitative validation technique [81]. To 
elucidate, a model response variable's confidence interval is 
calculated. The model is deemed valid for that specific 
response variable if the observed or known value for that 
response variable falls within this tolerance limit or within the 
confidence interval [82]. The 95% and 99% Confidence 
Intervals (CI) of the TSSP model's ordering choices for each of 
the nine items are shown in Table 3.2. Tables 3.1 and 3.2 show 
that the ordering decisions of the simple MIP model for items 
2, 4, and 7 marginally deviate from the interval for the 99% CI. 
The ordering choices made by the simple MIP model for items 
1, 2, 4, 5, 7, and 9 are outside of the interval for the 95% CI. 
The items that didn't fall inside the interval, however, are still 
inside it by two units. 

Then, to examine their effects on the overall cost and 
decision variables, each of the fixed ordering cost, 
transportation cost, inventory holding cost, and shortage 
penalty coefficients have been changed one at a time from 0.6 
to 1.4 with an increment of 0.1. Figure 8 illustrates how 
changing the shortage penalty cost has the biggest impact on 
overall costs. The figure also demonstrates the nearly similar 
effects that different fixed ordering, transportation, and 
inventory holding costs have on the overall cost. In exact 

terms, the total cost rises by $706.8, $715.7, and $497.4 when 
the fixed ordering, transportation, and inventory holding costs 
are changed one at a time from 0.6 to 1.4. 

 

Table 3.2: 95% and 99% confidence interval of ordering 
decisions by TSSP model 

 

Total Cost vs Different Parameters 

 

 

 

 

Fig- 8: Effect of varying each parameter one at a time on 
the total cost obtained by the TSSP model. 

 

Item 95% C.I. 99% C.I. 

1 32,35 31,36 

2 187,189 186,189 

3 328,331 327,331 

4 71,72 70,73 

5 174,176 173,177 

6 316,319 315,319 

7 58,60 58,61 

8 209,212 208,213 

9 329,331 329,332 
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The shortage penalty has a major effect on the overall cost, 
as shown in figure 5.8. For this reason, it is crucial to 
investigate how variations in the shortage penalty affect 
ordering decisions. As replenishing the shortfall quantities 
would be more cost-effective than ordering additional 
quantities and incurring holding and purchasing costs, thereby 
reducing the total cost, it is conceivable that lowering the 
shortage penalty would cause the model to order fewer 
quantities in the initial stage. On the other hand, if the shortage 
penalty were increased, the model would be prompted to order 
larger quantities at first in order to prevent stockouts and pay a 
higher total cost for shortages. The hypothesis was tested using 
a one-tailed paired t-test, with results shown in Table 5.5. The 
hypothesis test found that lower shortage penalties result in 
significantly lower quantities ordered compared to higher 
penalties. 

According to the analysis, the TSSP model outperforms the 
basic MIP model. When weighing the possible advantages of 
obtaining more data and applying stochastic optimization 
models, decision-makers can find valuable information in the 
EVPI and VSS results. In this particular instance, the EVPI of 
2746.09 suggests that the decision-maker might be able to 
obtain an extra value of $2,746.09 if perfect knowledge about 
the demand scenarios was available. This figure indicates the 
highest price the decision-maker ought to be prepared to pay 
for flawless information. If the information can be obtained for 
less than this sum, then doing so is financially advantageous. 
The VSS of 2328.304 shows that the stochastic optimization 
model outperforms the deterministic model by $2,328.304. The 
stochastic model offers valuable information and should be 
preferred over the deterministic model for decision-making. 
These findings emphasize the need to consider uncertainty and 
gather additional information during decision-making 
processes. Decision-makers may benefit significantly and 
make better decisions as a result. 

 

Table 3.3: Statistical significance test for varying shortage 
penalty 

Additionally, the sensitivity analysis demonstrates that the 
shortage penalty has a substantial effect on the overall cost, 
suggesting that it is an important consideration for ordering 
decisions that are optimised. The fixed costs associated with 
inventory holding, transportation, and ordering have negligible 
and nearly equal effects on the overall cost. 

 

4. CONCLUSION 

To improve inventory management and cut costs, this study 

created two models for inventory replenishment and carried 

out a comparative performance analysis. Initially, this multi-

item lot-sizing capacitated joint replenishment problem was 

solved using a basic MIP model. A TSSP model is created and 

solved since the forecasts are always regarded as being 

erroneous and the demand is rarely deterministic in the real 

world. The TSSP model outperforms the deterministic model, 

according to the experiment's findings. To evaluate the value 

that could be obtained by acquiring flawless information about 

uncertain demands, the anticipated benefit of perfecting 

information was also calculated. A sensitivity assessment was 

performed as part of the analysis to ascertain how adjustments 

to different parameters would impact on the TSSP model's 

overall cost. The analysis's conclusions showed that altering 

the insufficient penalty variable had the biggest effect on the 

total cost of the model. In order to increase forecasting 

accuracy over longer time horizons, future research could 

investigate testing alternative machine learning models. For 

improved performance, real-world scenarios like storage 

capacity, service level, and discounts on 48-quantity purchases 

could be incorporated into the model. The inventory 

replenishment models' predominant source of data was 

assumed, which rendered it relatively tainted. Therefore, it 

would be interesting to observe the models' performance when 

applied to real data. 
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