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with a comprehensive view of the environment. 

By combining semantic understanding with 

geometric precision, our method aims to 

enhance navigation robustness and adaptability. 

This introduction provides an overview of the 

motivation, methodology, and contributions of 

our proposed approach, setting the stage for 

detailed exploration in subsequent sections. 
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1. INTRODUCTION 

Autonomous navigation in dynamic environments 

presents a formidable challenge, demanding 

systems capable of perceiving surroundings and 

making real-time decisions. Conventional methods 

often rely on sensor data and predefined maps, 

which may lack the flexibility needed to navigate 

complex scenarios. This paper introduces an 

innovative approach to autonomous navigation 

utilizing bird's eye view semantic maps. Inspired by 

the navigation strategies observed in birds, our 

approach integrates high-level semantic information 

 

Fig.1. perspective–driven multi-objective path 

planning system 

 

 

 

Autonomous navigation systems are integral to a 

wide range of applications, from self-driving cars to 

unmanned aerial vehicles, where the ability to 

perceive and interpret the surrounding environment 

accurately is paramount. Traditional navigation 

methods often rely on predefined maps and sensor 

data, yet they may struggle to adapt to dynamic and 

complex scenarios. To address these challenges, 

this paper proposes an innovative approach inspired 

by birds' navigational strategies, leveraging bird's 

ABSTRACT—This paper presents 

autonomous navigation approach that 
an 

draws 

inspiration from birds' navigation techniques, 

utilizing bird's eye view semantic maps. These 

maps encapsulate high-level semantic information 

about the environment, such as roads, sidewalks, 

obstacles, and landmarks. By integrating this 

semantic understanding with a comprehensive 

aerial perspective, our approach aims to enhance 

navigation capabilities in dynamic environments. 

We leverage advanced computer vision techniques 

to construct detailed semantic maps, enabling 

autonomous agents to plan and execute maneuvers 

effectively. The proposed approach offers a 

promising solution for enhancing navigation 

robustness and adaptability in various real-world 

scenarios, including autonomous vehicles, robotics, 

and unmanned aerial systems. 
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Vision-based route utilizing deep learning, 

particularly through end-to-end imitation learning, 

represents a significant advancement in achieving 

autonomous navigation solely from visual input. In 

this approach, a Convolutional Neural Network 

(CNN) is trained to directly map pixels from a 

front-facing camera to steering commands. 

However, the end-to-end nature of this system 

makes it challenging to interpret the inner workings 

of the CNN, complicating troubleshooting and 

correcting undesired behaviors. 

 

Alternatively, some methods compute motion 

planning and control from a semantic mask 

generated from the first-person view. These 

methods leverage recent developments in deep 

learning-based perception tasks such as semantic 

segmentation. However, since motion is computed 

from semantic data at the image level, they lack 

spatial information about the surroundings 

necessary for smooth navigation. 

eye view semantic maps to enhance autonomous 

navigation capabilities. 

 

Central to our approach is the construction of bird's 

eye view semantic maps using advanced computer 

vision techniques. These maps serve as a rich 

representation of the environment, capturing both 

semantic features and geometric layout. By 

encoding essential environmental information into 

semantic maps, including road structures, 

pedestrian pathways, and obstacles, our method 

enables autonomous agents to perceive and 

understand their surroundings comprehensively, 

facilitating informed decision-making during 

navigation tasks. 

 

The proposed navigation approach holds significant 

promise for various real-world applications, 

including autonomous vehicles, robotics, and 

unmanned aerial systems. By leveraging bird's eye 

view semantic maps, our method offers the 

potential to enhance navigation robustness and 

adaptability, enabling autonomous agents to 

navigate safely and efficiently in dynamic and 

challenging environments. In the following 

sections, we provide a detailed description of our 

methodology, experimental results, and the 

implications of our approach for advancing 

autonomous navigation technologies. 

the lack of contextual relationships and global 

information across diverse domains. 

 

B. Vision-based Navigation using Deep Learning 
 

 

3. SEMANTIC SEGMENTATION 

BASED VISUAL NAVIGATION 

2. RELATED WORK 

A. Semantic segmentation 

1.  Objective: The primary goal of the navigation 

system is to enable AMRs to navigate 

autonomously using only a front-facing RGB 

camera, without the need for depth or ranging 

sensors. 
Semantic segmentation has experienced significan2.  Semantic Segmentation: The system begins by 

advancements in recent years, driven by profoun 

developments  in  brain organizations. pivot 

occurred with the introduction of convolution 

layers in Completely  Convolutional  Brai 

Organizations   (FCNN).   FCNNs  not   onl 

demonstrated    remarkable performan 

improvements but also reduced the parameter cou 

processing the input RGB image using deep 

learning models for semantic segmentation. 

Specifically, models like PSPNet and FCHarDNet 

are employed to detect drivable areas in the scene. 

This segmentation allows the robot to identify 

obstacles, drivable paths, and other relevant 
features in its environment. 

compared to Completely Associated Brai3.  Bird’s-Eye View Semantic Map: The drivable 

areas 

Organizations. Subsequent progressions include 

the integration of multiscale features and t 

introduction of context aggregation, whic 

addressed critical issues faced by FCNNs such 

detected in the RGB image are transformed into a 

Bird’s-Eye view semantic map. This transformation 

provides a top-down perspective of the 

environment, allowing the robot to perceive the 

http://www.ijsrem.com/
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Fig 2: single front- facing image 

 

The described model, FCHarDNet, employs a 

decoder component utilizing bilinear upsampling 

and 1x1 convolutional layers to restore 

diminished picture  highlights  to  their  

original  size.  It 

incorporates residual connections between blocks, 

batch normalization, and ReLU activation functions. 

Initially initialized with pre-trained weights, 

FCHarDNet undergoes further training using 

Stochastic Gradient Descent and a Bootstrapped Cross-

Entropy Loss. 

 

In contrast, PSPNet (Pyramid Scene Parsing 

Network) is a Convolutional Neural Network (CNN) 

designed to capture global context information by 

aggregating region-based context through pyramid 

pooling modules. By integrating features across 

different scales, PSPNet effectively covers the 

entire, half, and smaller portions of the image. 

PSPNet has demonstrated superior performance 

compared to Fully Convolutional Neural Networks 

(FCNNs) on various datasets. 

 

Figure 3 displays the semantic segmentation result, 

where drivable regions under different conditions are 

highlighted in green. This segmentation output 

showcases the effectiveness of the models in 

accurately identifying and delineating drivable areas 

within the image. 
 

spatial layout and distances to objects more 

effectively. 

4.  Multi-objective Cost-map: From the Bird’s-Eye 

view semantic map, a multi-objective cost-map is 

computed. This cost-map incorporates objectives 

such as obstacle avoidance, center-line following, 

and distance to goal reduction. It assigns costs to 

different areas of the map based on these objectives, 

guiding the robot in selecting safe and efficient 

paths. 

5.  Path Planning: Using the cost-map, the system 

calculates the lowest-cost path for the robot to 

follow. Path planning algorithms iterate over 

possible paths in the semantic map, considering the 

costs associated with each path, to find the optimal 

route while avoiding obstacles and adhering to 

navigation objectives. 

6.  Motion Control: Once the path is determined, a 

motion controller is utilized to steer the robot along 

the path. A pure-pursuit motion controller is 

employed, ensuring smooth and accurate navigation 

towards a lookahead point along the planned path. 

7.  Real-time Implementation: The entire system is 

implemented to operate in real-time, with 

computational efficiency considered for each 

processing step. This allows for responsive and 

timely navigation decisions by the robot as it 

encounters changes in its environment 

http://www.ijsrem.com/


          International Journal of Scientific Research in Engineering and Management (IJSREM) 
                           Volume: 08 Issue: 06 | June - 2024                         SJIF Rating: 8.448                                    ISSN: 2582-3930                                                                                                                                               

 

© 2024, IJSREM      | www.ijsrem.com                                                                                                                              |        Page 4 

C 

ng 

Here's an overview of how "distance to goal 

reduction" is implemented in the system: 

 

 

Fig. 3. Drivable area extraction using Semantic 

Segmentation. Here, PSPNet was used for Indoor 

and Outdoor environments, while FCHarDNet was 

used for our simulated environment 

D. Multi-objective Cost-map 
 

1.Obstacle Avoidance : It seems like you're 

describing a method for obstacle avoidance for a 

robot, particularly focusing on staying away from 

the edges of the drivable region. The formula you 

provided suggests a convolution operation between 

a Gaussian kernel and a mask representing the 

drivable region, which results in a cost function for 
obstacle avoidance. 

 

The formula for obstacle avoidance 

 

(JOA(x,y)) at a point (x,y) in the Bird’s-Eye view 

semantic map is given by: 

 

𝐽𝑂𝐴(𝑥,𝑦)=𝐺(𝜇,𝜎2)∗𝑀𝐶(𝑥,𝑦)JOA(x,y)=G(μ,σ2)∗M 

3.  Integration into Cost-map: A term is included in the 

multi-objective cost-map to promote center-line 

following behavior. This term reduces the cost 

along the computed center line, encouraging the 

robot to stay close to the center of the drivable area 

during navigation. 

 

Where: 

 

• 𝐽𝑂𝐴(𝑥,𝑦)JOA(x,y) is the obstacle avoidance 

cost function at point (x,y). 

• 𝐺(𝜇,𝜎2)G(μ,σ2) is a 2D Gaussian kernel 

with mean (μ) and variance (σ^2). 

• 𝑀𝐶(𝑥,𝑦)MC(x,y) is the contours mask of the 

Bird’s-Eye view semantic map. 
 

The convolution operation between the Gaussian 

kernel and the contours mask effectively assigns 

higher costs to points near the edges of the drivable 

3.Distance to goal reduction 

 

Distance to goal reduction" refers to a component 

of the multi-objective cost-map used in the 

navigation system described in the paper. This 

component aims to guide the robot towards its goal 

position by assigning lower costs to points closer to 

the goal. 

 

 

area, promoting obstacle avoidance behavior duri 

path planning 

 

2. Center-line Following: Center-line following is 

technique used in navigation systems to guide a 

mobile robot along a predefined path, typically 

along the center line of a drivable area. In the 

context of the semantic segmentation-based visual 

navigation system described in the paper, center- 

line following is one of the objectives considered i 

the computation of the multi-objective cost-map. 

http://www.ijsrem.com/
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Here's Detection of Side Boundaries: Some 

environments, such as hallways, sidewalks, and 

roads, have well-defined side an overview of how 

center-line following is implemented in the system 

 
boundaries. The navigation system detects these 
boundaries, allowing it to identify the left and 
right 
edges of the drivable area. 

1. Computation of Center Line: Once the side 4. 
boundaries are detected, the system computes the 

1. center line of the drivable area. This center line 

represents the optimal path for the robot to follow within 

the drivable area. Calculation of Euclidean Distance: 
The distance 

between each point in the Bird’s-Eye view 

semantic map and the goal position is computed 

using the Euclidean distance formula. This 

distance represents the proximity of each point to 

the goal. 

2.  Cost Assignment: Points closer to the 

goal position are assigned lower costs, while points 

farther away from the goal receive higher costs. 

The exact cost assignment strategy may vary, but 

typically it involves inversely proportional 

relationships, where closer points have lower costs 

and farther points have higher costs. 

3.  Integration into Cost-map: The costs 

associated with "distance to goal reduction" are 

combined with other cost components, such as 

obstacle avoidance and center-line following, to 

form the multi- objective cost-map. This ensures 

that the navigation system considers proximity to 

the goal as one of the factors when planning the 

robot's path. 
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