

“An Improved YOLO-V8 Algorithm for Rail Surface Defect Detection”

Anagha Manoj¹, Nireeksha K Kulali², Jayasimha J N³

¹*Anagha Manoj, Information Science and Engineering, RR Institute of Engineering*

²*Nireeksha K Kulali, Information Science and Engineering, RR Institute of Engineering*

³*Jayasimha J N, Information Science and Engineering, RR Institute of Engineering*

Abstract -Transportation by train is a backbone of countrywide infrastructure, and therefore, the issue of railway safety cannot be overlooked. Cracks, worn-out, and other imperfections on the outer surfaces of the rail tracks are some of the important reasons for the occurrence of accidents and train derailments. Manual analysis techniques are highly time-consuming and tend to have errors, and hence, are not appropriate for application at large railway networks. To address the issues, this project proposes a rail surface defect automated detecting system employing the YOLOv8 algorithm.

A camera is fixed to a rail inspection prototype to generate continuous photographs of the rail track surface. The photographs are then analysed through computer vision and deep learning algorithms to automatically locate rail defects in real-time processing. The optimized YOLOv8 algorithm has high accuracy in rail defect detection with minimal processing time. Experimental results prove that the system is working well under changing lighting conditions and environmental settings. The system is effective in preventing manual rail inspection and is ideal in intelligent rail monitoring systems due to its contribution to rail safety.

Key Words: Rail Surface Defect Detection, YOLOv8 Algorithm, Deep Learning, Computer Vision, Railway Safety, Automated Railway Inspection, Intelligent Rail Monitoring

1. INTRODUCTION

Railway transportation is one of the most important modes of transport and forms the backbone of a country's infrastructure. It supports large-scale movement of passengers and goods at a low cost, making railway safety a critical concern. Despite continuous advancements in railway technology, accidents caused by track defects such as cracks, wear, fractures, and surface irregularities still occur. These defects often develop gradually due to heavy loads, environmental conditions, and material fatigue, and may go unnoticed until they result in serious failures or derailments.

Traditional railway track inspection methods mainly rely on manual inspection or mechanical testing, which are time-consuming, labor-intensive, and prone to human error. Moreover, inspecting extensive railway networks regularly is a challenging task. With recent advancements in computer vision and artificial intelligence, automated inspection systems have become a promising solution.

This project proposes an automated rail surface defect detection system using an improved YOLOv8 deep learning algorithm. The system captures rail surface images through a

camera-based inspection setup and processes them to detect defects in real time. This approach reduces dependency on manual inspection, improves detection accuracy, and enhances overall railway safety.

2. Body of Paper

Railway track defects pose a serious threat to passenger safety and railway infrastructure reliability. Conventional rail inspection techniques mainly depend on manual observation and periodic maintenance checks, which often suffer from delayed detection, high labor cost, and limited coverage. Section 1 introduced the motivation and objectives of the proposed automated rail surface defect detection system.

Figure 1 illustrates the importance of railway track monitoring in accident prevention and infrastructure maintenance. The increasing demand for intelligent transportation systems has encouraged the adoption of deep learning-based computer vision techniques for real-time defect detection.

System Requirements

Section 2 describes the functional and non-functional requirements of the proposed system. In Section 2.1, requirement modeling is discussed with emphasis on system inputs, outputs, and operational constraints. The system accepts rail surface images as input and outputs detected defect regions along with classification results.

Table 1 presents the functional requirements such as image acquisition, defect detection, defect localization, and alert generation. Table 2 lists non-functional requirements including accuracy, real-time performance, reliability, and scalability. Section 2.3 outlines the hardware requirements, which include a high-resolution camera module, processing unit, and storage components.

System Design

Section 3 explains the overall system architecture and design. The block diagram of the rail defect detection system is shown in Figure 2. The system architecture integrates image acquisition, preprocessing, deep learning-based detection, and result visualization modules.

In Section 3.2, Unified Modeling Language (UML) diagrams are used to represent system behavior. The use case diagram describes interactions between the inspection system and the operator, while the activity diagram illustrates the defect detection workflow. Section 3.3 presents the object diagram showing interactions between system components.

Implementation

Section 4 discusses the implementation of the proposed system. Section 4.1 explains the software implementation using the YOLOv8 deep learning algorithm for rail surface

defect detection. The model is trained using labeled rail track images and optimized to achieve high detection accuracy with minimal inference time.

Section 4.2 describes the hardware implementation, including the camera-based inspection setup used to capture continuous rail surface images for analysis.

Testing

Section 5 presents the testing and evaluation of the system. Test cases were designed to validate defect detection accuracy under varying lighting and environmental conditions. Both functional and performance testing were conducted to assess system reliability.

Results

Section 6 discusses the results obtained from experimental evaluation. The proposed system successfully detects rail surface defects such as cracks and wear with high accuracy and low false detection rates. The results confirm the effectiveness of the YOLOv8-based approach for real-time railway track monitoring.

Table -1: Hardware and Software configuration

SLN O:	Hardware	Description	Function
1	High-Resolution Camera	A camera mounted on the rail inspection prototype to capture clear images of the railway track surface	Captures continuous images of frail surfaces for detecting cracks, wear, and surface defects using deep learning
2	Processing-Unit (Laptop / Embedded System)	Computing device with sufficient processing capability to execute deep learning models	Processes captured images, runs the YOLOv8 algorithm, and performs real-time defect detection
3	Mounting Frame	Mechanical structure used to securely hold the camera in position	Ensures stable image capture by maintaining proper camera alignment during inspection
4	Power Supply Unit	Power source for the inspection system	Provides uninterrupted power for continuous operation of the system

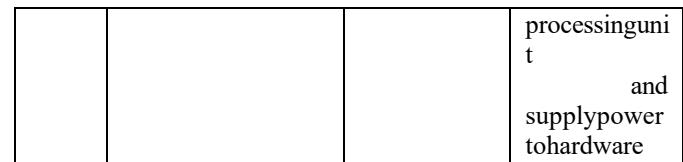


Fig-2: Processing-Unit (Laptop / Embedded System)

Fig-3: Mounting Frame

Fig-4: Power Supply Unit**Fig-5:** Connecting Cables to the model

3. CONCLUSIONS

The design and implementation of the deep learning-based Rail Surface Defect Detection System demonstrate the practical effectiveness of integrating computer vision and artificial intelligence techniques into railway safety and maintenance operations. The project successfully achieves its primary objective of automating the detection of rail surface defects such as cracks and wear, which are critical factors contributing to railway accidents and derailments.

The proposed system employs a camera-based inspection setup combined with the YOLOv8 deep learning algorithm to perform real-time defect detection with high accuracy and minimal processing delay. Experimental evaluation indicates that the system performs reliably under varying lighting and environmental conditions, validating its robustness and adaptability. By reducing dependency on manual inspection methods, the system enhances inspection efficiency and minimizes the possibility of human error.

Furthermore, the project highlights the potential of intelligent monitoring systems in transforming conventional railway maintenance practices into proactive, data-driven solutions. Early detection of defects enables timely maintenance actions, thereby improving operational safety and reducing maintenance costs. Overall, the Rail Surface Defect Detection System demonstrates significant potential for real-world deployment and can be further enhanced by incorporating advanced hardware, GPS-based tracking, and real-time alert mechanisms.

ACKNOWLEDGEMENT

The authors would like to express their sincere gratitude to the Principal and management of the institution for providing a supportive academic environment and the necessary facilities to carry out this project successfully. The authors are thankful to the Head of the Department for continuous encouragement and support throughout the project duration.

The authors extend their heartfelt thanks to the project guide for valuable guidance, constructive feedback, and constant motivation during all phases of the project. Special appreciation is also extended to all faculty members and laboratory staff of the department for their technical support and cooperation.

Finally, the authors acknowledge the encouragement and assistance provided by friends and peers, which contributed significantly to the successful completion of this project.

REFERENCES

1. J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, "You only look once: Unified, real-time object detection," IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016.
2. G. Jocher et al., "Ultralytics YOLOv8," Ultralytics Documentation, 2023.
3. S. Ren, K. He, R. Girshick, and J. Sun, "Faster R-CNN: Towards real-time object detection with region proposal networks," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 39, no. 6, 2017.
4. A. Krizhevsky, I. Sutskever, and G. Hinton, "ImageNet classification with deep convolutional neural networks," Communications of the ACM, vol. 60, no. 6, 2017.
5. R. Girshick, "Fast R-CNN," International Conference on Computer Vision (ICCV), 2015.
6. T. Lin et al., "Microsoft COCO: Common objects in context," European Conference on Computer Vision (ECCV), 2014.
7. R. Szeliski, Computer Vision: Algorithms and Applications, Springer, 2011.
8. A. Sharma and R. Gupta, "Automated railway track inspection using computer vision," International Journal of Engineering Research and Technology, 2020.
9. P. K. Singh et al., "Deep learning-based defect detection for railway tracks," IEEE Access, vol. 9, 2021.
10. OpenCV Documentation, "Computer vision library," 2023.

BIOGRAPHIES

Author 1: Anagha Manoj

Student of Information Science and Engineering at RR Institute of Technology (2022-26)

Author 2: Nireeksha K Kulali

Student of Information Science and Engineering at RR Institute of Technology (2022-26)

Author 3: Jayasimha J N

Student of Information Science and Engineering at RR Institute of Technology (2022-26)