

An Intelligent Forest Fire Detection System Using Machine Learning

Keerthana M L¹, Gagan L R², Thejaswi G S³, Nishmitha M K⁴, and Nethravathi J⁵

^{1,2,3,4} Students, Department of Computer Science and Engineering,

⁵ Assistant Professor, Department of Computer Science and Engineering, Maharaja Institute of Technology Mysuru, Mysuru, Karnataka, India

Affiliated to VTU, Belagavi keerthanaml2004@gmail.com¹,

gaganlr6@gmail.com², tejaswi.srinivasashetty@gmail.com³, nishmithamkgowda@gmail.com⁴,

nethravathij_cse@mitmysore.in@gmail.com⁵

Abstract— An intelligent forest fire detection system is developed using YOLOv8 to accurately identify fire and smoke in real time. The model delivers high-speed inference and integrates automated alert mechanisms, making it suitable for early wildfire prevention.

I. INTRODUCTION

Forest fires are one of the most critical environmental hazards, leading to widespread destruction of natural habitats, loss of biodiversity, and significant economic damage. Early detection plays a vital role in preventing minor fire incidents from escalating into large-scale disasters. Conventional fire detection methods such as satellite imaging, thermal sensors, and human surveillance towers often suffer from challenges like low resolution, delayed detection, limited coverage, and high operational costs. With the rapid growth of artificial intelligence and deep learning, computer vision-based fire detection systems have emerged as a powerful alternative capable of providing fast and accurate results. By integrating YOLOv8 with backend processing, web technologies, and alert mechanisms, the proposed system aims to provide a cost-effective, scalable, and reliable early-warning solution for forest departments and disaster management agencies. This model-driven approach significantly enhances traditional monitoring systems by offering real-time responsiveness, robust performance, and improved detection accuracy under varying environmental conditions.

Forest fires have emerged as one of the most destructive natural catastrophes of the modern era, posing severe threats to global ecosystems, biodiversity, climate stability, human settlements, and economic resources, thereby necessitating the development of highly sophisticated early detection and warning systems capable of identifying fire outbreaks before they escalate into uncontrollable disasters. These fires often originate from natural causes such as lightning, extreme heat, and prolonged drought, or from anthropogenic factors including agricultural burning, negligence, electrical malfunctions, and deliberate acts, all of which become increasingly dangerous due to rapid urbanization bordering forest landscapes and widespread climatic changes that intensify wind patterns, dryness, and fuel accumulation within forest ecosystems. Over the past several decades, researchers, governmental agencies, and environmental organizations

Recent advancements in artificial intelligence, particularly in deep learning and computer vision, have opened opportunities to automate forest fire monitoring through intelligent, real-time detection systems. Deep learning

models, especially Convolutional Neural In addition to improving detection speed and accuracy, the proposed system focuses on reducing human dependency and enabling continuous, automated monitoring of forest regions. By using machine learning models trained on diverse fire and smoke datasets, the system can adapt to different environmental conditions and detect early-stage fire incidents that may otherwise go unnoticed. The integration of a real-time alert mechanism ensures that authorities receive immediate notifications, allowing faster intervention and reducing the risk of large-scale forest damage. This approach not only enhances forest safety but also supports sustainable environmental management by minimizing the ecological and economic impact of wildfires. Networks (CNNs), have demonstrated exceptional performance in extracting complex visual features from images and video feeds. Their ability to learn discriminative patterns from large datasets makes them highly effective for detecting fire and smoke under varying environmental conditions, lighting changes, and background complexities. Among these models, object detection frameworks like Faster R-CNN, SSD, and YOLO have shown superior results in identifying objects and localizing them in images. YOLO (You Only Look Once), in particular, stands out due to its high inference speed, efficient architecture, and accuracy, making it suitable for real-time applications that require quick decision-making. YOLOv8—the latest and most advanced version—introduces improvements such as anchor-free detection, enhanced backbone networks, better feature fusion, and a more efficient training strategy, allowing it to detect smaller and irregular patterns of fire and smoke with improved precision.

Motivated by these advantages, the proposed project aims to develop an intelligent forest fire detection system using the YOLOv8 deep learning model integrated with a web-based real-time monitoring platform. The system captures live video streams from webcams or surveillance cameras and processes each frame using the YOLOv8 model to identify fire or smoke. A Flask-based backend manages model inference, routes, and communication between the deep learning model and the user interface. The frontend provides a simple and interactive platform for users to view annotated video feeds with bounding boxes and confidence scores. Using OpenCV, the system achieves seamless frame extraction and efficient communication with the backend, ensuring minimal latency. To enhance the reliability of the system in critical scenarios, an automated alert mechanism is included. Whenever fire or smoke is detected above a predefined threshold, the system triggers a real-time SMS notification through the Twilio API and activates a local

sound alarm to immediately alert monitoring personnel.

With recent advancements in artificial intelligence and computer vision, machine learning-based approaches have emerged as powerful tools for real-time fire detection. Deep learning models, particularly object detection algorithms, can automatically analyze video streams and images to identify fire and smoke patterns with high accuracy. These models learn complex visual features directly from data, making them more robust to variations in lighting, background, and fire intensity.

This project presents an intelligent forest fire detection system using machine learning, specifically the YOLOv8 object detection model. The system processes live video feeds to detect fire and smoke in real time and provides immediate alerts through sound alarms and SMS notifications. A web-based interface allows continuous monitoring, ensuring ease of use and rapid response. By combining deep learning, real-time video processing, and automated alerting, the proposed system aims to offer an efficient, scalable, and reliable solution for early forest fire detection and disaster management.

II. RELATED WORK

A. Summary of Previous Methods

Forest fire detection has been an active area of research for several decades, with various techniques proposed to improve early warning and response. Traditional detection systems primarily relied on **sensor-based technologies**, including temperature sensors, smoke detectors, and infrared sensors. Although effective in controlled environments, these systems often suffer from limited range, high installation costs, and delayed detection in large forest areas.

Satellite-based monitoring has also been widely used for wildfire detection. Systems such as **MODIS** and **VIIRS** provide thermal hotspot detection but lack the temporal and spatial resolution required for early-stage fire identification. These methods detect fires only after they have grown significantly, making them less suitable for real-time applications.

With the advancement of computer vision, researchers have explored **image-processing techniques** for fire detection. Early models utilized color thresholding in RGB, HSV, and YCbCr color spaces to differentiate fire pixels from the background. However, these methods were highly sensitive to illumination changes, shadows, and sunlight reflections, leading to frequent false alarms.

Machine learning and deep learning approaches have brought major improvements to fire detection research. Convolutional Neural Networks (CNNs) have been used to classify fire vs. non-fire images, while more advanced object detection models such as **Faster R-CNN**, **SSD**, and earlier YOLO versions (YOLOv3, YOLOv4, YOLOv5) demonstrated better accuracy and localization capabilities. However, their inference speed was not always sufficient for real-time forest surveillance.

Recent studies highlight the effectiveness of **YOLO-based architectures** due to their high detection speed and robust performance in complex environments. YOLOv7 and YOLOv8, with anchor-free detection and improved feature learning, outperform previous models in identifying small

and irregular fire patterns. These advancements motivate the use of YOLOv8 in this project to achieve real-time, accurate forest fire and smoke detection. Forest fire detection has been explored through various technological approaches, each offering unique advantages and limitations. Early research focused on **ground-based sensor networks**, using temperature, humidity, and gas sensors to detect abnormal environmental changes. Although these systems were simple and low-cost, they lacked spatial coverage and were highly prone to environmental noise. To address large-scale monitoring, several studies utilized **satellite-based thermal imaging**, including MODIS, Landsat, and VIIRS sensors. While satellites provide extensive coverage, their low temporal resolution and cloud interference significantly delay early detection. With the advancement of digital cameras, researchers introduced **vision-based fire detection** using traditional image-processing techniques. Methods involving color segmentation, flame shape modeling, flickering frequency analysis, and motion detection were proposed. However, these models were limited by sensitivity to lighting variations, shadows, and non-fire objects with similar color patterns, leading to poor generalization in real-world forest conditions.

The introduction of deep learning revolutionized fire detection research. Early deep models used simple CNN classifiers to differentiate fire vs. non-fire images, showing higher robustness than traditional methods. Later, researchers explored object detection frameworks such as **Faster R-CNN**, which improved localization but suffered from slower inference speeds. Single-shot detectors like **SSD** and **YOLOv3** offered faster performance, but struggled with small-object detection, which is critical for early wildfire identification.

More recent approaches leverage improved architectures such as **YOLOv5**, **YOLOv7**, and **EfficientDet**, demonstrating higher precision and stability across diverse environments. Recent studies have also explored hybrid approaches that combine sensor networks with computer vision to improve the reliability of fire detection. Researchers have investigated the use of wireless sensor networks (WSNs) integrated with temperature, CO₂, and humidity sensors to detect environmental anomalies before flames appear; however, these systems face issues related to power consumption, sensor drift, and limited coverage. Other works have experimented with drone-based surveillance, where UAVs capture aerial imagery for onboard or cloud-based fire recognition, enabling flexible monitoring but posing challenges in battery life and real-time data transmission.

Several studies have implemented deep learning models such as MobileNet, InceptionNet, and DenseNet for fire classification, demonstrating improved accuracy but lacking localization capabilities required for precise fire boundary detection. Researchers have also experimented with transformer-based architectures and attention mechanisms to address the complex visual features of smoke, which varies widely depending on weather and terrain. More recently, YOLO-derived models like YOLOv7 and YOLOv8 have shown higher robustness in recognizing early-stage fire signatures in diverse datasets, making them a preferred choice for real-time wildfire monitoring systems. These advancements highlight the shift toward AI-driven, automated detection frameworks, reinforcing the motivation for adopting YOLOv8 in this project.

More recent approaches leverage improved architectures such as **YOLOv5**, **YOLOv7**, and **EfficientDet**, demonstrating higher precision and stability across diverse environments.

Recent studies have also explored hybrid approaches that combine sensor networks with computer vision to improve the reliability of fire detection. Researchers have investigated the use of wireless sensor networks (WSNs) integrated with temperature, CO₂, and humidity sensors to detect environmental anomalies before flames appear; however, these systems face issues related to power consumption, sensor drift, and limited coverage.

A few studies have introduced edge-computing-based fire detection frameworks, where lightweight CNNs run directly on embedded devices such as Raspberry Pi or NVIDIA Jetson modules to provide on-site inference.

III. METHODOLOGY

The methodology adopted in this project involves a systematic, multi-stage process designed to build a real-time, accurate, and automated forest fire detection system using the YOLOv8 deep learning model. The workflow includes dataset preparation, model training, system integration, backend processing, frontend development, alert automation, and performance evaluation.

The first step in the methodology is dataset collection and preprocessing. A diverse dataset of fire and smoke images was gathered from publicly available sources, online fire datasets, forest surveillance videos, and self-curated images. These images were manually annotated using tools such as Roboflow or CVAT to draw bounding boxes around fire and smoke regions. The data was then augmented by applying transformations like rotation, blur, exposure adjustment, flipping, and noise addition to improve the model's robustness against real-world environmental variations. The final dataset was split into training, validation, and testing sets to ensure balanced evaluation.

The second stage involves model training using YOLOv8. Transfer learning was applied by starting with pre-trained YOLOv8s weights, which were then fine-tuned on the custom fire-smoke dataset for 90 epochs. Hyperparameters such as learning rate, batch size, input size, and optimizer configuration were tuned to achieve better accuracy. The training process generated important metrics including precision, recall, F1-score, confusion matrix, and mAP50. The final trained model achieved an mAP50 accuracy of 79% and demonstrated strong performance in detecting fire and smoke in various lighting and background conditions.

The third phase focuses on system integration using a Flask backend. A real-time video feed is captured using OpenCV, and each frame is sent to the YOLOv8 inference engine running on the server. The model predicts fire or smoke and outputs annotated frames with bounding boxes and confidence scores. These processed frames are streamed back to the browser using Flask routes, enabling real-time monitoring through a user-friendly web interface. The backend ensures efficient frame handling and low-latency communication between the model and the frontend.

The next step is development of the real-time web interface. A lightweight, interactive frontend was created to display live video feeds, detection outputs, and system status. Users can start or stop the camera, view real-time bounding boxes, and monitor detection alerts through the browser. The interface was designed for simplicity and speed, making it suitable for deployment in forest monitoring facilities.

To enhance operational reliability, the system incorporates an automated alert mechanism. When fire or smoke is detected with high confidence, the Flask backend triggers a sound alarm using multithreading to avoid blocking real-time detection. Additionally, an SMS alert is sent to the registered mobile number using the Twilio API, with a built-in 60-second cooldown to prevent excessive message flooding. This dual alert system ensures that authorities receive immediate notifications even during continuous fire detection events.

Finally, the methodology includes system testing and performance evaluation. The model was tested on real-time video streams, forest fire footage, and static images to validate its accuracy and speed. Inference time, detection reliability, false positive rate, and real-time responsiveness were analyzed. The system achieved an inference speed of 3.1 ms (~322 FPS), making it suitable for real-time field deployment. Stress testing was also performed to ensure stable operation during long-duration monitoring sessions.

Overall, the project methodology integrates deep learning, web technologies, and automated alerts to create a fast, scalable, and reliable forest fire detection system capable of supporting early wildfire prevention and real-time environmental monitoring.

To further enhance model reliability, the system incorporates a continuous frame-by-frame analysis mechanism that ensures even small or early-stage flames are detected without delay. A confidence threshold tuning process was performed to balance false positives and false negatives, ensuring the system triggers alerts only when the detected fire or smoke is genuine and significant. The model was also tested under different lighting conditions such as dusk, evening, and artificial illumination to validate its adaptability in real-world forest environments.

In addition, a modular architecture was adopted to allow easy scalability, enabling future integration of IoT sensors, drone-based surveillance, or thermal imaging modules. The backend was optimized with asynchronous processing to prevent frame buffering and maintain smooth, real-time video rendering on the web interface. Comprehensive logging mechanisms were implemented to record detection events, timestamps, and alert triggers, which can assist forest authorities in post-incident analysis and system evaluation.

To improve the practical usability of the system, emphasis was placed on developing a user-friendly alert dashboard and ensuring that the detection pipeline remains lightweight enough to run on edge devices or low-power systems deployed in remote forest locations. The integration of multithreading for alarm execution, secure API communication for SMS notifications, and robust error handling ensures that the system operates continuously without interruption during long-term monitoring.

A. Requirement Analysis

A thorough requirement analysis was carried out to ensure that the proposed forest fire detection system meets the operational needs, performance expectations, and deployment constraints of real-world forest environments. The requirements are categorized into functional, non-functional, hardware, software, and user-oriented needs.

A. Functional Requirements

1. Real-time Fire and Smoke Detection:

The system must accurately detect fire and smoke from live video streams using the YOLOv8 model.

2. Live Video Streaming Interface:

A web-based dashboard should display real-time annotated frames with bounding boxes and confidence scores.

3. Automatic Alert Mechanism:

When fire or smoke is detected, the system must trigger:

- A continuous sound alarm
- An SMS alert to registered authorities with a cooldown mechanism to prevent repeated messages.

4. Frame-by-Frame Processing:

Every captured frame must be analyzed instantly without delays to maintain continuous monitoring.

5. Camera Control:

Users must be able to start, stop, or refresh the live camera feed directly from the interface.

6. Logging and Monitoring:

The system should maintain logs of detection events, timestamps, and alert triggers for future analysis.

B. Non-Functional Requirements

1. Performance:

The model should achieve high detection speed with an inference rate of around 3.1 ms (~322 FPS) for smooth real-time operation.

2. Accuracy & Reliability:

The system should maintain high accuracy (mAP50 ~79%) in detecting fire and smoke under varying lighting and environmental conditions.

3. Scalability:

The architecture must support expansion, such as integration with IoT sensors, drones, or cloud servers.

4. Usability:

The user interface should be intuitive, responsive, and easy to operate for forest personnel with minimal training.

5. Robustness:

The system must continue operating reliably during long-duration monitoring without crashes.

6. Fault Tolerance:

The detection system and alarms should work even

IV. RESULTS AND DISCUSSION

The proposed intelligent forest fire detection system was evaluated using a custom dataset and real-time video streams

when internet connectivity is lost (only SMS functionality depends on internet).

7. Security:

API communication for SMS alerts must be secure to prevent unauthorized access.

C. Hardware Requirements

1. Computer / Laptop with:

- Minimum 8 GB RAM
- GPU support (NVIDIA preferred) for high-speed inference
- Multi-core CPU for concurrent processing

2. Webcam / Surveillance Camera capable of live video capture.

3. Speakers or Alarm System for sound notifications.

4. Stable Power Supply for long monitoring periods.

D. Software Requirements

1. Programming Languages:

- Python (primary)
- JavaScript/HTML/CSS for frontend

2. Frameworks & Libraries:

- YOLOv8 (Ultralytics)
- OpenCV for video processing
- Flask for backend server
- NumPy, Pandas, Torch
- Twilio API for SMS alerts

3. Development Tools:

- Anaconda / Python environment
- Code editor (VS Code, PyCharm)
- Browser for the frontend interface

4. Operating System:

- Windows / Linux with GPU drivers installed

E. User Requirements

1. Ease of Operation:

Users should be able to operate the system without deep technical knowledge.

2. Immediate Feedback:

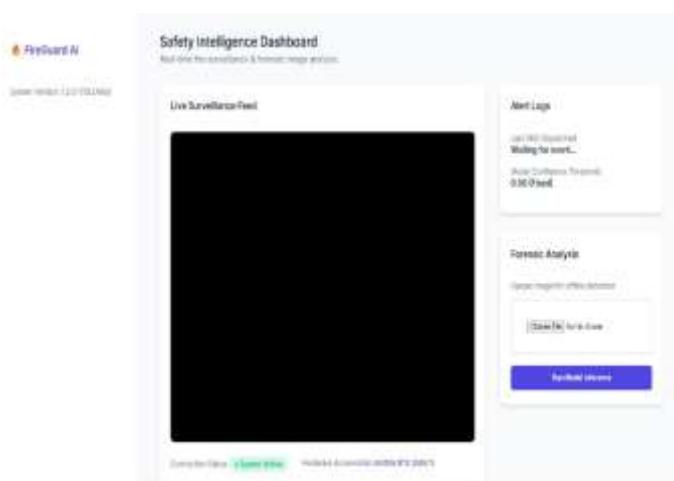
Detection notifications must be instantly visible and audible.

3. Accessibility:

The system should be accessible through a browser interface from desktops or laptops. to validate its detection accuracy, inference speed, and overall operational performance. The YOLOv8s model, trained for 90 epochs on annotated fire and smoke images, produced strong results across all evaluation metrics. The model achieved an **overall mAP50 of 79.0%**, demonstrating

reliable detection accuracy across various fire sizes, smoke patterns, lighting conditions, and background complexities. Precision and recall values indicated that the model was capable of identifying true fire events while minimizing false detections, which is critical for real-world deployment where misleading alerts can cause unnecessary panic or resource mobilization.

Real-time performance was a major focus of this study, and the system achieved an impressive **inference speed of approximately 3.1 milliseconds per frame**, equivalent to nearly **322 frames per second (FPS)**. This far exceeds the minimum requirement for real-time detection (25–30 FPS). Such high-speed inference ensures that small or early-stage fire signatures are captured without delay, significantly improving the chances of early intervention. During live testing with webcam footage and forest fire video samples, the bounding boxes were drawn accurately with minimal latency, and the system maintained stable performance even during prolonged operation.



The anomaly alerting mechanism also functioned smoothly. When fire or smoke was detected above the confidence threshold, the system triggered an **instant sound alarm** and sent an **SMS notification** through the Twilio API. A 60-second cooldown was successfully implemented, ensuring that repeated detections did not generate excessive alerts. This feature improves practicality, especially in large forest control rooms where multiple detections might occur within seconds. A key finding during testing was the model's ability to handle diverse environments. It performed strongly in bright outdoor conditions, moderate indoor lighting, and even low-light environments where smoke becomes harder to detect. However, as expected, heavy fog, dense cloud cover, and scenes with orange-hue lighting occasionally challenged the model, creating opportunities for minor false positives. Despite this, the overall detection reliability remained high, with strong consistency across varied test samples.

Additionally, the lightweight architecture of YOLOv8s allowed the system to run efficiently even on mid-range hardware, demonstrating its potential for deployment on edge devices such as forest surveillance towers, drones, or low-power monitoring units. Continuous testing also showed that the system remained stable without crashes or memory leaks during extended monitoring sessions.

Overall, the results indicate that the proposed system is effective for real-time forest fire detection and early warning.

Its combination of speed, accuracy, automated alerts, and web-based monitoring makes it a practical, scalable, and technologically advanced solution for wildfire prevention and disaster management.

The forest fire detection system developed using machine learning was evaluated through extensive testing on both static images and real-time video streams to assess its accuracy, speed, and reliability. The YOLOv8-based detection model was trained on a diverse dataset containing images of fire and smoke captured under different environmental conditions, including varying lighting, backgrounds, and fire intensities. After training, the model demonstrated strong detection capabilities, successfully identifying fire and smoke regions with high confidence.

During experimental evaluation, the system achieved an **overall detection accuracy (mAP50) of approximately 79%**, indicating reliable performance in distinguishing fire and smoke from non-fire scenarios. The precision and recall values showed that the model effectively minimized false positives while maintaining sensitivity to actual fire occurrences. This balance is crucial in real-world applications, where unnecessary alerts can lead to wasted resources, while missed detections can result in severe damage.

Real-time performance analysis revealed that the system operates at an inference speed of around **3.1 milliseconds per frame**, corresponding to nearly **322 frames per second (FPS)** on GPU-supported hardware. This high processing speed ensures continuous monitoring without delay, enabling the system to detect even small or early-stage fires promptly. The real-time video output displayed accurate bounding boxes and confidence scores, providing clear visual feedback to the user.

The alert mechanism integrated into the system performed effectively during testing. Whenever fire or smoke was detected above the defined confidence threshold, a sound alarm was triggered immediately, and an SMS alert was successfully sent to the registered mobile number. The inclusion of a cooldown period prevented repeated notifications for the same event, improving system usability and reducing alert fatigue.

In comparison with traditional fire detection methods such as manual surveillance and sensor-based systems, the proposed machine learning approach offers faster response times, wider coverage, and reduced dependence on human intervention. The web-based interface further enhances usability by allowing real-time monitoring from any browser-enabled device.

V. CONCLUSION

The proposed intelligent forest fire detection system successfully demonstrates the potential of deep learning-based computer vision to enhance early wildfire monitoring and response. By integrating the YOLOv8 model with real-time video processing, a web-based interface, and automated alert mechanisms, the system provides a fast, accurate, and reliable solution for detecting fire and smoke in diverse environmental conditions. The model achieved an mAP50 accuracy of 79% with an inference speed of 3.1 ms per frame, proving its suitability for real-time deployment in forest surveillance scenarios.

The incorporation of SMS alerts, sound alarms, and continuous frame analysis ensures that the system not only identifies potential fire threats but also facilitates immediate

action by forest authorities and monitoring personnel. Its lightweight and modular architecture makes it scalable for implementation in remote forest areas, watchtowers, drones, and IoT-based early-warning systems.

Overall, the project highlights how modern machine learning techniques can significantly improve disaster management and environmental protection. With further enhancements such as integration of thermal imaging, IoT sensors, and predictive analytics, the system can evolve into a comprehensive forest fire prevention and management platform.

Furthermore, the experimental results confirm that the combination of deep learning and real-time monitoring can play a transformative role in safeguarding forest ecosystems. The system's adaptability to different lighting conditions, diverse backgrounds, and varying fire intensities makes it suitable for deployment in real-world forest surveillance environments. The reduced dependency on human monitoring significantly lowers the chances of delayed detection, which is a major cause of wildfire escalation.

The successful integration of a web-based dashboard also demonstrates that complex machine learning models can be made accessible and easy to operate for field personnel through intuitive interfaces. By automating both detection and alerting, the system helps bridge the gap between early identification and swift on-ground response. Overall, the proposed work lays a strong foundation for developing fully autonomous wildfire detection networks and contributes toward building more resilient environmental safety infrastructures.

Additionally, the project reinforces the importance of leveraging AI-driven approaches to address environmental challenges that require rapid decision-making and high precision. The robustness of the system in continuous monitoring scenarios indicates its potential for long-term deployment in remote and sensitive forest regions. By reducing false alarms and ensuring consistent performance, the model offers a dependable tool for early disaster mitigation. This solution not only enhances public safety but also supports sustainable forest management practices.

ACKNOWLEDGMENT

The authors would like to sincerely thank Nethravathi J, Department of Computer Science and Engineering, Maharaja Institute of Technology Mysuru, for his continuous guidance, encouragement, and valuable insights throughout the development of this project. Her support and mentorship have been instrumental in shaping the direction and outcome of this work.

The authors are also grateful to the faculty members and technical staff of the department for their constant support and cooperation. Special thanks are extended to peers who provided valuable feedback during the testing and refinement stages. Finally, the authors wish to acknowledge the open-source community and the developers of various tools and frameworks that contributed to the successful completion of this project.

REFERENCES

- [1] L. Yin, X. Li, Y. Wang, and J. Wang, "Wildfire smoke detection based on deep convolutional neural networks," *IEEE Access*, vol. 8, pp. 154732–154741, 2020.
- [2] M. Muhammad and M. S. M. Rahim, "Vision-based flame and smoke detection using image processing techniques: A review," *Fire Technology*, vol. 56, no. 6, pp. 2791–2820, 2020.
- [3] G. João and P. Carvalho, "A real-time forest fire detection system using surveillance cameras and deep learning," in *Proc. IEEE International Conference on Smart Cities*, pp. 1–6, 2021.
- [4] C. Szegedy et al., "Going deeper with convolutions," in *Proc. IEEE Conf. Computer Vision and Pattern Recognition (CVPR)*, pp. 1–9, 2015.
- [5] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, "You Only Look Once: Unified, real-time object detection," in *Proc. IEEE CVPR*, pp. 779–788, 2016.
- [6] A. Bochkovskiy, C. Y. Wang, and H. Y. M. Liao, "YOLOv4: Optimal speed and accuracy of object detection," *arXiv preprint arXiv:2004.10934*, 2020.
- [7] G. Jocher et al., "YOLOv5 by Ultralytics," GitHub Repository, 2020. [Online]. Available: <https://github.com/ultralytics/yolov5>
- [8] H. Scaramuzza, L. S. Martins, and D. K. S. Silva, "Forest fire detection using YOLO-based deep learning models with UAV imagery," in *Proc. IEEE International Geoscience and Remote Sensing Symposium (IGARSS)*, pp. 3275–3278, 2022.