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Abstract: As BANs have limited processing power and
memory availability, securing body area networks or
body sensor networks is problematic. Due to the
impracticality of implementing high-end encryption in
resource-constrained body sensor networks, heartbeat-
based security is preferable. To simulate real
heartbeats from electrocardiogram (ECG) data, the
suggested method uses a deep Markov model to
generate random bit sequences (RBS). The interpulse
interval (IPI) is defined by the information retrieved
from the RR interval, the SS interval, and the QRS
complex. The MIT-BIH database (MIT-BIHdb) is the
source of the extracted data. Both the entropy and the
hamming distance are wused to the
performance of the suggested method. Results
demonstrate that, in comparison to prior work, the
suggested method achieves a greater hamming distance
for the amount of bits extracted per IPL. The entropy is
somewhat greater than the prior method, fluctuating
between 0.95 and 1. The receiving end's ability to
accurately and distinguishably detect the received
binary sequence for authorization is shown by the rise
in hamming distance..
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I. INTRODUCTION

Off late, body area networks and body sensor networks
have gained popularity. Hence, their security has become
an active area of research. wireless body sensor

networks (WBSNs) have emerged as a promising and
effective approach for remote healthcare applications due
to the rapid development of wearable medical devices and
wireless technologies. Since WBSNs are wireless in
nature, so secure transmission of medical data becomes
one of the essential requirements for its deployment.[1]
The Health Insurance Portability and Accountability Act
(HIPAA) has stated that security must be applied within
WBSNs to restrict the availability of critical data to the
unauthorized entities[8]. Additionally, tiny nodes in
WBSNs are resource constrained regarding Dbattery,
computation capability, and memory. Therefore, it is
necessary to provide a balance between medical data
security and resource consumption of sensor nodes in
WBSNE. the objectives of ECG
monitoring have gone beyond mere heart rate and rhythm

In recent times,

measurement to the analysis of chronic diseases including
complex arrhythmias, stress management, and sleep
disorders among others. The significance of ECG in
clinical applications is because it offers a non-invasive
means to evaluate the Autonomic Nervous System (ANS)
which can be helpful in diagnoses of cardiac related
diseases. Additionally, it has been remarkably explored in
several previous studies that ECG signals possess unique
characteristics to be utilized for biometric security
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purposes in WBSNs [9-14]. One of the significant benefits
of ECG based security methods is that they are robust
against false attacks. Moreover, ECG signal can provide
the evidence by signifying that specific application should
ensure that the particular person who is posing the
biometric security is certainly the same individual who is
carrying it [1].

Thus, ECG signal plays an essential role in developing
security mechanisms to provide secure communication
between patients and physicians in real-time healthcare
scenarios. However, the main limitation of WBSNSs is that
it should be operated under stringent constraints. Thus, to
provide a balance between security and resource
efficiency a biometric trait such as inter-pulse intervals
(IPIs) has been widely considered. IPIs are the time
intervals between two successive heartbeats also referred
as RR-intervals. In order to initiate communication within
sensor nodes of WBSNs, time synchronization is an
essential factor.

II. FEATURE EXTRACTION

The regular motion of the human heart is often referred to
as the cardiac cycle. The presence of sodium and
potassium ions in the blood stream produces very weak
electrical signals (voltages) when blood flows in and out
of the heart. It has been observed that the ECG signals
follow a repetitive or periodic pattern. Based on the
trajectory of the ECG curve, certain fundamental features
have been identified. The section that follows explains the
cardiac cycle. ECG is the graphical representation of the
cyclic rhythm of contraction and relaxation activity
generated by the heart. An ECG is composed of the P
wave, QRS complex, T and U waves.
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Fig 1 ECG signal showing P, Q, R, S, T and U waves.

They are denoted by the capital letters P, Q,R,S, and T and
U. The P wave is the contraction of the atria, while the
QRS complex is associated with the contraction of the
ventricles. The T wave is due to the relaxation of the
ventricles. The P, Q, R, S, T and U waves of the ECG
signal contain all the important features that characterize
the activity in the heart. A typical ECG signal waveform
of a normal heart beat is shown in figure 1. The ECG
signal is measured through a number of electrodes that are
normally attached to a patient’s body. ECG recordings
usually contain high and low frequency noise. Amplitudes
within beats vary from person to person.

a) Data Pre-Processing prior to Feature Extraction

Prior to the feature extraction stage, proper pre processing
stage in very crucial for the correct extraction of features.
In some ECG signals the noise level is very high and it is
not possible to recognize it by single recording, it is
important to gain a good understanding of the noise
processes involved before one attempt to filter or
preprocess a signal. The ECG signal is very sensitive in
nature, and even if small noise mixed with original signal
the characteristics of the signal changes. The most difficult
problem faced by an automatic ECG analysis is the large
variation in the morphologies of ECG waveforms, it
happens not only for different patients or patient groups
but also within the same patient. Since the ECG signal is
the most affected by 50-60 Hz power line noise also called
baseline drift, therefore we need to employ high pass
filtering for its removal.

b) Extraction of Morphological Features
This stage consists of extraction of salient features which
can give conclusive results for different heartbeat cases..
The heartbeat detection module attempts to locate all
heartbeats .The feature extraction module forms a feature
The

greater

vector from each heartbeat. feature extraction

modules are required, because classification
performance is often achieved if a smaller number of
discriminating features are first extracted from the

ECG.[7].[9] The Feature Extraction Parameters:

. RR interval evaluation.
. SS interval evaluation.
. QQ interval evaluation.
. QRS complex evaluation.

ECG Feature Extraction plays a significant role in
diagnosing most of the cardiac diseases. One cardiac cycle
in an ECG signal consists of the P-QRS-T waves. This
feature extraction scheme determines the amplitudes and
intervals in the ECG signal for subsequent analysis. The
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amplitudes and intervals value of P-QRS-T segment
determines the functioning of heart of every human.
III. RANDOM BIT GENERATION

The random bit generation has been implemented using
the Markov process. A Markov process is a random
process indexed by time, and with the property that the
future is independent of the past, given the present.
Markov processes, named for Andrei Markov, are among
the most important of all random processes. In a sense,
they are the stochastic analogs of differential equations
and recurrence relations, which are of course, among the
most important deterministic processes. The complexity of
the theory of Markov processes depends greatly on
whether the time space T is N (discrete time) or [0,00]
(continuous time) and whether the state space is discrete
(countable, with all subsets measurable) or a more general
topological space.
When T = [0, 0] 1)

or when the state space is a general space, continuity
assumptions usually need to be imposed in order to rule
out various types of weird behaviour that would otherwise
complicate the theory. When the state space is discrete,
Markov processes are known as Markov chains. The
general theory of Markov chains is mathematically rich
and relatively simple. Any process is a Markov Process if:

P(Xs4€A|Fs) = P(X;.1€A|X)Vs, T €U (2)

Here,

X represents a state

s is the time metric

t is a delayed metric

P is the probability space

A is the state space

Xs is a previously existent state
U is the universal state of spaces

IV. PROPOSED ALGORITHM

The data is extracted from MIT-BIH db. Then the ECG
signal is displayed. The signal is then passed through a
high pass filter the output of which is displayed again. The
baseline drift is seen to be removed from the ECG signal
due to filtering.

Let y(t) denote the output of the filter, x(t) denote the raw
ECG signal and h(t) denote the impulse response of the
filter. Then:

y(®) = x(8) * h(t) 3)
where * denotes convolution in the time domain.

It should be noted that the sampling frequency of the filter
should follow the Nyquist criteria i.e.
fs=2fm “)
Where Fs denotes the sampling frequency and fm denotes
maximum frequency of the signal. Subsequently squaring
the signal is done to accurately detect R peaks as R peaks

are much larger in amplitude compared to other peaks.
Sqrsig = [y(t)]z )]

Where Sqr_sig denotes square of the filtered signal.

It should be noted that squaring is done only for detection

of R peaks as other peaks cannot be discriminated after

squaring and may introduce errors.

Peaks are detected after setting a threshold which varies

adaptively with the concerned peak and signal under

consideration. Peaks are detected using the difference

operation that a sample is a peak if it is greater in

magnitude compared to previous and subsequent values i.e.
Sk-1 < Sk > Sk+1 (6)

Then the locations of the peaks are stored and through
subsequent differences, the features are extracted. The
inter-pulse interval (IPI) is computed from the features
using either R-R interval or QRS complex interval. This is
necessary to render reliability to the system with highest
amplitude. Subsequently generate the random bit stream
based on the Discrete Markov Chain given by:
X=[X1,X2 oo iviie e . X @)
Subsequently, compute the hamming distance (H) and
Entropy (E)
Given two vectors u, v € F n, the hamming distance
between u and v, d(u, v), to be the number of places where
u and v differ. Mathematically,

H=|U|-1V| @®)

The entropy is computed for the random process as:
HX) £ = Yyex Px(0)log[P,(x)] (10)

Here,
H is the entropy
X is the random variable
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x is any value that the random variable can attain T squared signal

P is the probability

log represents the logarithm to the base 2.

10
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Fig.6 Single Transition Markov Chain
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Deep Markov Process with multiple transition states

Fig.7 Multiple Transition Deep Markov Chain

Entropy Analysis of RBS
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Fig.8 Variation of Entropy w.r.t. RBS
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Conclusion: It can be concluded from previous
discussions that body area networks and body sensor
networks have gained popularity. Hence, their security
has become an active area of research. Wireless body
sensor networks (WBSNs) have emerged as a
promising and effective approach for remote
healthcare applications due to the rapid development
of wearable medical devices and wireless technologies.
Since  WBSNs are wireless in nature, so secure
transmission of medical data becomes one of the
essential requirements for its deployment. In this paper,
a secure heartbeat based random bit sequence
generation mechanism has been proposed using the
Markov Process. It has been shown that the proposed
technique achieves better results in terms of hamming
distance and entropy compared to previous work. In
crease in Hamming distance ensures higher chances of
accurate detection and reliability at the receiving end.
Higher entropy ensures higher information content of
the bit stream.
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