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Abstract - Crime detection is an important aspect of helping 

law enforcement agencies to prevent new crimes by finding 

patterns. Nonetheless, the dynamic aspect of criminality and the 

swiftness of crime occasion creates immense challenges in 

precise classification of crimes in the future. To overcome this 

problem, different Deep Learning (DL) models have been 

examined in crime prediction activities. The Graph 

Convolutional Network with Gated Recurrent Unit (GCN-GRU) 

has been promising among them and can capture the spatial and 

temporal characteristics of crime. GCN models the local and 

global spatial dependencies by dynamically refining graph 

topologies, providing resistance to noisy or incomplete data and 

providing overfitting resistance. Concurrently, GRU which has 

lightweight architecture, learns effectively both short as well as 

long-term temporal dependencies in sequential crime 

information. The classification performance of the model is 

further enhanced with the Cross-Entropy Loss, which gives 

greater confidence to the correct crime types. Despite these 

advantages, the GCN-GRU model suffers from high 

computational complexity and strong dependence on data 

quality. Additionally, hyperparameters can be manually tuned 

and this is time consuming and can lead to suboptimal 

performance. In order to address these shortcomings, this paper 

presents an Optimization-based GCN-GRU (O-GCN-GRU) 

model that could be used to optimize the hyperparameters of the 

GCN-GRU network to maximize crime prediction results. This 

model uses a new metaheuristic optimization algorithm called 

Lyrebird Optimization Algorithm (LOA), inspired by the manner 

in which lyrebirds in the wild react to threats in their 

environment. The LOA has two phases, of exploration and 

exploitation whereby lyrebirds replicate an escape strategy to 

search a large number of possible solutions and a hiding strategy 

to search intensively within promising areas. The best 

hyperparameters of GCN-GRU model are determined based on 

these processes to make crime prediction with crime data 

effective. Through the application of LOA, this model is effective 

in fine-tuning the properties of the GCN-GRU network, which 

leads to both high predictive ability and less computation costs. 

Lastly, the experimental findings indicate that the O-GCN-GRU 

model has an accuracy rate of 96.8%, which is higher than the 

other models of crime predictions in terms of performance and 

reliability. 
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1. INTRODUCTION  

 
Criminal actions continue to be a problem as societies evolve. 

An increase in criminal activity has a negative effect on people's 
standard of living and impedes societal and economic 
development [1]. Improving public safety and decreasing 
government expenses are two outcomes of effective crime 
prevention. The development of better geographic information 
gathering tools has made it possible to accurately capture crime 
data across areas in this era of big data. Machine learning models 
have the potential to revolutionize crime prevention in many 
different fields. 

Numerous academics are currently investigating the feasibility 
of crime spatiotemporal forecasting [2,3]. In their early iterations, 
spatiotemporal crime prediction systems primarily used location 
data and the idea of neighborhood repetition effects to model and 
predict future criminal acts [4]. These methods use analysis of 
crime statistics to create algorithmic models that may foretell 
where crimes will occur within predetermined time and space 
constraints. A popular approach is the nonparametric Kernel 
Density Estimation (KDE) approach, which enables the display of 
crime distributions. The appropriate authorities might identify 
high-incidence locations for focused surveillance using KDE. A 
KDE-based model for assessing the probability of crime occurring 
in a region was proposed by Bowers et al. [5]. To develop a 
spatiotemporal similarity-based crime prediction method, Xu et 
al. [6] expanded the KDE model with a time component and 
demonstrated its efficacy. Additionally, some academics have 
noted that the geographical and temporal distribution of criminal 
activity resembles that of aftershock occurrences after 
earthquakes. Separating the spatial and temporal aspects of 
criminal occurrences and applying kernel functions to evaluate the 
probability of crime is one way that Mohler et al. [7] applied the 
aftershock model from seismology to forecast home invasions. 
There are a number of drawbacks to these approaches, despite 
their apparent promise in enhancing the accuracy of crime 
predictions: (1) When applied to huge geographic regions, these 
techniques reliably estimate the crime risk. (2) Statistical 
approaches that are oversimplified fail to capture the nuances and 
variations in crime data across both short as well as extended time 
periods. 

Now, with the advent of machine learning, more flexible and 
precise predictions can be generated, particularly where complex 
crime data is concerned. Random Forest (RF) [8], XGBoost [9], 
and autoregressive integrated moving average model models have 
become popular in crime spatiotemporal prediction. Liu et al. [10] 
compared RF with spatiotemporal kernel density mapping to 
predict crime hotspots, and Yan et al. [11] suggested a XGBoost-
based approach in predicting a range of theft crimes. Nonetheless, 
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such models tend to find it hard to reflect complex time variations 
in crime data. 

On the other hand, DL models perform better in both short- 
and long-term feature extraction of progressively more complex 
and diverse data, which results in their extensive application in 
many fields [12,13]. Yan and Hou [14] provide an example of 
using Long Short-Term Memory (LSTM) networks to make 
predictions about the time series of theft crime, and Cortez et al. 
[15] created a custom LSTM architecture to make predictions 
related to emergencies. Enhancements have also been made to 
ensemble models that incorporate predictions of various 
algorithms in order to increase accuracy. Duan et al. [16] 
introduced a new spatiotemporal crime network based on deep 
Convolutional Neural Networks (CNNs) to automatically realize 
crime-associated features, which were subsequently passed on 
recurrent neural networks to be predicted. For better crime 
prediction, Yi et al. [17] used LSTM in combination with an 
improved continuous conditional random field, and Dong et al. 
[18] made adjustments to the ST-3DNet model to get finer 
temporal scales. Unfortunately, a lot of these approaches can't 
handle data with spatial properties. 

Graph Neural Networks (GNNs) have been in the focus 
recently due to their capacity to simulate intricate spatiotemporal 
interactions [19], which has led to their application in fields such 
as crime prediction. For the purpose of future crime prediction, 
Liang et al. [20] combined a gated recurrent unit with multi- 
GCNs to capture spatial relationships from many factors. In order 
to detect latent region-wise dependencies and geographic 
correlations, Jin et al. [21] suggested a combined model that uses 
CNNs and adaptive GCNs. There are a number of obstacles that 
must be overcome in order to properly analyze crime data, despite 
the fact that these methodologies have shown encouraging results: 
Issues at the data level (1) There are inherent errors and 
unpredictable fluctuations in crime data. This leads to noise which 
may adversely impact the accuracy of prediction. It is important 
to have effective measures to reduce this noise. (2) Level-of-label 
issues: It is possible to have a variety of crime types that occur in 
the same time interval and the levels of different crime types tend 
to be related. An efficient model that can help in detecting these 
latent relationships is necessary in order to enhance the 
effectiveness of prediction. 

Shan et al [22] suggested an adaptive GCNLSTM (Ada-
GCNLSTM) to solve these problems. The objective of this model 
is to derive more generalized features and base entirely on the 
spatiotemporal associations of the various types of crimes to 
improve prediction ability. In particular, the model utilizes GCN 
to reveal unobservable spatial aspects of crimes and Maximizes 
Mean Discrepancy (MMD) to minimize the gap between a 
Gaussian distribution. This reduces the effects of outliers and 
enhances generalizability. Then LSTM is used to extract the 
temporal information and Relational Mechanism Units (RMUs) 
are introduced to LSTM to extract the latent relationships among 
various types of crime which enhances further predictive 
performance. Despite these advantages, the GCN-GRU model 
suffers from high computational complexity and strong 
dependence on data quality. In addition, tuning of the hyper 
parameters manually is time-consuming and might lead to poor 
performance.  

Therefore, this paper presents an Optimization-driven GCN-
GRU (O-GCN-GRU) model that can be used to improve the 
predictive ability of crime and decrease the computational 
complexity. In this model, a new metaheuristic optimization 
method is used, the Lyrebird Optimization Algorithm (LOA) is 
utilized to fine-tune the hyperparameters of the GCN-GRU 
network. The behavior of lyrebirds in reaction to the threat of the 

environment is the basis of the LOA, which comprises two key 
phases, exploration and exploitation. In the exploration, the 
lyrebirds imitate an escape strategy to search over a large set of 
possible solutions, whereas in exploitation they imitate a hiding 
strategy to target the search within the promising areas. After this 
approach, the best hyperparameters of the GCN-GRU model are 
chosen with ease in the model training without being overly 
complex. After tuning, it is trained and validated using GCN-GRU 
so that it can be able to predict crime intensities. Using LOA, the 
hyperparameters of the GCN-GRU are set in the best way, which 
results in increased prediction accuracy and reduced 
computational power in crime prediction. 

Here is the outline of the rest of the paper: The relevant 
literature is reviewed in Section 2. In Section 3, the O-GCN-GRU 
model is described in depth. The study's findings and suggestions 
for future improvements are presented in Section 5, while the 
experimental results are presented in Section 4.  

2. LITERATURE SURVEY 

Das et al. [23] proposed a discrete Multi-Objective PSO-

based classifier (MOPSO) for crime prediction using historical 

report data. The system initialized a population of candidate rule 

sets, evolved over generations using particle swarm operations. 

To maximize rule accuracy and confidence, two PSO-based 

classifiers Dominance Relationship based PSO (DRPSO) as well 

as Non-Dominated Pareto Front based PSO (NPPSO) were used. 

To enable continuous learning, incremental versions INRDRPSO 

and INRNPPSO were developed, updating models with incoming 

data without retraining. Although both incremental variants 

improved learning efficiency, INRNPPSO achieved superior 

accuracy and adaptability over INRDRPSO and competing 

models. However, the system’s dependency on high-quality rule 

formulation poses a challenge in highly dynamic crime 

environments. 

Jeyaboopathiraja & Priscilla [24] proposed a novel crime 

trend prediction model integrating data preprocessing, 

optimization, and deep learning. Initially, missing values in the 

dataset were handled using Predictive Mean Matching to improve 

data quality. Then, an Improved Bat Optimization (IBAT) 

algorithm was employed to extract the most relevant features, 

enhancing prediction performance and reducing computational 

time. Finally, a Convolutional Neural Network (CNN) was used 

to forecast future crime trends. While the approach showed 

promise in combining feature optimization and deep learning for 

crime forecasting, its overall performance under varying data 

scales and real-time applicability was not extensively evaluated. 

Singuluri et al. [25] devised a Modified Capsule Network 

with Crisscross Optimization (MCN-CCO) for the cyber-crime 

prediction. By combining the outputs of both networks to 

optimize their strengths and boost the detection rate, the approach 

combines MCN with Multilayer Perceptron (MLP) using a rule-

based strategy.  Using the CCO method, the capsule network's 

hyper-parameters were then fine-tuned and improved for crime 

detection. Unfortunately, F1-Score and training time were both 

negatively affected by this model. 

Mithoo & Kumar [26] presented a Spizella Swarm 

Optimization based Bidirectional LSTM (SSO-BiLSTM) using 

twitter data for crime rate detection. The pre-processed and 

augmented data were inputted to BiLSTM to forecast the crime 

patterns in related to time period. The hyper-parameter of 

BiLSTM were fine-tuned by SSO for convergence enhancements 

and lowering the model’s complexity. But the model’s 

performance was hindered due to limited training data which 

restricts the accuracy and sensitivity rate. 
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A hybrid DL method for identifying theft incidents in 

surveillance footage was suggested by Waddenkery and Soma 

[27]. A Deep Maxout Network is used for event categorization 

after the Video Summarization (VSUMM) methodology is used 

to summarize video frames in the method. The newly-introduced 

Adam-Dingo Optimizer is used to adjust the weights of the 

network in order to improve performance. The model's capacity 

to differentiate between instances of theft and everyday behaviors 

is enhanced by this combination. However, the model's 

effectiveness under varying weather conditions was not explored, 

which remains a potential area for future work. 

To evaluate human movement patterns, Waddenkery and 

Soma [28] developed a Loitering-based Human Crime Detection 

(LHCD) algorithm using video surveillance. This module 

combines an improved version of Deep Simple Online Real-time 

Tracking (DSORT) based on geometrical principles with a 

Segmentation Quality Assessment (SQA) algorithm. To 

strengthen the model's detection accuracy and system 

responsiveness, it incorporates a Deep CNN (DCNN) along with 

the Beluga Whale Adam Dingo Optimizer (BWADO). The 

approach effectively reduces false alarms and outperforms 

existing methods across key performance metrics. However, the 

model's complexity and dependence on accurate loitering 

behavior detection may impact its adaptability in highly dynamic 

environments. 

An RICCNN-CP-JBOA, or Rotation Invariant Co-ordinate 

CNN based Crime Prediction, was developed by Devi et al. [29]. 

Following extraction from the crime dataset, the data was pre-

processed with the help of Sub Adaptive Two-stage Unscented 

Kalman Filtering (STSUKF) to remove any irrelevant or missing 

values. The six features were selected using Parrot Optimization 

(PO), and the dynamic features were extracted using the Random 

Quantum Circuits Transform (RQCT). The RICCNN is fed the 

results of the feature selection process in order to make predictions 

about the categories of crimes. Optimizing the RICCNN settings 

was done using the Jarrett-Butterfly Optimization Algorithm 

(JBOA). However, this model results in high training time.   

Alshahrani [30] introduced a hybrid crime prediction model 

combining Neural Architecture Search (NAS) and 

hyperparameter tuning to automate neural network design. The 

approach utilized NAS to discover optimal architectures and fine-

tuned their hyperparameters for binary crime classification. 

Feature selection was performed using Robust Rank Aggregation 

(RRA), selecting key predictors like age, location, and month. The 

model was evaluated on three datasets, including a confidential 

criminal cases dataset and publicly available Vancouver and 

Austin crime datasets. NAS+ outperformed traditional methods 

across all datasets. However, the model's reliance on sensitive data 

and varying performance across datasets may limit its 

generalizability. 

 

 

3. PROPOSED METHODOLOGY 

    This section explains the proposed O-GCN-GRU model for 

crime prediction in detail. Fig. 1 shows a schematic of the 

proposed study's workflow. 

1) Model Overview 
 

Initially, the crime-related data are collected from multiple 

sources, including crime reports, victim surveys, self-report 

surveys, and police statistics. The collected data are then 

preprocessed to handle missing values, normalize attributes, and 

remove redundant information. Next, spatial and temporal 

features are extracted using a GCN–GRU based feature extraction 

block. Specifically, the GCN captures spatial correlations and 

topological dependencies among crime categories and 

geographical regions, while the GRU models temporal 

dependencies and dynamic variations in crime occurrences over 

time.  

The structures of GCN and GRU are detailed in the proposed 

framework. Further, the extracted features are forwarded to the 

classification layer for crime prediction. To improve prediction 

accuracy, the model hyperparameters are tuned using the LOA. 

The hyperparameters of the GCN–GRU model include learning 

rate, dropout rate, number of hidden units, batch size, number of 

epochs, weight decay, and activation functions. For reliable and 

efficient model training, the LOA determines the best values for 

these parameters. Figure 2 shows the structure of the LOA-

optimized GCN-GRU model. This LOA is described in depth in 

the section that follows: 

 

 
 

 

Fig -1: Pipeline of the Proposed Model 
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Fig -2: Optimized GCN-GRU model using LOA 

 

2) Lyrebird Optimization Algorithm 

    One example of an optimization algorithm that may use some 

inspiration comes from the lyrebird, an Australian songbird that 

can imitate a wide variety of sounds and change its behavior in 

response to danger by looking around and deciding whether to 

flee or hide. Detailed explanations of the LOA's mathematical 

modeling are provided below. 

3.1 Initialization 

    The suggested LOA is a metaheuristic method that uses 

lyrebirds as its population model. Through an iterative process 

that utilizes the search capabilities  

of its members inside the solution space, it produces the optimum 

solutions to optimization problems. 

For each lyrebird in LOA, the decision factors are weighted 

according on its location in the solution space. The mathematical 

representation of a lyrebird is a vector, with each member 

representing a decision. For each lyrebird in LOA, the decision 

factors are weighted according on its location in the solution 

space. The mathematical representation of a lyrebird is a vector, 

with each member representing a decision variable. All members 

of the LOA combined make up the algorithm's population, which 

is represented as a matrix in Equation (1). 

𝑀 = 

[
 
 
 
 
𝑀1

⋮
𝑀𝑥

⋮
𝑀𝑁]

 
 
 
 

𝑁×𝑧

=

[
 
 
 
 
𝑚(1,1) ⋯ 𝑚(1,𝑦) ⋯ 𝑚(1,𝑧)

⋮ ⋱ ⋮ ⋰ ⋮
𝑚(𝑥,1) ⋯ 𝑚(𝑥,𝑦) ⋯ 𝑚(𝑥,𝑧)

⋮ ⋰ ⋮ ⋱ ⋮
𝑚(𝑁,1) ⋯ 𝑚(𝑁,𝑦) ⋯ 𝑚(𝑁,𝑧)]

 
 
 
 

𝑁×𝑧

    (1) 

    The initial positions of the lyrebirds are randomly generated 

within the defined bounds of each decision variable using Eq. (2) 

𝑚𝑥,𝑦 = 𝑙𝑏𝑦 × 𝑟. (𝑢𝑏𝑦 − 𝑙𝑏𝑦)                         (2)      

In equations (1) and (2), the following symbols are used: 𝑀 

for the population matrix, 𝑀𝑥 for the 𝑥𝑡ℎ member of the LOA (a 

potential solution), 𝑚𝑥,𝑦 for the 𝑦𝑡ℎ dimension (the decision 

variable), 𝑁 for the number of lyrebirds, 𝑧 for the number of 

decision variables (the total number of hyper parameters of the 

GCN-GRU approach), 𝑟 for a random value between 0 and 1, and 

𝑙𝑏𝑦 for the  𝑦𝑡ℎdecision variable of lower bound and 𝑢𝑏𝑦 for the 

upper bound. 

Every member of the LOA represents a potential solution to 

the issue; hence it is possible to calculate the objective function 

for each member. Accordingly, the population size is directly 

proportional to the number of values for the objective function. 

The values of the evaluated objective functions can be 

represented as a vector in Eq. (3). 

𝐹 =

[
 
 
 
 
𝐹1

⋮
𝐹𝑥

⋮
𝐹𝑁]

 
 
 
 

𝑁×1

=

[
 
 
 
 
𝐹(𝑀1)

⋮
𝐹(𝑀𝑥)

⋮
𝐹(𝑀𝑁)]

 
 
 
 

𝑁×1

                                       (3) 

The function of fitness values is represented by 𝐹 in Eq. (3), 

while 𝐹𝑥 is the obtained value for the 𝑥𝑡ℎ member of the LOA. 

For possible solution viability evaluations, observed values of the 

goal function are crucial. When looking at potential solutions, the 

best value indicates the best option, and the worst value indicates 

the worst option. Modifying the best potential solution is a 

necessary step in every search iteration since it updates the 

lyrebird's location within the search space.  

3.2 Lyrebird Behavior Modeling in LOA 

    The LOA mimics two main lyrebird strategies when sensing 

danger: escaping (exploration phase) and hiding (exploitation 

phase). Using Eq. (4), LOA mimics the lyrebird's decision-

making process as it chooses between hiding and escaping in a 

dangerous situation. So, in every cycle, the positions of all LOA 

members are changed depending on either the first as well as 

second phase. 

       . 

𝑈𝑝𝑑𝑎𝑡𝑒 𝑝𝑟𝑜𝑐𝑒𝑠𝑠 𝑓𝑜𝑟                 

   𝑀𝑥 : {
𝑏𝑎𝑠𝑒𝑑 𝑜𝑛 𝑃ℎ𝑎𝑠𝑒1,             𝑟𝑝 ≤ 0.5

𝑏𝑎𝑠𝑒𝑑 𝑜𝑛 𝑃ℎ𝑎𝑠𝑒2,                     𝑒𝑙𝑠𝑒
                           (4)                          

 

In this case, 𝑟𝑝  is an integer valued at random from 0 to 1. A 

lyrebird will choose one of these methods at random with an 

equal chance in each iteration. 

Phase 1: Escaping Strategy (Exploration Phase) 
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    This LOA step involves updating the population's search area 

location based on lyrebird escape behavior modeling, which 

involves moving away from dangerous locations and towards 

safer ones. Moving to a safe place and scanning different parts of 

the problem-solving arena are examples of the lyrebird's 

extensive positional adjustments, which indicate the LOA's 

exploratory capability in a global search. By design, LOA takes 

into account the whereabouts of other individuals with higher 

objective function values and treats them as safe zones. Thus, the 

range of safe zones of all the LOA members can be calculated 

based on Eq. (5). 

𝑆𝐴𝑥 = {𝑀𝑘 ,      𝐹𝑘 < 𝐹𝑥 𝑎𝑛𝑑 𝑘 ∈ {1,2, … , 𝑁}}          

 𝑤ℎ𝑒𝑟𝑒 𝑖 = {1,2, … , 𝑁}                                                         (5) 

In this case, 𝑆𝐴𝑥 represents the series of safe zones for the 

𝑥𝑡ℎ lyrebird and 𝑀𝑘 stands for the 𝑘𝑡ℎ row of the 𝑀 matrix, which 

has a higher objective function value 𝐹𝑘 than the 𝑥𝑡ℎ member of 

the LOA (𝐹𝑘 < 𝐹𝑥).  The LOA design assumes that the lyrebird 

will randomly make its way to one of these secure locations.  

Each member of the LOA has their new position determined 

using Eq. (6) according on the lyrebird displacement framework 

used in this phase.  After that, this new position will take the place 

of the previous one of the matching members in accordance with 

Eq. (7) if the objective function's value is enhanced. 

𝑚𝑥,𝑗
𝑃1 = 𝑚𝑥,𝑗 + 𝑟𝑥,𝑗 . (𝑆𝑆𝐴𝑥𝑗 − 𝐼𝑥,𝑗 . 𝑚𝑥,𝑗)                                (6) 

𝑀𝑥 = {
𝑀𝑥

𝑃1,           𝐹𝑥
𝑃1 ≤ 𝐹𝑥

𝑀𝑥,                      𝑒𝑙𝑠𝑒
                                                   (7) 

In this context, 𝑆𝑆𝐴𝑥 denotes the chosen safe area for the 𝑥𝑡ℎ 

lyrebird, 𝑆𝑆𝐴𝑥,𝑗 denotes its 𝑥𝑡ℎ dimension, 𝑀𝑥
𝑃1 denotes the new 

location determined for the 𝑥𝑡ℎ lyrebird according to the escape 

strategy of the proposed LOA, 𝑚𝑖,𝑗
𝑃1 denotes its 𝑗𝑡ℎ dimension, 

𝐹𝑥
𝑃1 stands for the objective function's value, 𝑟𝑥,𝑗 are random 

integers through the interval [0, 1], and 𝐼𝑥,𝑗 are randomly assigned 

1 or 2. 

 

Phase 2: Hiding Strategy (Exploitation Phase) 

This part of the LOA involves updating the search space 

positions of all members of the population based on the lyrebird's 

plan to hide in a nearby safe region. The lyrebird's capacity to use 

LOA in local search can be observed in its careful assessment of 

its surroundings and its tiny steps to seek an appropriate hiding 

site. 

In LOA design, each member of the LOA is given a new 

position using Eq. (8), which is based on the lyrebird's movement 

model towards the near-suitable hiding spot. Assuming this new 

position increases the value of the goal function as per Eq. (9) it 

will replace the prior position of the relevant member. 

𝑚𝑥,𝑗
𝑃2 = 𝑚𝑥,𝑗 + (1 − 2𝑟𝑥,𝑗).

𝑢𝑏𝑗−𝑙𝑏𝑗

𝑡
                                        (8) 

𝑀𝑥 = {
𝑀𝑥

𝑃2,           𝐹𝑥
𝑃2 ≤ 𝐹𝑥

𝑀𝑥,                      𝑒𝑙𝑠𝑒
                                                   (9) 

In equations (8) and (9), the variable 𝑀𝑥
𝑃2  represents the 𝑥𝑡ℎ 

lyrebird's new position determined by the suggested LOA's 

hiding technique, 𝑚𝑥,𝑗
𝑃2 . As for its  𝑗𝑡ℎ  dimension, the value of its 

objective function is denoted by 𝐹𝑥
𝑃2, the iteration counter is 

represented by 𝑡, and 𝑟𝑥,𝑗 are random values from the range [0, 

1]. 

Therefore, the LOA is an iterative method that compares 

fitness function values, adjusts the best candidate solution based 

on those comparisons, and updates lyrebird locations in the first 

iteration.  In the final iteration, the algorithm adjusts lyrebird's 

positions, and after complete implementation, the optimal 

candidate solution, which includes the hyperparameters that 

performed the best during the iterations, is considered as the 

correct solution to the problem.  Fig. 3 shows the LOA's overall 

procedure, while Algorithm 1 describes the LOA's pseudocode 

for hyperparameter modification. 

 

 

                                           Table -1: List of Optimal Hyperparameters for GCN-GRU Model 

 

Parameters Search Space Optimal Range 

Kernel Size [3x3, 5x5, 7x7] 3x3 

No. of GCN layers [2, 4, 6] 2 

Filter Size [32, 64, 128, 256] 64 

Pool Size [1, 3, 5, 7] 5 

No. of GRU layers [1, 2, 3] 2 

GRU  Output Size [16, 32, 64] 32 

Dropout [0.1, 0.2, 0.3, 0.5] 0.2 

Activation 

Operation 

[Tanh, Sigmoid, ReLU] ReLU 

Momentum [0.6, 0.7, 0.8] 0.8 

Batch size [8, 16, 32, 64, 128] 16 

Rate of Training [0.00001, 0.0001, 0.001, 0.01] 0.0001 

Optimizer [Adam, SGD, RMSprop] Adam 

Number of epochs [50, 100, 200, 300] 150 

Loss Function [Cross-entropy, Mean Squared 

Error] 

Cross Entropy 
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Algorithm 1: Hyperparameter tuning using LOA 

Input: Set of hyperparameters for the GCN-GRU model 

Output: Optimal hyperparameters 

1. Begin 

2. //Initialization stage: 

3. Set the LOA population size 𝑁 as well as define the 

maximum number of iterations as 𝑇; 

4. Make a randomly generated initial population matrix 

according to Eqn. (2); 

5. Apply Equation (3) to the objective function; 

6. Choose the potential solutions into the best  

7.     𝒇𝒐𝒓(𝑡 = 1: 𝑇) 

8.         𝒇𝒐𝒓(𝑥 = 1:𝑁) 

9.         Analyze Eq. (4) to get the 𝑥𝑡ℎ lyrebird's defense 

strategy when faced with a predator; 

10.            if 𝑟𝑝 ≤  0.5 (Choose Escaping Strategy) 

11. //Exploration Stage 

12.            Determine candidate safe areas for the 𝑥𝑡ℎ 

lyrebird based on Eq. (5); 

13.            Using Eq. (6), determine the new location of 

the 𝑥𝑡ℎ LOA member. 

14.            Apply Equation (7) to the 𝑥𝑡ℎ  member of the 

LOA; 

15.            else (select Hiding Strategy): 

16. //Exploitation Stage: 

17.          Determine the updated location of the 𝑥𝑡ℎ 

member of LOA by applying Eq. (8); 

18.          Modify the 𝑥𝑡ℎ member of the LOA by utilizing 

Eq. (9); 

19.          end (if) 

20.        𝒆𝒏𝒅 𝒇𝒐𝒓 

21.       Store the best solution obtained up to this point 

22.    𝒆𝒏𝒅 𝒇𝒐𝒓 

23.  Get back the optimal solution (i.e., optimal 

hyperparameter selection in GCN-GRU) 

24. 𝒆𝒏𝒅 

 

3) Model Training 

The O-GCN-GRU model for crime prediction is trained 

using the optimal hyperparameters summarized in Table 1. 

Furthermore, the obtained data can be used to correctly predict 

crime using the trained model. 

 

4. RESULT AND DISCUSSION 

1) Dataset Description 

        The dataset employed in this framework is ‘Crime in India’ 

[31], which provides comprehensive information on various 

categories of crimes that occurred in India from 2001 onwards. 

Multiple factors can be analyzed from this dataset, enabling 

individuals to gain deeper insights into India’s crime statistics. It 

comprises 43 sections covering different types of crimes. Some 

data include district-level details such as police districts and 

special police units, which may vary from revenue districts. The 

majority of the records span the years 2001 to 2010, with certain 

files extending to 2011 and 2001–2014. For experimental 

analysis, four major crime classes are considered: ‘ST_SCcrime,’ 

‘Childcrime,’ ‘Womencrime,’ and ‘Theftcrime.’ Additionally, 

image and video data related to crime terminologies from social 

media tweets corresponding to these four classes are collected. 

By associating each crime record with its respective image and 

video content, a total of 9,794 crime instances are obtained for 

experimentation. 

2) Experimental Design and Evaluation Criteria 

This part evaluates the O-GCN-GRU model performance, 

written in Python 3.11, against current methods including 

MOPSO [23], DSORT [28], MCN-CCO [25], SSO-BiLSTM 

[26] and GCN-GRU. The experiments were conducted on a 

system with Intel® Core™ i5-4210 CPU @ 3GHz, 4GB RAM as 

well as 1TB HDD with windows 10 (64-bit). The proposed and 

the baseline models were tested with the help of the datasets 

described in Section 4.1. After the data processing, 9,794 samples 

were found, where 7,834 were used as training data and 1,960 as 

testing data, after an 80:20 split. Fig. 4 presents the confusion 

matrix of the proposed model. 

The following performance indicators are used to evaluate 

the model's crime prediction capabilities. 

Accuracy: It is determined by dividing the number of 

occurrences for which predictions were accurate by the total 

number of cases. 

               𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃 + 𝐹𝑁
                      (10)                                                        

A True Positive (TP) occurs when the model accurately 

labels an occurrence as a criminal offense. The model mistakenly 

labels a non-criminal occurrence as criminal, a phenomenon 

known as a False Positive (FP). When the model accurately labels 

an occurrence as not involving criminal activity, it is said to be a 

True Negative (TN). An example of a False Negative (FN) is 

when a criminal occurrence is misclassified by the model. 

Precision: This metric quantifies the proportion of the model's 

positive predictions that are TP forecasts, or properly predicted 

crime events. 

            𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                     (11)   

Recall: It finds the fraction of positive cases in the dataset that 

were really predicted to be positive. 

              𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                      (12) 

F1-score: It strikes a balance between recall and precision. 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =
2×𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
                                     (13) 

     Fig.5 compares the performance of various crime prediction 

models using the Crime in India dataset. The precision of O-

GCN-GRU model is 6.61%, 5.56%, 4.65%, 3.20%, and 1.68% 

higher over the MOPSO, DSORT, MCN-CCO, SSO-BiLSTM, 

and GCN-GRU models, respectively. In terms of recall, O-GCN-

GRU shows improvements of 7.21%, 6.15%, 5.11%, 3.87%, and 

2.22% over the same models. Additionally, the F1-score of O-

GCN-GRU is higher by 6.60%, 5.44%, 4.53%, 3.19%, and 1.57% 

over the same models, respectively. These enhancements are due 

to an efficient optimization of hyperparameter in GCN-GRU 

enabling effective feature extraction and sequential pattern 

learning in crime prediction. 

 

https://ijsrem.com/


          International Journal of Scientific Research in Engineering and Management (IJSREM) 

                          Volume: 09 Issue: 10 | Oct - 2025                                SJIF Rating: 8.586                                       ISSN: 2582-3930                                                                                                         

 

© 2025, IJSREM      | https://ijsrem.com                                 DOI: 10.55041/IJSREM53013                                                 |        Page 7 
 

Fig -

3: Flow Diagram of O-GCN-GRU Model based on Lyrebird 

Optimizer 

 

Fig -4: Confusion Matrix for the proposed model 

 

Fig -5: Performance Analysis of Different Crime Prediction 

Models 

 

Fig -6: Accuracy Analysis of Different Crime Prediction 

Models on Collected Dataset 

 

Fig. 6 illustrates the accuracy of various models evaluated on the 

crime data prediction dataset. The O-GCN-GRU model achieves 

accuracy that is 6.49% higher than MOPSO, 5.45% higher than 

DSORT, 4.54% higher than MCN-CCO, 2.76% higher than 

SSO-BiLSTM, and 1.15% higher than GCN-GRU. This 

enhancement is due to which the O-GCN-GRU model maximizes 

the prediction accuracy compared to the other models by 

optimizing the model hyperparameters to learn more complex 

features from the historical and social media information to 

predict crime intensities precisely. 

 

5. CONCLUSION 

This paper suggests O-GCN-GRU model to optimize the 

hyperparameters of the GCN-GRU network to maximize the 

performance of the crime prediction and minimum computational 

cost. The model utilizes the LOA, which is based on how the 

lyrebirds behave in the wild in reaction to threats. The LOA 

occurs in two phases: exploration and exploitation, where the first 

stage is the simulation of an escape strategy by the lyrebirds to 

provide a wide search of potential solutions and the second is the 

refinement of the search in promising areas, when the 

exploitation stage occurs. According to these steps, optimal 

hyperparameters of the GCN-GRU model when predicting crime 

using crime data are identified successfully. Through the 

application of LOA, the hyperparameters of the GCN-GRU 

network are refined thus giving high accuracy and low 

complexity. Lastly, the experimental findings suggest that the O-

GCN-GRU model performs better than other currently existing 

crime prediction models with accuracy of 96.8% on the crime in 

Indian dataset.  
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