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Abstract - Crime detection is an important aspect of helping
law enforcement agencies to prevent new crimes by finding
patterns. Nonetheless, the dynamic aspect of criminality and the
swiftness of crime occasion creates immense challenges in
precise classification of crimes in the future. To overcome this
problem, different Deep Learning (DL) models have been
examined in crime prediction activities. The Graph
Convolutional Network with Gated Recurrent Unit (GCN-GRU)
has been promising among them and can capture the spatial and
temporal characteristics of crime. GCN models the local and
global spatial dependencies by dynamically refining graph
topologies, providing resistance to noisy or incomplete data and
providing overfitting resistance. Concurrently, GRU which has
lightweight architecture, learns effectively both short as well as
long-term temporal dependencies in sequential crime
information. The classification performance of the model is
further enhanced with the Cross-Entropy Loss, which gives
greater confidence to the correct crime types. Despite these
advantages, the GCN-GRU model suffers from high
computational complexity and strong dependence on data
quality. Additionally, hyperparameters can be manually tuned
and this is time consuming and can lead to suboptimal
performance. In order to address these shortcomings, this paper
presents an Optimization-based GCN-GRU (O-GCN-GRU)
model that could be used to optimize the hyperparameters of the
GCN-GRU network to maximize crime prediction results. This
model uses a new metaheuristic optimization algorithm called
Lyrebird Optimization Algorithm (LOA), inspired by the manner
in which lyrebirds in the wild react to threats in their
environment. The LOA has two phases, of exploration and
exploitation whereby lyrebirds replicate an escape strategy to
search a large number of possible solutions and a hiding strategy
to search intensively within promising areas. The best
hyperparameters of GCN-GRU model are determined based on
these processes to make crime prediction with crime data
effective. Through the application of LOA, this model is effective
in fine-tuning the properties of the GCN-GRU network, which
leads to both high predictive ability and less computation costs.
Lastly, the experimental findings indicate that the O-GCN-GRU
model has an accuracy rate of 96.8%, which is higher than the
other models of crime predictions in terms of performance and
reliability.

Key Words: Crime Prediction, Deep Learning, GCN-GRU,
Hyperparameter tuning and Lyrebird Optimization Algorithm

1. INTRODUCTION

Criminal actions continue to be a problem as societies evolve.
An increase in criminal activity has a negative effect on people's
standard of living and impedes societal and economic
development [1]. Improving public safety and decreasing
government expenses are two outcomes of effective crime
prevention. The development of better geographic information
gathering tools has made it possible to accurately capture crime
data across areas in this era of big data. Machine learning models
have the potential to revolutionize crime prevention in many
different fields.

Numerous academics are currently investigating the feasibility
of crime spatiotemporal forecasting [2,3]. In their early iterations,
spatiotemporal crime prediction systems primarily used location
data and the idea of neighborhood repetition effects to model and
predict future criminal acts [4]. These methods use analysis of
crime statistics to create algorithmic models that may foretell
where crimes will occur within predetermined time and space
constraints. A popular approach is the nonparametric Kernel
Density Estimation (KDE) approach, which enables the display of
crime distributions. The appropriate authorities might identify
high-incidence locations for focused surveillance using KDE. A
KDE-based model for assessing the probability of crime occurring
in a region was proposed by Bowers et al. [5]. To develop a
spatiotemporal similarity-based crime prediction method, Xu et
al. [6] expanded the KDE model with a time component and
demonstrated its efficacy. Additionally, some academics have
noted that the geographical and temporal distribution of criminal
activity resembles that of aftershock occurrences after
earthquakes. Separating the spatial and temporal aspects of
criminal occurrences and applying kernel functions to evaluate the
probability of crime is one way that Mohler et al. [7] applied the
aftershock model from seismology to forecast home invasions.
There are a number of drawbacks to these approaches, despite
their apparent promise in enhancing the accuracy of crime
predictions: (1) When applied to huge geographic regions, these
techniques reliably estimate the crime risk. (2) Statistical
approaches that are oversimplified fail to capture the nuances and
variations in crime data across both short as well as extended time
periods.

Now, with the advent of machine learning, more flexible and
precise predictions can be generated, particularly where complex
crime data is concerned. Random Forest (RF) [8], XGBoost [9],
and autoregressive integrated moving average model models have
become popular in crime spatiotemporal prediction. Liu et al. [10]
compared RF with spatiotemporal kernel density mapping to
predict crime hotspots, and Yan et al. [11] suggested a XGBoost-
based approach in predicting a range of theft crimes. Nonetheless,
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such models tend to find it hard to reflect complex time variations
in crime data.

On the other hand, DL models perform better in both short-
and long-term feature extraction of progressively more complex
and diverse data, which results in their extensive application in
many fields [12,13]. Yan and Hou [14] provide an example of
using Long Short-Term Memory (LSTM) networks to make
predictions about the time series of theft crime, and Cortez et al.
[15] created a custom LSTM architecture to make predictions
related to emergencies. Enhancements have also been made to
ensemble models that incorporate predictions of various
algorithms in order to increase accuracy. Duan et al. [16]
introduced a new spatiotemporal crime network based on deep
Convolutional Neural Networks (CNNs) to automatically realize
crime-associated features, which were subsequently passed on
recurrent neural networks to be predicted. For better crime
prediction, Yi et al. [17] used LSTM in combination with an
improved continuous conditional random field, and Dong et al.
[18] made adjustments to the ST-3DNet model to get finer
temporal scales. Unfortunately, a lot of these approaches can't
handle data with spatial properties.

Graph Neural Networks (GNNs) have been in the focus
recently due to their capacity to simulate intricate spatiotemporal
interactions [19], which has led to their application in fields such
as crime prediction. For the purpose of future crime prediction,
Liang et al. [20] combined a gated recurrent unit with multi-
GCNes to capture spatial relationships from many factors. In order
to detect latent region-wise dependencies and geographic
correlations, Jin et al. [21] suggested a combined model that uses
CNNs and adaptive GCNs. There are a number of obstacles that
must be overcome in order to properly analyze crime data, despite
the fact that these methodologies have shown encouraging results:
Issues at the data level (1) There are inherent errors and
unpredictable fluctuations in crime data. This leads to noise which
may adversely impact the accuracy of prediction. It is important
to have effective measures to reduce this noise. (2) Level-of-label
issues: It is possible to have a variety of crime types that occur in
the same time interval and the levels of different crime types tend
to be related. An efficient model that can help in detecting these
latent relationships is necessary in order to enhance the
effectiveness of prediction.

Shan et al [22] suggested an adaptive GCNLSTM (Ada-
GCNLSTM) to solve these problems. The objective of this model
is to derive more generalized features and base entirely on the
spatiotemporal associations of the various types of crimes to
improve prediction ability. In particular, the model utilizes GCN
to reveal unobservable spatial aspects of crimes and Maximizes
Mean Discrepancy (MMD) to minimize the gap between a
Gaussian distribution. This reduces the effects of outliers and
enhances generalizability. Then LSTM is used to extract the
temporal information and Relational Mechanism Units (RMUs)
are introduced to LSTM to extract the latent relationships among
various types of crime which enhances further predictive
performance. Despite these advantages, the GCN-GRU model
suffers from high computational complexity and strong
dependence on data quality. In addition, tuning of the hyper
parameters manually is time-consuming and might lead to poor
performance.

Therefore, this paper presents an Optimization-driven GCN-
GRU (O-GCN-GRU) model that can be used to improve the
predictive ability of crime and decrease the computational
complexity. In this model, a new metaheuristic optimization
method is used, the Lyrebird Optimization Algorithm (LOA) is
utilized to fine-tune the hyperparameters of the GCN-GRU
network. The behavior of lyrebirds in reaction to the threat of the

environment is the basis of the LOA, which comprises two key
phases, exploration and exploitation. In the exploration, the
lyrebirds imitate an escape strategy to search over a large set of
possible solutions, whereas in exploitation they imitate a hiding
strategy to target the search within the promising areas. After this
approach, the best hyperparameters of the GCN-GRU model are
chosen with ease in the model training without being overly
complex. After tuning, it is trained and validated using GCN-GRU
so that it can be able to predict crime intensities. Using LOA, the
hyperparameters of the GCN-GRU are set in the best way, which
results in increased prediction accuracy and reduced
computational power in crime prediction.

Here is the outline of the rest of the paper: The relevant
literature is reviewed in Section 2. In Section 3, the O-GCN-GRU
model is described in depth. The study's findings and suggestions
for future improvements are presented in Section 5, while the
experimental results are presented in Section 4.

2. LITERATURE SURVEY

Das et al. [23] proposed a discrete Multi-Objective PSO-
based classifier (MOPSO) for crime prediction using historical
report data. The system initialized a population of candidate rule
sets, evolved over generations using particle swarm operations.
To maximize rule accuracy and confidence, two PSO-based
classifiers Dominance Relationship based PSO (DRPSO) as well
as Non-Dominated Pareto Front based PSO (NPPSO) were used.
To enable continuous learning, incremental versions INRDRPSO
and INRNPPSO were developed, updating models with incoming
data without retraining. Although both incremental variants
improved learning efficiency, INRNPPSO achieved superior
accuracy and adaptability over INRDRPSO and competing
models. However, the system’s dependency on high-quality rule
formulation poses a challenge in highly dynamic crime
environments.

Jeyaboopathiraja & Priscilla [24] proposed a novel crime
trend prediction model integrating data preprocessing,
optimization, and deep learning. Initially, missing values in the
dataset were handled using Predictive Mean Matching to improve
data quality. Then, an Improved Bat Optimization (IBAT)
algorithm was employed to extract the most relevant features,
enhancing prediction performance and reducing computational
time. Finally, a Convolutional Neural Network (CNN) was used
to forecast future crime trends. While the approach showed
promise in combining feature optimization and deep learning for
crime forecasting, its overall performance under varying data
scales and real-time applicability was not extensively evaluated.

Singuluri et al. [25] devised a Modified Capsule Network
with Crisscross Optimization (MCN-CCO) for the cyber-crime
prediction. By combining the outputs of both networks to
optimize their strengths and boost the detection rate, the approach
combines MCN with Multilayer Perceptron (MLP) using a rule-
based strategy. Using the CCO method, the capsule network's
hyper-parameters were then fine-tuned and improved for crime
detection. Unfortunately, F1-Score and training time were both
negatively affected by this model.

Mithoo & Kumar [26] presented a Spizella Swarm
Optimization based Bidirectional LSTM (SSO-BiLSTM) using
twitter data for crime rate detection. The pre-processed and
augmented data were inputted to BiLSTM to forecast the crime
patterns in related to time period. The hyper-parameter of
BiLSTM were fine-tuned by SSO for convergence enhancements
and lowering the model’s complexity. But the model’s
performance was hindered due to limited training data which
restricts the accuracy and sensitivity rate.
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A hybrid DL method for identifying theft incidents in
surveillance footage was suggested by Waddenkery and Soma
[27]. A Deep Maxout Network is used for event categorization
after the Video Summarization (VSUMM) methodology is used
to summarize video frames in the method. The newly-introduced
Adam-Dingo Optimizer is used to adjust the weights of the
network in order to improve performance. The model's capacity
to differentiate between instances of theft and everyday behaviors
is enhanced by this combination. However, the model's
effectiveness under varying weather conditions was not explored,
which remains a potential area for future work.

To evaluate human movement patterns, Waddenkery and
Soma [28] developed a Loitering-based Human Crime Detection
(LHCD) algorithm wusing video surveillance. This module
combines an improved version of Deep Simple Online Real-time
Tracking (DSORT) based on geometrical principles with a
Segmentation Quality Assessment (SQA) algorithm. To
strengthen the model's detection accuracy and system
responsiveness, it incorporates a Deep CNN (DCNN) along with
the Beluga Whale Adam Dingo Optimizer (BWADO). The
approach effectively reduces false alarms and outperforms
existing methods across key performance metrics. However, the
model's complexity and dependence on accurate loitering
behavior detection may impact its adaptability in highly dynamic
environments.

An RICCNN-CP-JBOA, or Rotation Invariant Co-ordinate
CNN based Crime Prediction, was developed by Devi et al. [29].
Following extraction from the crime dataset, the data was pre-
processed with the help of Sub Adaptive Two-stage Unscented
Kalman Filtering (STSUKF) to remove any irrelevant or missing
values. The six features were selected using Parrot Optimization
(PO), and the dynamic features were extracted using the Random
Quantum Circuits Transform (RQCT). The RICCNN is fed the
results of the feature selection process in order to make predictions
about the categories of crimes. Optimizing the RICCNN settings
was done using the Jarrett-Butterfly Optimization Algorithm
(JBOA). However, this model results in high training time.

Alshahrani [30] introduced a hybrid crime prediction model
combining Architecture  Search  (NAS) and

hyperparameter tuning to automate neural network design. The

Neural

approach utilized NAS to discover optimal architectures and fine-
tuned their hyperparameters for binary crime classification.
Feature selection was performed using Robust Rank Aggregation
(RRA), selecting key predictors like age, location, and month. The
model was evaluated on three datasets, including a confidential
criminal cases dataset and publicly available Vancouver and
Austin crime datasets. NAS+ outperformed traditional methods
across all datasets. However, the model's reliance on sensitive data
and varying performance across datasets may limit its
generalizability.

3. PROPOSED METHODOLOGY

This section explains the proposed O-GCN-GRU model for
crime prediction in detail. Fig. 1 shows a schematic of the
proposed study's workflow.

1) Model Overview

Initially, the crime-related data are collected from multiple
sources, including crime reports, victim surveys, self-report
surveys, and police statistics. The collected data are then
preprocessed to handle missing values, normalize attributes, and
remove redundant information. Next, spatial and temporal
features are extracted using a GCN—-GRU based feature extraction
block. Specifically, the GCN captures spatial correlations and
topological dependencies among crime categories and
geographical regions, while the GRU models temporal
dependencies and dynamic variations in crime occurrences over
time.

The structures of GCN and GRU are detailed in the proposed
framework. Further, the extracted features are forwarded to the
classification layer for crime prediction. To improve prediction
accuracy, the model hyperparameters are tuned using the LOA.
The hyperparameters of the GCN-GRU model include learning
rate, dropout rate, number of hidden units, batch size, number of
epochs, weight decay, and activation functions. For reliable and
efficient model training, the LOA determines the best values for
these parameters. Figure 2 shows the structure of the LOA-
optimized GCN-GRU model. This LOA is described in depth in
the section that follows:

Crime
Dataset

Training Testing
Set Set

Trained
Modgl

Optimization based
GCN-GRU Model
with LOA

Prediction I
Results |

!

Performance
Analysis

Fig -1: Pipeline of the Proposed Model
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Fig -2: Optimized GCN-GRU model using LOA

2) Lyrebird Optimization Algorithm

One example of an optimization algorithm that may use some
inspiration comes from the lyrebird, an Australian songbird that
can imitate a wide variety of sounds and change its behavior in
response to danger by looking around and deciding whether to
flee or hide. Detailed explanations of the LOA's mathematical
modeling are provided below.

3.1 Initialization

The suggested LOA is a metaheuristic method that uses

lyrebirds as its population model. Through an iterative process
that utilizes the search capabilities
of its members inside the solution space, it produces the optimum
solutions to optimization problems.
For each lyrebird in LOA, the decision factors are weighted
according on its location in the solution space. The mathematical
representation of a lyrebird is a vector, with each member
representing a decision. For each lyrebird in LOA, the decision
factors are weighted according on its location in the solution
space. The mathematical representation of a lyrebird is a vector,
with each member representing a decision variable. All members
of the LOA combined make up the algorithm's population, which
is represented as a matrix in Equation (1).

M, M(1,1) M(1y) M(1,7)
M= |M, =M@ Mx,y) M(x,2) (1)
Mylyy,  Imaay my) Mz ly,,

The initial positions of the lyrebirds are randomly generated
within the defined bounds of each decision variable using Eq. (2)

my,, = by, xr.(ub, — Ib,,) )

In equations (1) and (2), the following symbols are used: M
for the population matrix, M, for the x** member of the LOA (a
potential solution), m,, for the y*" dimension (the decision
variable), N for the number of lyrebirds, z for the number of
decision variables (the total number of hyper parameters of the
GCN-GRU approach), r for a random value between 0 and 1, and

lb,, for the yt"decision variable of lower bound and ub,, for the

upper bound.
Every member of the LOA represents a potential solution to

the issue; hence it is possible to calculate the objective function
for each member. Accordingly, the population size is directly
proportional to the number of values for the objective function.
The wvalues of the evaluated objective functions can be
represented as a vector in Eq. (3).

[F1] F(M1
=l ‘ = F(M) (3)
Fy Nx1 F(MN) Nx1

The function of fitness values is represented by F in Eq. (3),
while F, is the obtained value for the x* member of the LOA.
For possible solution viability evaluations, observed values of the
goal function are crucial. When looking at potential solutions, the
best value indicates the best option, and the worst value indicates
the worst option. Modifying the best potential solution is a
necessary step in every search iteration since it updates the
lyrebird's location within the search space.

3.2 Lyrebird Behavior Modeling in LOA

The LOA mimics two main lyrebird strategies when sensing
danger: escaping (exploration phase) and hiding (exploitation
phase). Using Eq. (4), LOA mimics the lyrebird's decision-
making process as it chooses between hiding and escaping in a
dangerous situation. So, in every cycle, the positions of all LOA
members are changed depending on either the first as well as
second phase.

Update process for
{based on Phasel,

_ T < 0.5
** (based on Phase2,

else

4)

In this case, 7, is an integer valued at random from 0 to 1. A
lyrebird will choose one of these methods at random with an
equal chance in each iteration.

Phase 1: Escaping Strategy (Exploration Phase)
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This LOA step involves updating the population's search area
location based on lyrebird escape behavior modeling, which
involves moving away from dangerous locations and towards
safer ones. Moving to a safe place and scanning different parts of
the problem-solving arena are examples of the lyrebird's
extensive positional adjustments, which indicate the LOA's
exploratory capability in a global search. By design, LOA takes
into account the whereabouts of other individuals with higher
objective function values and treats them as safe zones. Thus, the
range of safe zones of all the LOA members can be calculated
based on Eq. (5).

SAy ={M,, Fy<F.andk€{12,..,N}}

where i = {1,2,...,N} (5)

In this case, SA, represents the series of safe zones for the
xt" lyrebird and M, stands for the k*" row of the M matrix, which
has a higher objective function value Fy than the x* member of
the LOA (F, < F,). The LOA design assumes that the lyrebird
will randomly make its way to one of these secure locations.
Each member of the LOA has their new position determined
using Eq. (6) according on the lyrebird displacement framework
used in this phase. After that, this new position will take the place
of the previous one of the matching members in accordance with
Eq. (7) if the objective function's value is enhanced.

m,’;; = mx,j + Tx'j. (SSAXJ - Ix'j.mx'j) (6)
_(MPL, FPLSE
My = {Mx, else @)

In this context, SSA, denotes the chosen safe area for the xt"
lyrebird, SSA,, ; denotes its x* dimension, M£* denotes the new
location determined for the x*" lyrebird according to the escape
strategy of the proposed LOA, mff ]1 denotes its j* dimension,
EFP1 stands for the objective function's value, 7y, ; are random
integers through the interval [0, 1], and I, ; are randomly assigned
1 or2.

Phase 2: Hiding Strategy (Exploitation Phase)

This part of the LOA involves updating the search space
positions of all members of the population based on the lyrebird's
plan to hide in a nearby safe region. The lyrebird's capacity to use
LOA in local search can be observed in its careful assessment of
its surroundings and its tiny steps to seek an appropriate hiding
site.

In LOA design, each member of the LOA is given a new
position using Eq. (8), which is based on the lyrebird's movement
model towards the near-suitable hiding spot. Assuming this new
position increases the value of the goal function as per Eq. (9) it
will replace the prior position of the relevant member.

wb;—1b;

myZs =my; + (1= 21y )). ’t 1 (8)
_ (M2 E? <F,

M, = {Mx, else ©)

In equations (8) and (9), the variable ME? represents the x*"
lyrebird's new position determined by the suggested LOA's
hiding technique, my2. As for its j** dimension, the value of its
objective function is denoted by FF?, the iteration counter is
represented by t, and 7, ; are random values from the range [0,
1].

Therefore, the LOA is an iterative method that compares
fitness function values, adjusts the best candidate solution based
on those comparisons, and updates lyrebird locations in the first
iteration. In the final iteration, the algorithm adjusts lyrebird's
positions, and after complete implementation, the optimal
candidate solution, which includes the hyperparameters that
performed the best during the iterations, is considered as the
correct solution to the problem. Fig. 3 shows the LOA's overall
procedure, while Algorithm 1 describes the LOA's pseudocode
for hyperparameter modification.

Table -1: List of Optimal Hyperparameters for GCN-GRU Model

Kernel Size [3x3, 5x5, 7x7] 3x3
No. of GCN layers [2, 4, 6] 2
Filter Size [32, 64, 128, 256] 64
Pool Size [1,3,5,7] 5

No. of GRU layers [1, 2, 3]

GRU Output Size [16, 32, 64] 32
Dropout [0.1,0.2, 0.3, 0.5] 0.2
Activation [Tanh, Sigmoid, ReLU] ReLU
Operation

Momentum [0.6, 0.7, 0.8] 0.8
Batch size [8, 16, 32, 64, 128] 16
Rate of Training [0.00001, 0.0001, 0.001, 0.01] 0.0001
Optimizer [Adam, SGD, RMSprop] Adam
Number of epochs [50, 100, 200, 300] 150
Loss Function [Cross-entropy, Mean Squared Cross Entropy

Error]
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Algorithm 1: Hyperparameter tuning using LOA
Input: Set of hyperparameters for the GCN-GRU model
Output: Optimal hyperparameters
1.Begin
2. //Initialization stage:
3. Set the LOA population size N as well as define the
maximum number of iterations as T;
4. Make a randomly generated initial population matrix
according to Eqn. (2);

5. Apply Equation (3) to the objective function;

6. Choose the potential solutions into the best

7. for(t=1:T)

8. for(x = 1:N)

9. Analyze Eq. (4) to get the x* lyrebird's defense
strategy when faced with a predator;

10. if, < 0.5 (Choose Escaping Strategy)

11.//Exploration Stage

12. Determine candidate safe areas for the x"
lyrebird based on Eq. (5);

13. Using Eq. (6), determine the new location of
the x"* LOA member.

14. Apply Equation (7) to the x* member of the
LOA;

15. else (select Hiding Strategy):

16. //Exploitation Stage:

17. Determine the updated location of the x"
member of LOA by applying Eq. (8);

18. Modify the x* member of the LOA by utilizing
Eq. (9);

19. end (if)

20. end for

21.  Store the best solution obtained up to this point

22. end for

23. Get back the optimal solution (i.e.,
hyperparameter selection in GCN-GRU)

24.end

optimal

3) Model Training

The O-GCN-GRU model for crime prediction is trained
using the optimal hyperparameters summarized in Table 1.
Furthermore, the obtained data can be used to correctly predict
crime using the trained model.

4. RESULT AND DISCUSSION

1) Dataset Description

The dataset employed in this framework is ‘Crime in India’
[31], which provides comprehensive information on various
categories of crimes that occurred in India from 2001 onwards.
Multiple factors can be analyzed from this dataset, enabling
individuals to gain deeper insights into India’s crime statistics. It
comprises 43 sections covering different types of crimes. Some
data include district-level details such as police districts and
special police units, which may vary from revenue districts. The
majority of the records span the years 2001 to 2010, with certain
files extending to 2011 and 2001-2014. For experimental
analysis, four major crime classes are considered: ‘ST SCcrime,’
‘Childcrime,” “Womencrime,” and ‘Theftcrime.” Additionally,
image and video data related to crime terminologies from social
media tweets corresponding to these four classes are collected.
By associating each crime record with its respective image and
video content, a total of 9,794 crime instances are obtained for
experimentation.

2) Experimental Design and Evaluation Criteria

This part evaluates the O-GCN-GRU model performance,
written in Python 3.11, against current methods including
MOPSO [23], DSORT [28], MCN-CCO [25], SSO-BiLSTM
[26] and GCN-GRU. The experiments were conducted on a
system with Intel® Core™ i5-4210 CPU @ 3GHz, 4GB RAM as
well as 1TB HDD with windows 10 (64-bit). The proposed and
the baseline models were tested with the help of the datasets
described in Section 4.1. After the data processing, 9,794 samples
were found, where 7,834 were used as training data and 1,960 as
testing data, after an 80:20 split. Fig. 4 presents the confusion
matrix of the proposed model.

The following performance indicators are used to evaluate
the model's crime prediction capabilities.

Accuracy: It is determined by dividing the number of
occurrences for which predictions were accurate by the total
number of cases.

TP +TN
TP+TN+FP + FN

(10)

Accuracy =

A True Positive (TP) occurs when the model accurately
labels an occurrence as a criminal offense. The model mistakenly
labels a non-criminal occurrence as criminal, a phenomenon
known as a False Positive (FP). When the model accurately labels
an occurrence as not involving criminal activity, it is said to be a
True Negative (TN). An example of a False Negative (FN) is
when a criminal occurrence is misclassified by the model.

Precision: This metric quantifies the proportion of the model's
positive predictions that are TP forecasts, or properly predicted
crime events.

.. TP
Precision = —— (11)
TP+FP

Recall: It finds the fraction of positive cases in the dataset that
were really predicted to be positive.

TP
Recall = ——
TP+FN

(12)

F1-score: It strikes a balance between recall and precision.

2XPrecisionxRecall
F1 —score = ————— (13)

Precision+Recall

Fig.5 compares the performance of various crime prediction
models using the Crime in India dataset. The precision of O-
GCN-GRU model is 6.61%, 5.56%, 4.65%, 3.20%, and 1.68%
higher over the MOPSO, DSORT, MCN-CCO, SSO-BiLSTM,
and GCN-GRU models, respectively. In terms of recall, O-GCN-
GRU shows improvements of 7.21%, 6.15%, 5.11%, 3.87%, and
2.22% over the same models. Additionally, the F1-score of O-
GCN-GRU is higher by 6.60%, 5.44%, 4.53%, 3.19%, and 1.57%
over the same models, respectively. These enhancements are due
to an efficient optimization of hyperparameter in GCN-GRU
enabling effective feature extraction and sequential pattern
learning in crime prediction.
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Fig. 6 illustrates the accuracy of various models evaluated on the
crime data prediction dataset. The O-GCN-GRU model achieves
accuracy that is 6.49% higher than MOPSO, 5.45% higher than
DSORT, 4.54% higher than MCN-CCO, 2.76% higher than
SSO-BiLSTM, and 1.15% higher than GCN-GRU. This
enhancement is due to which the O-GCN-GRU model maximizes
the prediction accuracy compared to the other models by
optimizing the model hyperparameters to learn more complex
features from the historical and social media information to
predict crime intensities precisely.

5. CONCLUSION

This paper suggests O-GCN-GRU model to optimize the
hyperparameters of the GCN-GRU network to maximize the
performance of the crime prediction and minimum computational
cost. The model utilizes the LOA, which is based on how the
lyrebirds behave in the wild in reaction to threats. The LOA
occurs in two phases: exploration and exploitation, where the first
stage is the simulation of an escape strategy by the lyrebirds to
provide a wide search of potential solutions and the second is the
refinement of the search in promising areas, when the
exploitation stage occurs. According to these steps, optimal
hyperparameters of the GCN-GRU model when predicting crime
using crime data are identified successfully. Through the
application of LOA, the hyperparameters of the GCN-GRU
network are refined thus giving high accuracy and low
complexity. Lastly, the experimental findings suggest that the O-
GCN-GRU model performs better than other currently existing
crime prediction models with accuracy of 96.8% on the crime in
Indian dataset.
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