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An Optimized Deep Learning Model for Predicting Workload in Large 

Scale Cloud Platforms 
 

 

 

 

 

 

 

Abstract— Cloud workloads are inherently 

dynamic, influenced by unpredictable user behavior, 

seasonal traffic variations, and sudden spikes in 

demand caused by events such as sales campaigns or 

system updates. Traditional statistical prediction 

models often struggle to capture these rapidly 

changing patterns. Without accurate workload 

forecasting, cloud service providers risk under-

provisioning—leading to service delays and 

downtime—or over-provisioning, which increases 

operational costs. This unpredictability makes 

intelligent forecasting a necessity. Accurate 

workload prediction enables cloud platforms to 

allocate resources dynamically and proactively. This 

improves server utilization, reduces idle time, and 

ensures that computational power is available when 

needed, without excessive redundancy. For 

enterprises, this means lower operational costs, while 

for service providers, it results in better 

infrastructure. However, due to the absence of 

seasonality in the data patterns coupled with the 

sporadic nature of cloud workload, accurate 

prediction is a challenge. This paper presents a deep 

learning based approach with data optimization for 

predicting cloud workloads. It has been shown that 

the proposed approach clearly outperforms existing 

approaches in terms of prediction accuracy. 

 

Keywords—Cloud Workload Estimation, Deep 

Neural Network (DNN), Steepest Descent Approach, 
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I. INTRODUCTION 

Cloud Computing has become one of the most 

sought after technologies which plays a pivotal role in 

several domains resorting to the high levels of data 

complexity, complex computation or applications 

needing hybrid platforms [1]. One of the most important 

aspects of cloud systems management is the fact that 

cloud servers sporadically face sudden surges in the 

number of requests often termed as cloud workload [2] 

This workload, if unforeseen can result in crash of the 

cloud server if alternate provisions are not made to 

handle the cloud workload [3]. This in term needs the 

estimate of cloud workloads in advance considering 

several governing factors. This is majorly critical 

especially for applications such as e-commerce and 

finance which may see sudden surges in requests [4]. 

Thus there is a clear necessity of cloud workload 

prediction using models which can estimate cloud 

workloads with high accuracy. Statistical techniques are 

not found to be as accurate as the contemporary 

artificial intelligence and machine learning based 

approaches [5]-[6]. In this paper, a back propagation 

based approach for estimating cloud workload is 

proposed using deep learning architecture. 

II. DEEP LEARNING 

Deep learning has evolved as one of the most effective 

machine learning techniques which has the capability to 

handle extremely large and complex datasets [7]. It is 

training neural networks which have multiple hidden 

layers as compared to the single hidden layer neural 

network architectures [8].  

The architectural view of a deep neural network is 

shown in figure 1. In this case, the outputs of each 

individual hidden layer is fed as the input to the 

subsequent hidden layer [9]. The weight adaptation 
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however can follow the training rule decided for the 

neural architecture [10]. There are various 

configurations of hidden layers which can be the feed 

forward, recurrent or back propagation etc [11].  

 

 

Fig.1 The Deep Neural Network Architecture 

The figure above depicts the deep neural network 

architecture with multiple hidden layers [12]. The 

output of the neural network however follows the 

following ANN rule [13]: 

𝒀 = 𝒇(∑ 𝐗𝐢 . 𝐖𝐢   +    𝛉𝒊)𝐧
𝐢=𝟏              (1) 

Where,  

X are the inputs 

Y is the output 

W are the weights 

Ɵ is the bias. 

f is the activation function. 

 

Training of ANN is of major importance before it can 

be used to predict the outcome of the data inputs. 

III. ERROR FEEDBACK MECHNAISM 

Back propagation is one of the most effective ways to 

implement the deep neural networks with the following 

conditions [14]: 

1) Time series behavior of the data 

2) Multi-variate data sets 

3) Highly uncorrelated nature of input vectors 

The essence of the back propagation based approach is 

the fact that the errors of each iteration is fed as the 

input to the next iteration. [15]. The error feedback 

mechanism generally is well suited to time series 

problems in which the dependent variable is primarily a 

function of time along with associated variables. 

Mathematically [16], 

𝒀 = 𝒇(𝒕, 𝑽𝟏 … . 𝑽𝒏)                            (2) 

Here, 

Y is the dependent variable 

f stands for a function of 

t is the time metric 

V are the associated variables 

n is the number of variables 

 

The back propagation based approach can be illustrated 

graphically in figure 2 [17].  

 

Fig.2 Error Feedback Mechanism 

In case of back propagation, the weights of a subsequent 

iteration doesn’t only depend on the conditions of that 

iteration but also on the weights and errors of the 

previous iteration mathematically given by [18]: 

 

𝑾𝒌+𝟏 = 𝒇(𝑾𝒌, 𝒆𝒌, 𝑽)                    (3) 

Here, 
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𝑊𝑘+1 are the weights of a subsequent iteration 

𝑊𝑘 are the weights of the present iteration 

𝑒𝑘 is the present iteration error 

V is the set of associated variables 

In general, back propagation is able to minimize errors 

faster than feed forward networks, however at the cost 

of computational complexity at times [19]. However, 

the trade off between the computational complexity and 

the performance can be clearly justified for large, 

complex and uncorrelated datasets for cloud data sets 

[20].  

 

IV. METHODOLOGY 

The gradient descent algorithms (GDAs) generally 

exhibit [21]: 

1) Relatively lesser memory requirement 

2) Relatively faster convergence rate   

The essence of this approach is the updating of the 

gradient vector g, in such as way that it reduces the 

errors with respect to weights in the fastest manner [22]. 

Mathematically, let the gradient be represented by g and 

the descent search vector by p, then [23]: 

 

𝒑𝟎 = −𝒈𝟎                            (4) 

Where,   

𝑔0 denotes the gradient given by 
𝜕𝑒

𝜕𝑤
 

The sub-script 0 represents the starting iteration 

The negative sign indicates a reduction in the errors 

w.r.t. weights 

The tradeoff between the speed and accuracy is clearly 

given by the following relations [24]: 

𝑾𝒌+𝟏 =  𝑾𝒌 − 𝜶𝒈𝒙 ,   𝜶 =
𝟏

µ
               (5) 

Here, 

𝑤𝑘+1 is the weight of the next iteration  

𝑤𝑘 is the weight of the present iteration  

𝑔𝑥 is the gradient vector 

µ is the step size for weight adjustment in each iteration. 

 

The indirect Hessian Matrix can be computed through 

the Jacobin as [25]: 

 

𝐇 = 𝐉𝐤
𝐓 𝐉𝐤                                 (6) 

And 

𝐠 = 𝐉𝐤
𝐓 𝐞                                   (7) 

 

Here, 

H is the Hessian Matrix 

𝐽𝑘 represents the Jacobian Matrix given by 
𝜕2𝑒

𝜕𝑤
2 

𝐽𝑘
𝑇 represents the transpose of the Jacobian Matrix. 

 

The Quasi Newton or BFGS algorithm is thus computed 

as [26]: 

 

𝒘𝒌+𝟏 = 𝒘𝒌 − 𝜶[
𝝏𝟐𝒆

𝝏𝒘𝟐]−𝟏 𝝏𝑯

𝝏𝒘
                (8)   

 

Here, 

𝑤𝑘  & 𝑤𝑘+1 denote the weights of the present and 

subsequent iterations. 

𝛼 denotes the learning rate. 

𝑒 denotes the error in the present iterations. 

 

The speed of convergence enhance due to the indirect 

computation of the Hessian Matrix. The activation 

function used for the algorithm is the tan-sig function 

mathematically defined as [27]: 

 

𝒕𝒂𝒏𝒔𝒊𝒈(𝒙) =
𝟐

𝟏+𝒆−𝟐𝒙 − 𝟏                  (9) 

 

The dimensional optimization is done through the 

Principal Component Analysis (PCA). The Principal 

Component Analysis is an optimization tool for the 

purpose of dimensional reduction of the data set. 

Consider a data set X having N samples. Out of the N 

sample, M samples may be highly correlated and hence 

may render low or little additional information to the 

training data [27]. 

𝑴
∈
→ 𝑵(X)                                       (10) 

Here, 

M are the correlated samples 

N are the total samples 

X is the data set 

If M samples are removed form the original data set, 

then there will be dimensional reduction in the data 

given by: 

𝒀 = 𝑿 − 𝑴                                         (11) 
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Here, 

Y is the dimensionally reduced data set for more 

effective training. 

 

This input parameters used are 

1) No. of servers 

2)  No. of users 

3) Response time 

4)  Deviation delay value 

5) Cloud Storage value 

6) Mean Deviation value 

7) Job Queueing value 

8) Number of Operational Nodes 

9) No. of Requests 

The flowchart illustrates the summary of the system 

design. 

 

The data is divided in the ration of 70:30 for training 

and testing data set bifurcation.   

The final performance metrics computed for system 

evaluation are [28]-[30]: 

 

1. Iterations to Convergence. 

 

2. Mean Absolute Percentage Error (MAPE) 

 

𝑴𝑨𝑷𝑬 =
𝟏𝟎𝟎

𝑵
∑

𝒑−𝒂

𝒂
𝑵
𝒊=𝟏                   (11) 

 

3. Mean Squared Error: 

 

𝑴𝑺𝑬 =
∑ (𝒑−𝒂)𝒊

𝟐𝒏
𝒊=𝟏

𝒏
                         (12) 

 

Here p and a stand for the predicted and actual 

values respectively. 

The number of predicted samples is indicated by n. 

 

4. Regression 

 

The essence of the proposed approach is to employ 

dimensional optimization using the PCA based 

approach and back propagation to develop and 

optimized training algorithm. The computation of the 

Hessian Matrix indirectly using the Jacobian reduced 

the computations complexity of the algorithm. The 

proposed algorithm can be presented as: 

 

Algorithm: 

Start 

{ 

Step.1 Extract dataset and divide data into the ratio of 

70:30 for training : testing. 

Step.2 Apply dimensional optimization using PCA. 

Step.3 Set initial learning rate 𝝁 = 𝟎. 𝟏 randomly, set 

maximum iterations as 𝑴𝒂𝒙𝒊𝒕𝒓 = 𝟏𝟎𝟎𝟎, 𝒆𝒕𝒐𝒍𝒆𝒓𝒂𝒏𝒄𝒆 =

𝟏𝟎−𝟔 

Step.4: Feed forward training vector. 

Step.5 Initialize weights randomly to initialize training. 

Step.6: Updated weights as per the following training 

rule 

𝒘𝒌+𝟏 = 𝒘𝒌 − 𝜶[
𝝏𝟐𝒆

𝝏𝒘𝟐]−𝟏 𝝏𝑯

𝝏𝒘
     

Step.7 If (cost function stabilizes) 

 Truncate training 

 Else if (max. iterations are over) 

 Truncate Training 

 Else 

 Feedback errors as inputs to subsequent 

iteration and iterate training rule as per step above. 

Step. 8: On convergence, compute MSE, MAPE, 𝑅2 

} 

Stop. 

 

V. EXPERIMENTAL RESULTS 

 

The experiment has been carried out on MATLAB 2025 

version on a PC with 16GB of RAM, and i7 Intel 

Processor. The NASA cloud dataset has been used for 

the study. The parameters which have been used for the 

evaluation of the proposed work are: 

1. MSE  

2. MAPE 
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3. Regression 

4. MSE w.r.t. the number of epochs  

 
Fig.3 Designed Neural Network 

 

The figure depicts the proposed model’s training 

progress in terms of: 

Iterations: 1000 

Time elapsed: 21s 

MSE: 22.3 at convergence. 

Gradient: 110 at convergence 

Learning Rate: 1.01 ∗ 10−6 at convergence  

Resets: 0 

 

 
Fig.4 Training Convergence 

 

Figure 4 depicts the training convergence in terms of the 

MSE of training, testing and validation. It can be 

observed that the model reaches convergence in 1000 

iterations with final training MSE value at 22.3 and 

testing MSE of 54.2. 

 

 
Fig.5 Training Parameters 

 

The figure above depicts the different critical training 

parameters which happen be attain values of: 

Gradient: 110 (approx.) at convergence. 

Validation Fail: 0 

Resets: 0 

The regression values are presented next. 

 

 
Fig.6 Regression Analysis 

 

The figure above depicts the regression values for 

training, testing, validation and overall, with values: 

Training: 0.972 

Testing: 0.969 

Validation: 0.945 
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Overall: 0.967 

 

 
Fig.7 Prediction Error Analysis 

 

The figure above depicts the %MAE for the proposed 

model which comes out to be 1.3%. The low value of 

the %MAE happens due to the dimensional optimization 

of data and optimized training approach. A summary of 

results and comparison with existing work in the 

domain is presented next: 

 

Table 1. Summary of Results 

S.No. Parameter Value 

1 Data Split 70:30 

2 ML Category Deep Learning  

3 Data Optimization  PCA 

4 Iterations to 

Convergence  

1000 

5 MSE at Convergence  22.3 

6 Gradient at 

Convergence 

109.565 

7 Validation Fails or 

Resets 

0 

8 𝑅2 (Training) 0.972 

9 𝑅2 (Testing) 0.969 

10 𝑅2 (Validation) 0.945 

11 𝑅2 (Overall) 0.967 

12 MAPE (Proposed 

Model) 

1.3 

13 Yuan et al. [28] 1.37 

14 Yazdanian et al. [29] 5.9 

15 Jeddi et al. [30] 6.4 

 

A comparison with existing models in the domain of 

research has been presented next, in terms of %MAE, 

rendering higher prediction accuracy. 

It can be observed that the proposed work clearly 

outperforms existing baseline approaches in terms of 

prediction accuracy with lower error rates. 

 

CONCLUSION 

Cloud computing has revolutionized the way 

organizations manage IT infrastructure by offering 

on-demand resources, scalability, and cost efficiency. 

However, cloud resources are finite and come with 

costs, making optimal allocation a crucial challenge. 

Workload prediction—the ability to anticipate 

future demand for computational, storage, and 

network resources—is essential for ensuring that 

applications meet performance requirements 

without over-provisioning. Deep learning, with its 

ability to model complex, non-linear patterns, offers 

a powerful approach to accurately forecast these 

workloads and improve cloud efficiency. As cloud 

computing continues to evolve with trends like edge 

computing, IoT integration, and AI-driven 

automation, the need for accurate workload 

forecasting will only grow. Deep learning’s capacity 

for continual learning and adaptation positions it as 

a cornerstone technology for future cloud 

management systems. The proposed approach 

combines data optimization along with an optimized 

gradient descent approach predicting cloud 

workloads. It has been shown that the proposed 

work attains a %MAE of 1.3% with and overall 𝑹𝟐 

value of 0.967, clearly outperforming existing work 

in the domain. 
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