
 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 05 | May - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM47458 | Page 1

Analysis and Identification of Malicious Mobile Applications Software

Lokesh J 1, S. Yeswanth sai 2, Sheetal Ramesh 3 , Veerendragouda H 4, Dr Pakruddin B 5
1234 UG student, Dept. of Computer Science & Technology, Presidency University, Bengaluru 5 Assistant Professor,

Dept. of Computer Science & Engineering, Presidency University, Bengaluru.

---***---

Abstract - The widespread adoption of mobile

applications has made smartphones an indispensable part

of our life. But as customers' reliance on mobile

applications has grown, they are now increasingly

susceptible to rogue apps that pose a severe threat to

device security and data privacy. The average user might

not have the technical know-how to tell the difference

between safe and dangerous software, therefore it might

be challenging for them to identify such programmes

before installing them.

A web-based malware detection tool called Cyber

Rakshak File Scanner is provided by the "Analysis and

Identification of Malicious Mobile Applications" project

as a remedy for this issue. The Virus Total API is used to

scan mobile application files that users upload to this

system. The output of multiple antivirus engines is

combined by Virus Total to produce a comprehensive and

accurate assessment of the file's security.

Real-time analysis and thorough reports that emphasise

the threat category, antivirus engine, and detection

method are provided by Cyber Rakshak. This technology

decreases the risk of cyberattacks and fosters a safer

mobile environment by enabling users to make educated

decisions before installing apps.

1.INTRODUCTION

In the current digital world, where mobile devices are

indispensable to daily life, criminal attacks on mobile

apps are becoming commonplace. Apps are regularly

downloaded by users without their knowledge, putting

their personal data, privacy, and device integrity at risk.

The necessity for practical technology that can assess and

identify potentially harmful mobile apps before they are

loaded is highlighted by this expanding threat.

Cyber Rakshak File Scanner is a simple yet powerful

web-based tool that is presented by the project "Analysis

and Identification of Malicious Mobile Applications" to

detect malware in mobile application files. Users can

submit mobile app files (such as APKs) to this user-

friendly application, which will analyse the files using the

Virus Total API, a reputable and well-known platform

that aggregates results from multiple antivirus engines.

Cyber Rakshak provides real-time scanning results along

with detailed reports on the threats associated with the

uploaded material. Through this platform, users may find

out crucial details about a mobile application's security

before installing it. By offering a useful and reliable

method of spotting risky apps early on, we hope to

promote safer mobile use by empowering people to take

charge of their digital health and make informed choices.

2. LITERATURE SURVEY

2.1 Abstract :

As mobile applications play a bigger role in everyday life,

they have become a prime target for cyberattacks. The

growing sophistication of mobile infections is making it

tough for traditional antivirus technologies to keep up.

Cyber Rakshak, a web-based file scanner that analyses

malware using the Virus Total API, was developed with

the help of this literature review, which looks at existing

techniques for finding and classifying harmful mobile

phone applications.

A variety of methodologies are covered in the articles

under review, including hybrid systems that integrate

static and dynamic analysis, machine learning classifiers

like Support Vector Machines (SVM), and deep learning

models like Gated Recurrent Units (GRUs). Memory

dumps, permission tracking, and API calls are used for

behavioural analysis, which significantly increases the

accuracy of detection. Furthermore, cutting-edge

solutions to current cybersecurity issues include federated

learning and fine-grained access control in mobile edge

computing, which offer scalable and privacy-conscious

solutions.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 05 | May - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM47458 | Page 2

2.2 Introduction :

The rapid growth of mobile applications, particularly on

open platforms like Android, has increased the potential

for cyberattacks. Malicious apps have the ability to disrupt

services, jeopardise user privacy, and steal crucial

information. Having effective and user-friendly detection

systems is more crucial than ever because malware can

readily mimic legitimate applications.

Scholars have explored a range of methods to address this

issue, from machine learning and deep learning to hybrid

models that incorporate both static and dynamic analysis

of applications. In addition to showing the range of attack

pathways, these techniques offer insights into developing

dependable, scalable malware detection programmes.

For instance, studies that use Support Vector Machines

(SVM) and Gated Recurrent Units (GRUs) to classify

malware based on app behaviour have demonstrated

exceptional detection accuracy. Federated learning could

be used in decentralised situations, particularly in the

healthcare industry, by facilitating model training without

compromising data privacy. These methods are the basis

for the architecture of Cyber Rakshak, which prioritises

security and privacy in malware detection procedures.

Security features such as fine-grained access control in

mobile edge computing further emphasise the importance

of limiting access and safeguarding sensitive data during

the detection phase. Despite being a web-based scanner

at the moment, Cyber Rakshak may use these techniques

in future iterations to enhance user authentication and

secure file processing.

In conclusion, there are many techniques and resources

available in the literature that have a direct impact on the

development and conception of Cyber Rakshak. The goal

of this project is to combine proven methods from

behaviour analysis, machine learning, and safe system

architecture to create a malware detection platform for

mobile applications that is easy to use, accurate, and

efficient. Because of this, users will be able to identify

threats before they compromise the security of their data

or devices.

2.3 Methodologies :

2.3.1 Hybrid Malware Classification Using LLMs and

Knowledge Graphs:

The method uses calibrated large language models

(LLMs) (e.g., LLaMA) in conjunction with a

cybersecurity knowledge graph (KG) augmented with

MITRE ATT&CK data.

working: Network packets and memory dumps are routed

into optimised LLMs for first classification. The KG is

used to produce reasoning through prompt chaining. The

final forecasts are enhanced by the KG's contextual

understanding and entity association.

High classification accuracy was attained by striking a

balance between detection performance and

interpretability (91.2% for network data, 94.35% for

memory data).

2.32 IoHT Cyberattack Detection Using Federated

Learning:

Gated Recurrent Units (GRU) are used in this

decentralised federated learning architecture to identify

time-series patterns.

working: IoHT devices, or edge clients, collaboratively

train a global model without sharing sensitive local data.

This program can recognise five types of cyberattacks

and was trained on the ECU-IoHT dataset.

Benefit provides outstanding generality and scalability,

lowers the chance of data leaks, and has a stated accuracy

of 99.65%.

2.3.3 Static Analysis with SVM Classifier:

Support Vector Machine (SVM) categorisation is utilised

for static reverse analysis of Android APKs.

operating: Permissions, API calls, and directory

structures are extracted. An beneficent or malevolent

binary classification vector is produced by combining

these traits.

Result: SVM's effectiveness in feature-based

classification was proven by its high accuracy, low false

positives, and high true positive rates.

2.3.4 End-to-End Mobile Malware Behavior

Modeling:

An execution engine for virtual machines with both static

and dynamic analysis was part of its usage techniques.

Reverse engineering and knowledge extraction from

APKs are operational. Malware behaviour is investigated

over a variety of transmission channels, including as

SMS, Bluetooth, and 5G. Knowledge maps and

behaviour graphs are used to represent threat spread and

traceability.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 05 | May - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM47458 | Page 3

result: was the availability of detailed modelling of

malware behaviour, which was useful for predicting and

demonstrating attack paths.

3. RESEARCH GAPS OF EXISTING METHODS

 3.1 Limited Real-Time Implementation and User

Accessibility:

While many existing systems employ sophisticated

models such as federated learning, LLMs, or graph-based

behavioural analysis to detect malware accurately, they

often lack implementations that are visible to users in

real-time. Most research does not offer simple, easy-to-

use platforms that let people test apps before installing

them, and it is restricted to enterprise-level or

experimental technologies. This limits the applicability of

these solutions, especially for non-technical audiences

and everyday mobile users.

3.2 Over-reliance on Known Signatures and Static

Features :

Many studies use classifiers like SVM for identification

and primarily use static analysis (such permissions,

directory structures, and API requests). These techniques

often fall short when it comes to detecting unknown or

disguised malware. Due to their inability to keep up with

quickly evolving malware versions that use evasion

techniques to evade standard inspections, static-only

systems are extremely vulnerable.

3.3 Lack of Integrated Multi-Layered Analysis in

Lightweight Platforms:

Although these integrations are typically computationally

intensive and inappropriate for web-based, lightweight

applications, static and dynamic analysis are occasionally

merged in research. Insufficient research has been done

on web-deployable, lightweight architectures that offer

comprehensive analysis without requiring a large amount

of hardware resources or system-level integration.

3.4 Explainability and Transparency in Malware

Detection:

One study uses LLMs and knowledge graphs to explore

explainable AI, although most research do not provide

interpretable insights into the decision-making process.

End users often have binary outcomes

(malicious/benign), with no indication of the behaviours

or traits that lead to the classification. This lack of

transparency hinders trust in the detection process,

especially for consumers who are worried about security.

3.5 Decentralization and Data Privacy Trade-Offs:

Although federated learning preserves anonymity, it is

not practical for public use cases due to its complexity

and lack of federated setup infrastructure. A research gap

is identifying a platform that offers privacy protection

without the disadvantages of total decentralisation or

federated learning protocols.

3.6 Insufficient Attention to Real-World Propagation

Scenarios and Social Engineering:

While various research look into this problem, few

integrate virus transmission via SMS, Bluetooth, or app

stores into a comprehensive detection and reporting

system. There are not enough proactive defences that

consider the behavioural and social ways that malware

spreads and provide users with helpful information or

preventative recommendations based on the threat's

origin.

3.7 Security Limitations in Mobile Edge Computing

and IoT Contexts:

In mobile edge computing, FGAC addresses access

control, although it does not expressly address virus

detection. The literature has not fully explored the

seamless integration of access security techniques with

real-time malware analysis for edge and mobile devices.

3.8 Lack of Unified Benchmarking Across

Approaches:

Even though most studies have acceptable accuracy

metrics, it is difficult to evaluate their effectiveness since

they do not follow conventional assessment procedures or

use standardised datasets. A fragmented study area results

from this, and generalisability across different kinds of

mobile malware is called into doubt. For more accurate

evaluations, your project can make use of well-known

scanning tools (like Virus Total) that pull data from

numerous malware databases.

3.9 Low Emphasis on Real-World Usability Testing :

Many studies use algorithmic performance instead of

end-user testing or feedback techniques to assess

usability, learnability, and efficacy in real-world

scenarios. Malware detection platforms do not have a

human-centered design. Cyber Rakshak, which is web-

based and visually guided, has the potential to bridge this

gap with its user-friendly results display and intuitive user

interface.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 05 | May - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM47458 | Page 4

3.10 Scalability Challenges in Complex ML

Architectures:

Even though deep learning methods (such knowledge

graphs or GRU in federated setups) are quite accurate,

they are not lightweight or easily scalable. Their high

requirements for computing infrastructure limit their

usage to consumer-level tools or organisations with

modest resources. The need for a hybrid paradigm that

balances performance and accessibility is highlighted by

this, and Cyber Rakshak aims to deliver it.

3.11 Lack of Cross-Platform Compatibility for

Mobile Threat Analysis:

Even if your current project is primarily focused on APK

files, identifying this gap can help you plan for future

improvements or modular architecture. Because Android

is an open environment, most articles focus exclusively

on Android APKs, leaving a gap in malware detection

techniques that work with other mobile systems, such as

iOS, HarmonyOS, etc.

3.12 Limited Focus on Post-Detection User

Empowerment:

Even once malware has been detected, the majority of

systems end there. There are not enough useful solutions

provided, such as how to delete harmful files, safeguard

data, or alert authorities. Such post-scan defensive or

educational capabilities could be added by Cyber

Rakshak to make the service more complete.

3.13 Inadequate Protection for Non-App-Based

Threats:

Malware is only found in mobile apps, according to

several studies. In reality, additional sources of danger

include malicious PDFs, URLs, email attachments, and

embedded website content. This expands on the variety

of risks that app-centric research currently may ignore.

Cyber Rakshak may use VirusTotal's broad file-type

compatibility to manage a greater variety of threats.

3.14 Absence of Community-Driven Threat Sharing:

Except for knowledge graphs and MITRE ATT&CK

frameworks, none of the studies discuss crowdsourced or

community-contributed threat intelligence. This has the

potential to revolutionise the detection of zero-day or

region-specific threats. In the future, Cyber Rakshak may

use anonymous scan records submitted by users to grow

a community-driven threat feed (with permission)..

 4. METHODOLOGY

 4.1 PROPOSED METHODOLOGY :

To efficiently detect malicious mobile applications, the

Cyber Rakshak project uses a web-based scanning

system. Virus Total API-based virus analysis, file

handling and preparation, and web development

integration are the primary methods employed. The

frontend ensures simple file uploading and interaction

with its HTML, CSS, and JavaScript structure. File

transfers, Virus Total API calls, and backend

interpretation of scan findings are all handled by Flask

(Python). This approach accelerates malware detection

by automating the file analysis process and rapidly giving

users thorough scan data. A lightweight, scalable, and

effective mobile security awareness system is produced

by combining these strategies.

4.1.1 Web-Based File Upload and Scanning Interface:

Technology Used: HTML, CSS, JavaScript

The interface is simple and easy to use, allowing users to

upload mobile application files, such as apk files, directly

from their browser.

JavaScript employs asynchronous queries to

communicate with the backend and handles file

validation.

aim: ensures that file scanning from any device is

accessible and easy to use. Because it removes the need

for technical expertise, even non-technical people can

identify infections.

4.1.2 Backend API Integration with Virus Total:

Utilised Technologies: Virus Total Public/Private API,

Flask (Python)

After the file has been uploaded, the Flask server acts as

a middleman to transmit it to Virus Total's API. By

merging the results of over 70 antivirus engines with

URL/domain blacklists, Virus Total examines files for

malware signatures. The backend retrieves and formats

the report that was acquired from Virus Total.

aim: enables real-time malware scanning without starting

from scratch with a detection engine. utilises cloud-based

cybersecurity intelligence to generate remarkably precise

results.

4.1.3 RESTful Architecture:

Flask routes were the technology used (POST, GET).

The application design's RESTful architecture enables

separate endpoints to manage various operations,

including

 1) Uploading a file (scan) via POST

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 05 | May - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM47458 | Page 5

 2) Checking the scan's status (GET /report)

 It is obvious where presentation and logic diverge.

aim: Promotes scalability and makes it easier to integrate

with emerging technologies like mobile apps and browser

plugins.

4.1.4 Real-Time Risk Reporting:

JavaScript rendering and JSON parsing were the

technologies used.

The Virus Total response includes SHA-256 hashes,

threat categories (such trojan, adware, etc.), and scores

(like the number of engines that reported the file). A

visually appealing presentation of this data is produced

by the frontend.

goal: Not only does it assess if a file is dangerous, it also

provides users with information about how and why it is

classified.

4.1.5 Logging and Anonymized User Interaction:

Utilised technologies: Python logging and Flask sessions

Simple logging mechanisms are used to track scans,

timestamps, and file kinds. By not requiring users to

register or provide personal information, anonymity is

preserved.

aim: maintains a history for administrative insights or

system problems while protecting user privacy.

4.1.6 Error Handling and Fail-Safe Mechanisms:

Try-except blocks and flask error handlers were the

technologies used.

When the file type is not supported or Virus Total does

not reply, the backend handles it gently and shows the

appropriate error messages on the frontend.

aim: Ensures dependability and a flawless user

experience even in case of a malfunction.

5. SYSTEM DESIGN & IMPLEMENTATION

5.1 components

5.1.1 User Interface (Frontend):

The primary layer of communication between users and

the system is the User Interface (UI) of the Cyber

Rakshak application. Users can upload Android

programme files (typically.apk files) for malware

detection thanks to its intuitive and user-friendly design,

which was made with HTML, CSS, and JavaScript. The

interface includes visual displays of the scan results

retrieved from the backend, file input fields, and progress

indications. By focussing on ease of use and simplicity,

the scanning process is made seamless even for those with

less technological knowledge. The frontend is also

responsible for basic validation, error alerts, and starting

the scanning process by sending backend API calls.

5.1.2 Backend Server (Flask Framework):

To build the backend functionality, Flask, a lightweight

Python web framework perfect for building

microservices and APIs, is utilised. The Flask server

manages interactions with external services, such as the

Virus Total API, securely handles file uploads, and reacts

to incoming frontend requests. Before forwarding a file

to the Virus Total endpoint, the backend verifies its size

and format. The contents of the scan report are parsed and

arranged into a readable format by the backend before

being sent back to the frontend for user viewing. It is also

possible to extend the backend to manage user sessions,

record scanning activity, and store scan data in a database

.

5.1.3 Virus Total API (Malware Analysis Engine):

A key component of Cyber Rakshak's malware detection

capabilities is its integration with the Virus Total API, a

cloud-based service that aggregates results from over 70

antivirus engines and other malware detection

technologies. An APK file is thoroughly inspected by

many scanning engines upon submission to this API,

which look for anomalies, odd activity, and known

dangerous signatures in the file's contents. The API

returns a JSON-formatted report with multiple engines'

labels, behavioural analysis, detection ratios, and

metadata like as file size, hash, and certificate details.

This powerful third-party service significantly boosts

Cyber Rakshak's threat detection capabilities' legitimacy

and power.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 05 | May - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM47458 | Page 6

5.1.4 Database (MongoDB or MySQL –

Optional/Future Enhancement):

The Cyber Rakshak system benefits from having a

database layer like MongoDB or MySQL, even if it was

not necessary for the initial configuration. Later iterations

might include authentication and history features, in

which case this layer would contain scan results,

timestamps, uploaded file records, and potentially user-

specific data. A well organised database enables

analytics, reporting, and historical tracking. Files that are

frequently detected or recurring malware patterns, for

example, can be identified. The application's scalability

and personalisation are further improved by enabling the

development of a user dashboard that gives registered

users access to previous scans and reports.

5.1.5 Security and File Handling Layer:

Security is an important part of Cyber Rakshak's

architecture because it works with potentially dangerous

files. To ensure that only APK files are authorised and

that size limits are not exceeded, the security and file

handling layer integrates server-side validations to thwart

denial-of-service attacks. Flask's secure file management

features are used to appropriately manage and

temporarily store uploaded files before they are

examined. The program also closely follows input

sanitisation and output encoding requirements and uses

HTTPS protocols to protect data while it is in transit.

Other features like rate limitation, user authentication,

and scan frequency monitoring may be implemented in

the future to guard against abuse.

5.2 system architecture :

5.2.1 User (Client-Side):

The user interacts with the programme to begin the

journey using a web-based interface. Users can scan

Android apps by uploading their.apk files using this user-

friendly interface, viewing the scan's status and results,

and determining the level of danger depending on the

analysis.The user makes the request, and their experience

is safeguarded, quick, and simple.

5.2.2 Web Application (Frontend -

HTML/CSS/JavaScript):

For frontend development, HTML, CSS, and JavaScript

are utilised. It is responsible for: getting the file that the

user has submitted; providing feedback messages and

upload progress; andsending HTTP requests (via the

Fetch API or AJAX) to the Flask server at the backend.

providing a clear and visually instructional display of the

scan results, including the risk score, threat kind, and

engine reports.

This layer ensures that users may engage with the system

in an efficient manner.

Fig 6.1 ARCHITECTURE DIAGRAM

5.2.3 Flask Backend (Python Server):

The Flask web server is the main component of the

program. It acts as a mediator between the frontend and

Virus Total, the malware analysis engine. The acquisition

of apk files uploaded through the user interface is one of

the important tasks.

Using the Virus Total API to securely interact,

interpreting the received JSON response, and returning

the scan summary to the frontend after confirming and

temporarily storing the file.

In addition to managing server-side logic, this component

can be improved with error handling, rate restriction, and

authentication.

5.2.4 Virus Total API (Malware Detection Engine):

The Virus Total API is a cloud-based virus detection

service provided by a third party. It can do the following:

>accept the backend's apk file; >run the file through over

70 antivirus and behavioural analysis engines; >identify

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 05 | May - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM47458 | Page 7

odd patterns, anomalies, and known malware signatures;

and >provide a comprehensive scan report that includes

the names of the threats, their severity levels, and the

engines that raised the file's flag.

This component enables malware detection without

requiring the system to launch an antivirus engine from

scratch.

5.2.5 Response Handling and Visualization (Backend

+ Frontend):

After Virus Total returns the scan results, the backend

parses the raw data and extracts important metrics, such

as the number of engines that reported the file and the

name of the common malware family.The information is

then shown to the user through the frontend in an easy-to-

read dashboard-style report.

These include:

>the total number of detections

>the output of each antivirus engine

>the type of threat or malware family and

>file details (size, creation date, hash, etc).

3. CONCLUSIONS

In today's digital environment, malicious mobile apps are

posing a growing risk to cybersecurity and consumer

privacy. The Cyber Rakshak project was developed as a

direct response to this problem; it is a straightforward,

dependable, and user-friendly platform that assists in

identifying malware in Android program files (.apk).

Many consumers download apps without fully knowing

their behaviour or risks due to the open ecosystem of

Android and the increasing use of smartphones. In order

to close this gap and assist stop any assaults from the

outset, Cyber Rakshak enables users to examine app files

before installing them.

The web-based platform makes use of the VirusTotal

API, which imports potent threat intelligence from a

variety of security products and antivirus engines. This

makes it possible for Cyber Rakshak to examine program

files fast and identify any questionable or harmful trends.

A smooth user experience and file uploads are guaranteed

by the Flask backend and the HTML, CSS, and JavaScript

frontend.

Cyber Rakshak is an excellent illustration of how current

technologies and APIs may be used into a full-stack

application to provide practical cybersecurity solutions

from a technological standpoint. The architecture has

been thoughtfully created to manage files securely,

communicate with third-party APIs effectively, and

provide real-time analysis. File type checks, rate

restriction, and automatic cleanup are examples of extra

security measures that assist make the system more

sustainable.

The user-focused design of the project is one of its best

qualities. It makes malware detection easier for non-

technical consumers to understand and streamlines the

complicated process. It not only scans but also informs

users of any dangers related to the programs they plan to

install.

Looking ahead, Cyber Rakshak establishes the

foundation for next improvements such as dashboards for

scan histories, AI-based local malware detection, user

login systems, and support for additional file formats.

Along with opening the door for more intelligent and

scalable malware defence systems, it also emphasises the

fascinating possibilities of fusing cybersecurity with AI

and cloud computing.

Cyber Rakshak, to put it briefly, is a proactive solution

that promotes safer digital practices and lowers mobile

security threats. It provides Android users with a crucial

layer of security and demonstrates how creative research

endeavours can be turned into workable solutions for

improved digital wellbeing and online safety.

REFERENCES

[1]

Author(s): Neha Mohan Kumar, Fahmida Tasnim

Lisa,Sheikh Rabiul Islam

Title: Prompt Chaining-Assisted Malware Detection: A

Hybrid Approach Utilizing Fine-Tuned LLMs and

Domain Knowledge-Enriched Cybersecurity Knowledge

Graphs

Conference: IEEE International Conference

Year: 2024

Link: https://www.computer.org/csdl/proceedings-

article/bigdata/2024/10825154/23yldRvUVUY

[2]

Author(s): Liyakathunisa, Zoya Riyaz Syeda, Riyaz

Sohale Syed,

Title: Cyber Attack Detection for Internet of Health

Things through Federated Deep Learning Technique

Conference: Annual Computer Security Applications

Conference Workshops (ACSACW)

Year: 2024

http://www.ijsrem.com/
https://www.computer.org/csdl/proceedings-article/bigdata/2024/10825154/23yldRvUVUY
https://www.computer.org/csdl/proceedings-article/bigdata/2024/10825154/23yldRvUVUY

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 05 | May - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM47458 | Page 8

Link: https://www.computer.org/csdl/proceedings-

article/acsac-

workshops/2024/328100a194/25bv0ZqdUBi

__

[3]

Author(s): Li Jing

Title: Mobile Internet Malicious Application Detection

Method Based on Support Vector Machine

Conference: International Conference on Smart Grid and

Electrical Automation (ICSGEA)

Year: 2017

Link: https://www.computer.org/csdl/proceedings-

article/icsgea/2017/2813a260/12OmNARiLZC

__

[4]

Author(s): Long Chen; Chunhe Xia; Shengwei Lei;

Tianbo Wang

Title: Detection, Traceability, and Propagation of Mobile

Malware Threats

Journal: IEEE Access

Year: 2021

Link: https://ieeexplore.ieee.org/document/9316662

__

[5]

Author(s): Sixian Sun; Xiao Fu; Hao Ruan; Xiaojiang

Du; Bin Luo; Mohsen Guizani

Title: Real-Time Behavior Analysis and Identification

for Android Application

Journal: IEEE Xplore

Year: 2018

Link: https://ieeexplore.ieee.org/document/8408465

__

[6]

Author(s): Yichen Hou; Sahil Garg; Lin Hui; Dushantha

Nalin K. Jayakody; Rui Jin; M. Shamim Hossain

Title: A Data Security Enhanced Access Control

Mechanism in Mobile Edge Computing

Journal: IEEE Access

Year: 2020

Link: https://ieeexplore.ieee.org/document/9146646

__

[7]

Authors: Zhenyuan Li, Jun Zeng, Yan Chen, Zhenkai

Liang

Title: AttacKG: Constructing Technique Knowledge

Graph from Cyber Threat Intelligence Reports

Journal: arXiv preprint

Year: 2021

Link:

https://arxiv.org/abs/2111.07093arXiv+1arXiv+1Resear

chGate+7arXiv+7Wikipedia+7

__

[8]

Authors: Jian Wang, Tiantian Zhu, Chunlin Xiong, Yan

Chen

Title: MultiKG: Multi-Source Threat Intelligence

Aggregation for High-Quality Knowledge Graph

Representation of Attack Techniques

Journal: arXiv preprint

Year: 2024

Link: https://arxiv.org/abs/2411.08359arXiv

__

[9]

Authors: Vrinda Malhotra, Katerina Potika, Mark Stamp

Title: A Comparison of Graph Neural Networks for

Malware Classification

Journal: arXiv preprint

Year: 2023

Link:

https://arxiv.org/abs/2303.12812MDPI+5arXiv+5arXiv+

5

__

[10]

Authors: Tristan Bilot, Nour El Madhoun, Khaldoun Al

Agha, Anis Zouaoui

Title: A Survey on Malware Detection with Graph

Representation Learning

Journal: arXiv preprint

Year: 2023

Link: https://arxiv.org/abs/2303.16004arXiv

__

[11]

Authors: Ali Dehghantanha, et al.

Title: Machine Learning Aided Android Malware

Classification

Journal: Computers & Electrical Engineering

Year: 2018

Link:

https://en.wikipedia.org/wiki/Ali_DehghantanhaWikipe

dia+1arXiv+1

__

http://www.ijsrem.com/
https://www.computer.org/csdl/proceedings-article/acsac-workshops/2024/328100a194/25bv0ZqdUBi
https://www.computer.org/csdl/proceedings-article/acsac-workshops/2024/328100a194/25bv0ZqdUBi
https://www.computer.org/csdl/proceedings-article/acsac-workshops/2024/328100a194/25bv0ZqdUBi
https://www.computer.org/csdl/proceedings-article/icsgea/2017/2813a260/12OmNARiLZC
https://www.computer.org/csdl/proceedings-article/icsgea/2017/2813a260/12OmNARiLZC
https://ieeexplore.ieee.org/document/9316662
https://ieeexplore.ieee.org/document/8408465
https://ieeexplore.ieee.org/document/9146646
https://arxiv.org/abs/2111.07093arXiv+1arXiv+1ResearchGate+7arXiv+7Wikipedia+7
https://arxiv.org/abs/2111.07093arXiv+1arXiv+1ResearchGate+7arXiv+7Wikipedia+7
link:%20https://arxiv.org/abs/2411.08359arXiv
https://arxiv.org/abs/2303.12812MDPI+5arXiv+5arXiv+5
https://arxiv.org/abs/2303.12812MDPI+5arXiv+5arXiv+5
link:%20https://arxiv.org/abs/2303.16004arXiv
https://en.wikipedia.org/wiki/Ali_DehghantanhaWikipedia+1arXiv+1
https://en.wikipedia.org/wiki/Ali_DehghantanhaWikipedia+1arXiv+1

