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Abstract - Meshless methods are very accurate in solving 

engineering problems so here we solve the problem of 

laminated composite plate with sinusoidal load using meshless 

method and same problem is also solved by using Abaqus 

software after that we compare the results. Value of deflection 

of laminated composite plate under sinusoidal load found from 

meshless method is very closest to the value found from 

Abaqus software.  Here radial basis function finite difference 

method is used which is very important and accurate meshless 

method. 
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1. INTRODUCTION 

 In the design process of an advanced engineering system, 

engineers must undertake the courses of modeling, simulation, 

analysis and visualization. Differential equations and boundary 

conditions are abstract, and often highly approximate, 

characterizations of physical process in engineering. However, 

exact solutions to these differential equations are often possible 

only for problems defined in simple geometrical domains and 

mostly constrained to linear problems [1]. To solve differential 

equations governing the engineering processes occurring 

mostly in practice, many types of numerical methods have been 

proposed and developed such as the finite difference method 

(FDM), the finite element method (FEM) and the boundary 

element method (BEM), etc. FEM possesses many attractive 

features and has become one of the most important advances in 

the field of numerical methods [2]. 

 An important of FEM is that it divides a continuum into a 

finite number of elements to model the problem. The individual 

elements are connected together by a topological map called 

mesh [1]. The common characteristic of the meshes is that each 

of them has several Connecting nodes and there is some 

information concerning the relation of nodes.  

 The continuity of field variables within the domain spreads 

through the adjacent meshes and related nodes. The governing 

differential equations, whether ordinary differential equations 

(ODEs) or partial differential equations (PDEs), can be 

transformed into weak-form formulations on the discretized 

sub-domains by means of certain principles, such as variational 

method, minimum potential energy principle or principle of 

virtual work [10]. Using the properly predefined meshes and 

the field discretization method, a set of algebraic equations are 

generated. After assembling the equations of all the meshes and 

imposing of proper boundary conditions, the system equations 

governing the problem domain can be formed and thereafter 

solved.  

 The FEM has been thoroughly developed and is widely 
used in engineering field due to its versatility for complex 
geometry and flexibility for different types of problems. Most 
practical engineering problems related to solids and structures 
are currently solved using well developed FEM commercial 
packages. Despite of the robustness in numerical analysis, 
there are still some limitations or inconveniences in the FEM 
[3]. For example the data preparation in the course of mesh 
generation and model conversion from physical model to finite 
element data is an extremely burdensome and time-consuming 
task [4]. Another factor may be that the secondary variables 
such as strains and stresses by the FEM are much less accurate 
than the primary variables such as displacements, temperature, 
etc. At the same time, the problems of computational 
mechanics grow ever more challenging. For instance, in the 
simulation of manufacturing processes, such as extrusion and 
modeling, it is necessary to deal with extremely large 
deformations of the mesh; while in computations of castings 
the propagation of interfaces between solids and liquids is 
crucial [6].  

 In simulations of failure processes, it is required to model 
the propagation of cracks with arbitrary and complex      paths. In 
the development of advanced materials, methods which can 
track the growth of phase boundaries and extensive micro-
cracking are required. However, these problems are not well 
suited to conventional computational methods such as the finite 
element method [9]. To overcome these problems, meshfree or 
meshless methods have been developed and achieved 
remarkable progress in recent years.  
 Meshfree methods use a set of nodes scattered within the 
problem domain as well as sets of nodes scattered on the 
boundaries of the domain to represent the problem domain and 
its boundaries. For most meshfree methods, these sets of 
scattered nodes do not form a mesh, which means no prior 
information on the relationship between the nodes is required 
for at least the interpolation or approximation of the unknown 
functions of field variables [8]. So far, many meshfree methods 
have found important applications and shown great potential to 
become powerful numerical tools. The use of local numerical 
schemes, such as finite differences produces good conditioned 
matrices [9]. By combining finite differences and radial basis 
functions it is possible to obtain a versatile meshless method, 
the radial basis function-finite difference technique (RBF-FD) 
[11]. To solve large engineering problems when compared to 
traditional global RBF collocation method, since the 
conditioning of the problem is greatly improved. Due to its 
excellent results, many authors are increasingly using local 
versions of the RBF method in diverse areas of physics and 
engineering [12–17]. Still, the most favorable grid distribution, 
stencil size and shape parameter in RBF-FD method remains 
an open problem. A recent comparison between meshless weak 
and strong formulations for boundary value problems shows 
how sensitive the method is to the shape parameter, especially 
when Neumann boundary conditions are used. 
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Some limitations in mesh generation, remeshing and 

making the approximation scheme in customary mesh-based 

methods such as FEM and FVM tend the general interests to 

use the meshless methods that remove the limitations of 

classical mesh-based methods. In meshless methods, only a 

cloud of points without any Information about nodal 

connections is used to discretize the domain.  

 

 Fig-1: Distribution of nodes on domain and boundary [1]. 

   One of the most favorite meshless methods is the RBF 

method which is constructed by radial kernels. They are 

positive definite, rotationally and translationally invariant. 

These features make its application straightway specially for 

approximating the solution of problems with high dimensions. 

The RBFs contain two useful specifications: a set of scattered 

centers with possibility of selecting their positions and 

existence of a free positive parameter known as the shape 

parameter [2]. 

2. RBF-FD METHOD 
    Radial basis function finite difference method represents a 

local meshless approach which has been shown to work well 

for large scale problems. Radial basis functions have been 

popular choices for meshless methods. Therefore one 

frequently refers to this approach as the radial basis-finite 

difference method (RBF-FD). Application of RBFs to 

compute derivatives on unstructured grids was first introduced 

by Kansa and then formally proposed as RBF-FD approach in 

[2]. Since then, this method has been continuously improved 

and applied to numerical modeling for various processes 

including convection–diffusion [7], and heat flow [14].Use of 

multiquadric function theoretically provides a good 

convergent meshless method.  

   In modern conventions, the shape parameter is inversely 

proportional to the average distance between the node points 

[5]. Use of very small shape parameters may result in an 

approximation that is similar to overfitting. Therefore, it is 

recommended to keep the shape parameter on the optimal 

side. In practice, the use of small parameters in RBF-FD 

results in ill-conditioning, so that a stable algorithm is required 

for precise evaluation. The existence of the free shape 

parameter can be considered as an advantage of the RBFs. 

Without any additional computational cost or any change in 

other parameters of the method, varying the value of the shape 

parameter can cause more accurate results. 

3. PROBLEM OF COMPOSITE PLATE  

   Firstly a plate of CFRP (carbon fibre reinforced polymer) 

having four layers and stacking sequence of 0˚/90˚/0˚/90˚ is 

used in the static analysis. Meshless method is used in order to 

find transverse deflection and rotational deflection of the 

laminated composite plate. Stress and deformation relation for 

each layer (k) is given as follows. 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4. MATERIAL PROPERTY 

 A square composite plate made of carbon fibre reinforced 
material (CFRP) have side a = 1 and thickness ratio a/h = 1 is 
considered. The plate is composed of four equally thick layers 
with layup (0 ̊/90 /̊90 ̊/0 )̊. Since the plate has symmetric lay-up, 
the formulation is simplified in order to consider transverse 
deflection and rotational deflection. Following are the material 
properties if the plate E1 = 200GPa, E2 = 178GPa, E3 = 178 
GPa, G12 = G13 = 89GPa, G23 = 35.6GPa, ѵ12= 0.25 as succinct 
as possible.  

5. MODELLING  

   
Fig-2: Ply stacking sequence of composite plate of four layer 

prepared on ABAQUS. 

   Model of four layer laminated composite plate having 

stacking sequence (0˚/90˚/0˚/90˚) has been modelled on FEM 

software ABAQUS. 

6. LOADING AND BOUNDARY CONDITIONS 

   Sinusoidal load of magnitude 1500 KN is applied on the 

plate of four layer having stacking sequence of 0˚/90˚/0˚/90˚. 
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Boundary conditions are all four edges of the plate are fixed 

thus movement of edges is restricted. 

 

Fig-3: Shows boundary conditions of the plate. Fixed at all 

four edges. 

 

Fig-4: Sinusoidal loading on the plate. 

In this way edges of the plate can not move in any direction 
when the load is applied. Load is applied at the center of the 
plate.In this work , applied load is not constant. It varies 
between its maximum positive value and minimum negative 
value. Results obtained from MATLAB code is compared with 
the results of ABAQUS. 

7. MESHING 

   Meshing of laminated composite plate has been done on 

ABAQUS. Type of Element used in Meshing is S4R: A4 node 

doubly curved thin or thick shell, reduced integration, 

hourglass control, finite membrane strains. In this number of 

elements are 2500 and number of nodes are 2000. Meshed part 

shown in figure given below. 

 

Fig-5: Meshing on the plate. 

8. RESULT AND DISCUSSION 

As the number of nodes increases, error in value of 

deflection decreases as the number of nodes increases and at 

1600 nodes error reduces to a minimum value and after that at 

2000 nodes value of deflection almost repeats itself. when 

sinusoidal load of magnitude 1500 KN is subjected to 

laminated composite plate (0˚/90˚/0˚/90˚) of four layer with 

boundary condition of all four edges are fixed. It is solved by 

the help of ABAQUS. Transverse deflection of the plate is 

given in mm while rotational Deflections of the plate are 

given in radians. 

Table(1). Deflections of four layer laminated composite plate 

under sinusoidal load at different number of nodes. 

 

 

 

Fig-6: Transverse deflection w of composite plate of four layer 
with sinusoidal load. 
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Fig-7: Shows rotational deflection ϕx of composite plate of 

four layer with sinusoidal load. 
 

 

 

Fig-8: Rotational deflection ϕy of composite plate of four 

layer with sinusoidal load. 

   Above figures show the variation in the value of deflection in 

different portions of the plate. Results obtained with RBF-FD 

method for the same case of plate has been compared with the 

results of ABAQUS. RBF-FD method gives good accuracy and 

faster convergence as compared to meshbased method. 
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