

Analytical Review of 300m High RCC chimney by Different Codes

¹HARSHVARDHAN S. BABHLIKAR, ²Prof. P. J. SALUNKE ¹M. E. STUDENT, ²GUIDE AND HEAD OF DEPARTMENT ¹STRUCTURAL ENGINEERING ¹MGM'S COLLEGE OF ENGINEERING AND TECHNOLOGY, KAMOTHE, NAVI MUMBAI

Abstract: In early 1960, a 122-meter-high chimney was considered to be very tall and nowadays many chimneys in the range of 220 M height have been built in our country. In the USA, several chimneys in the range of 380 m already exist, and this trend toward constructing taller chimneys will continue. Construction of such tall Chimneys has been possible with the better understanding of loads acting on them and of the structural behaviour above all with the utilization of modern construction plant equipment and techniques such as slip form. Reinforced concrete has been the most favoured material for Chimney construction since it has the advantage to resist wind load and other forces acting on them as a self-standing structure.

Key Words: Tall RCC Chimney, Modal mass participation, Self-weight of Structure ASCE7-16, IS1893-2016, SAP2000.

I. INTRODUCTION

Chimneys are the structures which are built to greater heights as tall slender structures. In period of time, as household vents and over the years; they're popularly referred to as chimneys. Chimneys or stacks are used as a medium to transfer highly contaminated polluted gases to atmosphere at greater heights. Over the years because of development of large-scale industries, an oversized number of tall slender chimneys are required to be designed per annum. The most function of chimneys is to require highly poisonous gases which aren't acceptable at ground level were taken to greater heights with sufficient velocities. Chimneys are more susceptible to wind and earthquake loads which can cause severe problem in power plants and major industries. However, if they located in higher seismic zone with lower wind speeds, then, seismic forces may become analogous, if no more, than the wind loads, it's designed for both, along wind and across wind loads.

Chimneys are relatively tall structures to a few kinds of stresses (i) Stresses because of self- weight, (ii) Stresses because of wind moment and (iii) Stresses because of temperature variation between the within and out of doors of the chimney.

II. TALL RC CHIMNEY

Chimneys are a logo of commercial growth in any country. In recent years there has been an increased demand for tall chimneys because of fixing several large thermal power stations within the country. In early 1960, a 1222-meter-high chimney was considered to be very tall and nowadays many chimneys within the range of 220m height are in-built our country. In the USA, several chimneys within the range of 380m exist already, and this trend toward constructing taller chimneys will continue. Construction of such tall chimneys has been possible with the higher understanding of loads performing on them and of the structural behaviour particularly with the employment and techniques like slip form. The heights of the chimneys are increased to reduce the atmospheric pollution. The changes within the dimensions may have the influence on the dynamic properties of chimneys.

The height of the many industrial chimneys in India is quite 200m. The tallest chimney in India is Dahanu Thermal Power Station's chimney (1985) at Mumbai with the height of 275.3m and GRES-2 station (1987) at Kazakhstan is that the tallest chimney within the world with a height of 419.7m. The necessity of skyrocketing the peak of chimney is incredibly essential because it is directly associated with social and economic aspects of any country.

Sr. no.	Parameters	Values		
		Concrete-M40		
1	Material used	Reinforcement Fe500		
		The external Dia. At bottom and top, 18m and		
2	Plan Dimension	3.6 m respectively		
3	Height of each level	10m		
4	Density of concrete	25KN/m ³		

III. MODELLING OF RC CHIMNEY i) Details of Chimney

Impact Factor: 8.176

ISSN: 2582-3930

5	Poisson Ratio	0.2-concrete and 0.15-steel
6	Code of Practice adopted	IS456:2000, IS1893:2016, ASCE 7-16
7	Seismic zone for IS1893:2016	III
8	Importance Factor	1
9	Response Reduction Factor	5
10	Foundation soil	Medium
11	Wall thickness	800mm
12	Floor Finish	1KN/m ²
13	Live load	2.5KN/m ²
14	Earthquake load	As per IS 1893-2016
15	Model to be analysed	300m ht. of chimneys.
16	Ductility class	IS1893:2016 SMRF

Fig. 1 Rendering View of RC Chimney

T

Volume: 07 Issue: 04 | April - 2023

Impact Factor: 8.176

ISSN: 2582-3930

General Data		
Material Name and Display Color	M40	
Material Type	Concrete ~	
Material Grade	M40	
Material Notes	Modify/Show Notes	
Weight and Mass	Units	
Weight per Unit Volume 25.	KN, m, C 🗸	
Mass per Unit Volume 2.54	93	
Isotropic Property Data		
Modulus Of Elasticity, E	31622777.	
Poisson, U	0.2	
Coefficient Of Thermal Expansion, A	5.500E-06	
Shear Modulus, G	13176157.	
Other Properties For Concrete Material	S	
Specified Concrete Compressive Stre	ength, fc 40000.	
Expected Concrete Compressive Stre	ength 40000.	
Lightweight Concrete		
Shear Strength Reduction Factor		
Switch To Advanced Property Displa		

Fig. 2 Material Defines

oad Patterns						Click To:
Load Pattern Name	Туре		Self Weight Multiplier	Auto Lateral Load Pattern		Add New Load Pattern
DEAD	Dead	~	1		\sim	Modify Load Pattern
SDL	∧ Dead	^	1 🔥		^	Madife Laboral Land Dattan
W L+X	Wind		0	IS 875-2015		Modify Lateral Load Pattern
W L-X	Wind		0	IS 875-2015	•	
W L+Y	Wind		0	IS 875-2015		Delete Load Pattern
W L-Y	Wind		0	IS 875-2015		
EQ+X	Quake		0	IS 1893-2016	ŧ	Show Load Pattern Notes
EQ-X	Quake		0	IS 1893-2016		Show Load Pattern Notes
EQ+Y	Quake		0	IS 1893-2016		
EQ-Y	Quake		0	IS 1893-2016		ОК
TEMP	✓ Temperature	×	0 1	•	¥	UK

Fig. 3 Load Patterns Define

T

iv) Response Spectrum Function Define

Fig. 4 Response Spectrum Function Define

oad Direction and Diaphragm Eccentricity	Seismic Coefficients
Global X Direction	Seismic Zone Factor, Z
Global Y Direction	Per Code 0.16 ~
Ecc. Ratio (All Diaph.) 0.05	O User Defined
	Soil Type 🛛 🛛 🗸 🗸
Override Diaph. Eccen. Override	Importance Factor, I 1.
ime Period	Factors
O Approximate Ct (m) =	Response Reduction, R 3.
O Program Calc	
User Defined T = 1.2727	
ateral Load Elevation Range	
Program Calculated	
O User Specified Reset Defaults	ОК

Fig.5 Earthquake Load Define

v)

Earthquake load Define

I

Volume: 07 Issue: 04 | April - 2023

Impact Factor: 8.176

ISSN: 2582-3930

IV. RESULTS AND DISCUSSIONS

• For Modal Mass Participations

Step Num	Period	UX	UY	RX	RY	RZ
Unit less	Sec	Unit less	Unit less	Unit less	Unit less	Unit less
1	3.027007	0.17317	0.2622	0.33416	0.22057	2.076E-11
2	3.025912	0.26219	0.17315	0.22056	0.33415	1.148E-10
3	0.86777	0.10681	0.11573	0.01511	0.01395	9.281E-09
4	0.86753	0.11572	0.1068	0.01398	0.01513	2.279E-10
5	0.450913	4.374E-08	3.689E-08	1.97E-08	2.236E-08	2.689E-07
6	0.450718	5.924E-08	7.199E-08	0.000000105	8.39E-08	2.692E-12
7	0.396171	0.00361	0.11919	0.08092	0.00244	2.637E-08
8	0.396159	0.11917	0.0036	0.00244	0.08091	4.916E-08
9	0.304742	2.113E-09	3.969E-09	2.367E-10	4.445E-11	2.377E-10
10	0.304729	4.664E-09	2.917E-09	1.982E-09	3.252E-09	2.179E-07
11	0.281451	2.859E-08	2.889E-08	3.076E-08	3.145E-08	0.5763
12	0.260148	4.511E-08	0.000000066	7.096E-08	4.856E-08	0.00003173

Table 1. Modal Mass Participations Results Indian Code

Table 2. Modal Mass Participations Results ASCE 7-16 Code

Step Num	Period	UX	UY	RX	RY	RZ
Unit less	Sec	Unit less	Unit less	Unit less	Unit less	Unit less
1	3.15306	0.18022	0.25308	0.32502	0.23132	3.449E-11
2	3.151874	0.25305	0.18019	0.23131	0.32501	8.692E-09
3	0.903681	0.1271	0.0959	0.01218	0.01615	9.048E-09
4	0.903227	0.0959	0.1271	0.0162	0.01221	1.986E-11
5	0.470077	1.136E-07	9.097E-08	5.745E-08	7.095E-08	4.201E-07
6	0.469829	1.785E-07	2.312E-07	0.00000027	2.068E-07	7.647E-14
7	0.412905	0.07337	0.05025	0.0338	0.04939	4.103E-08
8	0.412837	0.05025	0.07337	0.04938	0.03379	1.072E-09
9	0.317069	3.947E-10	6.88E-10	5.973E-10	5.267E-10	3.594E-14
10	0.317057	3.725E-09	1.881E-09	1.001E-09	2.365E-09	2.967E-07
11	0.293041	3.261E-09	7.312E-09	9.499E-09	5.347E-09	0.57543
12	0.270697	3.218E-08	4.248E-08	4.389E-08	3.341E-08	0.00003206

• For Self-weight of Chimney

TABLE: Groups 3 - Masses and Weights								
Group Name	Self-Mass	Self-Weight	Total Mass-X	Total Mass-Y	Total Mass-Z			
Text	KN-s2/m	KN	KN-s2/m	KN-s2/m	KN-s2/m			
ALL	46183.88	452909.127	46183.88	46183.88	46183.88			

Table 3. Self-Weight of Chimney Structure by Indian Codes

Table 4. Self-Weight of Structure by ASCE

TABLE: Groups 3 - Masses and Weights								
Group Name	Self-Mass	Self-Weight	Total Mass-X	Total Mass-Y	Total Mass-Z			
Text	KN-S2/M	KN	KN-S2/M	KN-S2/M	KN-S2/M			
ALL	44134.58	432812.416	44134.58	44134.58	44134.58			

Graph 1. Self-Weight Indian vs. ASCE 7-16 Code

V. CONCLUSIONS

In the present study, comparative analysis of RCC chimney structure with earthquake Indian code IS 1893 2016 and an US Earthquake code ASEC 7-16, The chimney structure is analyses for Indian Earthquake zone III and spectral accelerations 0.89 ASCE 7-16 code,

- 1. Chimney Structure Analysis for earthquake code as per ASCE 7-16 or IS 1893 2016 Indian code Modal mass participations in both code is almost same for translational or Rotations.
- 2. The natural time period of chimney is closely spaced, while IS 1893 2016 Indian code time period increased 1.0123 times as compare to ASCE 7-16 Code models.
- 3. Chimney with code ASCE 7-16 self-weight of structure is increased 1.0054 times as compare to IS 1893 2016 Indian Earthquake code.

International Journal of Scientific Research in Engineering and Management (IJSREM)

ISSN: 2582-3930

VI. REFERENCES

- 1. Bhagyashree Vananje, Namrata Shinde, Ashwini Vishe, Harshala Hazare, Mrs. Vaibhavi Mahtre "*Comparison between Steel Chimney and R.C.C. Chimney*" International Journal on Recent and Innovation Trends in Computing and Communication, ISSN: 2321-8169, Volume: 4, Issue: 4, April 2016
- 2. Prof. G.C. Jawalkar, J.I. Tamboli "Second Order Analysis of RCC Chimney for Different Elevation" International Journal of Current Engineering and Scientific Research (IJCESR) ISSN (Print): 2393-8374, (Online): 2394-0697, Vol.-4, Issue-7, 2017
- 3. S. Sowjanya Lakshmi, Dr.K. Hari Krishna "Investigations on Chimneys Using Reinforced Concrete Stacks for Effective Construction and Economy" International Journal of Science, Engineering and Technology Research (IJSETR) Volume 6, Issue 2, ISSN: 2278 -7798, February 2017
- A.P. Pawar, K.S. Sharma, A.J. Thombrey, D.S. Ramteke "Optimization and Analysis of Steel Stacks for Weight Reduction." IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE) e-ISSN: 2278-1684, p-ISSN: 2320-334X PP. 11-18, March 2017
- K Rahul, Divya Vani B, Archanaa "Dynamic Analysis of a RCC Chimney" Indian Journal of Science and Research, 17(2): 412 - 415, ISSN: 0976-2876 (Print) ISSN: 2250-0138(Online), 2018
- C.V. Siva Rama Prasad, Y. Vijaya Simha Reddy, J. Prashanth Kumar, A. Vijay Kumar, S. Sreevastav Reddy "Earthquake and Wind Analysis of a 100m Industrial RCC Chimney" International Journal of Technical Innovation in Modern Engineering & Science (IJTIMES) Impact Factor: 3.45 (SJIF-2015), e-ISSN: 2455-2585 Volume 4, Issue 02, February-2018
- Hari Devender Anchoori, Sesha Srinivas Bollapragada "Effect of Lateral Loads and Soil Structure Interface on Structural Performance of RCC Chimney" International Journal of Engineering and Advanced Technology (IJEAT), ISSN: 2249 – 8958, Volume-9 Issue-1, October 2019
- 8. Manohar, S.N., Tall Chimneys-Design and Construction, Tata MacGraw-Hill, New Delhi, 1985.
- 9. Alok David John, Ajay Gairola, Eshan Ganju, and Anant Gupta "Design Wind Loads on Reinforced Concrete Chimney An Experimental Case Study" The Twelfth East Asia-Pacific Conference on Structural Engineering and Construction, Procedia Engineering 14, 1252–1257, December 2011.
- 10. Yoganantham. C, Helen Santhi. M "Modal Analysis of R.C.C Chimney" International Journal of Research in Civil Engineering, Architecture & Design Volume 1, Issue 2, ISSN Online: 2347-2855, October-December, 2013
- 11. Rajkumar, Vishwanath. B. Patil "Analysis of Self-Supporting Chimney" International Journal of Innovative Technology and Exploring Engineering (IJITEE) ISSN: 2278-3075, Volume-3, Issue-5, October 2013
- 12. K. Anil Pradeep, C.V. Siva Rama Prasad "Governing Loads for Design of a 60m Industrial RCC Chimney" International Journal of Innovative Research in Science, Engineering and Technology, Vol. 3, Issue 8, August 2014
- 13. Ms. Choppalli Kalyani R, Dr. Yogesh D Patil "*Effect of Flue Supports in the Analysis of Multiflue RCC Chimney*" International Journal of Scientific & Engineering Research, ISSN 2229-5518, Volume 6, Issue 3, March-2015
- 14. Amit Nagar, Shiva Shankar. M "Non-Liner Dynamic Analysis of RCC Chimney" International Journal of Engineering Research & Technology (IJERT) ISSN: 2278-0181 Vol. 4 Issue 07, July-2015
- 15. Amitha Baiju, Geethu S "Analysis of Tall RC Chimney asper Indian Standard Code" International Journal of Science and Research (IJSR) ISSN (Online): 2319-7064, Volume 5 Issue 9, September 2016
- 16. Veena R N, Suresh S "Analysis and Design of RC Chimney" International Journal of Mechanical Engineering and Information Technology, Volume 04, Issue 01, January 2016