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Abstract -“Airlines have expanded hub-and-spoke networks, leading to a notable rise in the importance of network-based revenue 

management systems. In their pursuit to maximize overall revenue, an airline's network RM-based system differentiates between 

local passengers using single resources and connecting or flow passengers utilizing multiple resources. Despite being theoretically 

ideal, these systems can be difficult to implement directly in real-world scenarios. The implementation of such systems often relies 

on assumptions that may lead to suboptimal decisions if incorrect. This article aims to outline the primary challenges practitioners 

may encounter during the transition to a network-based RM system. It begins with a brief overview of typical network-based RM 

models and then delves into three areas where this system could potentially lower an airline's revenue: forecasting optimization, and 

distribution. The goal is to elucidate each of these areas and their respective difficulties related to implementing a network RM 

system in detail so that fellow researchers can consider them within the field of network RM while providing practitioners insights 

for addressing these issues during the implementation process within their organization 
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1.INTRODUCTION “ 
1.1 Overview of Revenue Management  (RM) Systems” “ 

Revenue Management systems often seen in the airline 

industry, offer a method for selling inventory (seats) to 

customers. Airlines typically do not charge the same price for 

every seat on a flight; instead, they base prices on the 

customer's willingness to pay (Lapp & Weatherford, 

2013).”The“RM system aims to predict this willingness and 

offers price options accordingly. As an example, it is typical for 

lower fares to become unavailable as the departure date of the 

flight draws near (Oancea, 2015). Airlines set the price for a 

customer's preferred travel route using a two-step process. 

Initially, the RM system forecasts demand and solves an 

optimal seat allocation issue (Capocchi, 2018). It is important 

to highlight that RM systems usually function within a service 

class framework, where they determine the allocation of seats 

to various service classes or buckets” rather than predicting the 

entire elasticity curve of demand (Mukhopadhyay et al., n.d). 

The airline offers five seats in M-class, five in H-class, and 

three in Q-class for purchase. The projected revenue is 

calculated using the average fare of each class (US$500 for M-

class) multiplied by the number of allocated seats (Lapp & 

Weatherford, 2013. These available seats are then made 

accessible through the airline's distribution system. 

The“development of revenue management is partly linked to 

the advancements in information technology infrastructure 

accessible to carriers during implementation (Capocchi, 

2018)). In the past, providing both availability and pricing 

simultaneously was challenging, leading to a two-step process. 

First, the airline's reservation system allocates seats and their 

respective class for sale. Then, the class is matched with a price 

that may or may not correspond exactly with its value. For 

instance, if an airline offers five seats in M-class for sale, they 

would then set an M-class fare within the $400-$600 range. The 

actual fare sale follows this sequence: (i) identify the lowest 

service class available; (ii) determine the associated fare for this 

service class; and finally (iii) complete the transaction (Oancea, 

2015). This two-step method developed as a way to reduce the 

amount of messaging needed between airlines' inventory and 

distribution systems.In this next section, we provide a concise 

overview of this distribution strategy.” “ 

1.2 Overview of Airline Distribution System 

An airline's main business is to sell flight tickets. However, the 

advancement of IT has greatly influenced how airlines market 

and ultimately sell individual tickets (Koo et al., 2011). In a 

perfect scenario, a potential customer wanting to travel from 

Phoenix (PHX) to Detroit (DTW) would inquire with all 

airlines operating on this route for the price of the fare, whether 

it's for a nonstop flight or one with connections. When airline 

distribution systems were first developed, the current form of 

the Internet did not exist; customers purchased tickets through 

traditional travel agents (TAs) and these were booked via a 

global distribution system (GDS )(Wang, 2010). The 

introduction of online (Internet-based) distribution was an 

addition to existing infrastructure rather than replacing the 

established methods (Alamdari & Mason, 2006). 

Realizing that IT systems were not as advanced as they are now 

and considering the significant costs of inventory and pricing 

messaging exchange, we examine how airlines currently 

distribute and sell tickets (Karthik & Mitra, 2016). We assess 

three separate processes: (i) checking for availability, (ii) 

setting a ticket price, and (iii) finalizing the sale. These 

processes are carried out sequentially to complete the ticket sale 

(Koo et al., 2011). We'll go back to our previous scenario of a 

client wanting to travel from PHX to DTW. In order to make 
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the booking, she contacts a TA, which could be a physical 

agency or an online platform, commonly known as OTAs - 

online travel agents.” 

The TA should begin by inquiring about the availability of the 

preferred flight. TAs typically have access to GDSs that 

compile real-time flight availability information from various 

airlines, such as Sabre, Travel-Port and Amadeus (Wang, 

2010). Subsequently, the GDS can be used to check for 

available flights from PHX to DTW. It is important for the TA 

to specify whether it's a nonstop flight or a connection (PHX–

DFW–DTW), depending on the airline preference. Following 

this request, the GDS will provide information about which fare 

classes are available for purchase. An example of this response 

is illustrated, where different letter/number combinations 

indicate specific fare classes (e.g., A9 represents class A with 9 

available seats). Based on the provided information, it is 

evident that the availability of flight options and fare classes is 

determined through the use of Global Distribution Systems 

(Lapp & Weatherford, 2013). These systems allow travel 

agents to access real-time information on flight availability and 

fare classes from multiple airlines, enabling them to provide 

customers with up-to-date options (Archdale, 1993) 

In the next step, the TA needs to inquire about the price of a 

specific fare class. For instance, they may find that service class 

K is available for the PHX DTW nonstop flight,  To obtain the 

price,“the TA must request from the GDS system for the 

published price for K-class. The GDS interprets these filed 

fares and matches them with their corresponding”classes before 

providing a price for the itinerary as depicted.. 

In the last stage, the TA will then proceed to reserve the specific 

travel plan, such as a flight from PHX to DTW in service class 

K. With multiple transactions taking place, it is possible that 

other TAs may have made additional bookings between 

checking for availability and pricing and making the actual sale 

(Capocchi, 2018). In these situations, when requesting the final 

purchase command, “the reservation system may indicate that 

a K-class fare for PHX–DTW is no longer available. At this 

point, the TA would need to restart the process by asking for 

availability and pricing in a higher fare class or exploring 

alternative routes or airlines. These steps illustrate the process 

by which travel agents utilize Global Distribution Systems to 

access real-time flight availability and fare class information 

from multiple airlines (Capocchi, 2018).”  “ 

1.3 Sample Revenue Management  approach “ 

An RM system is tasked with deciding how many seats to 

allocate for each service class (Gallego & Topaloğlu, 2019). In 

the previous section's example, a combination of forecasting 

and optimization” was used to determine that one seat should 

be available for purchase in the K service category. We will 

now present an illustration showing how an inventory 

management system would determine the appropriate number 

of seats to allocate for each service class. 

Suppose an airline typically begins managing a flight 150 days 

before it departs. For instance, let's consider the case “of flight 

number 1725 from PHX to DTW. When dealing with a single 

flight using a 100-seat aircraft, the RM system must determine 

the distribution of seats among different service classes, also 

known as class-protection levels. Based on historical demand 

data (Lapp & Weatherford, 2013), for example, the system may 

decide to allocate 50 seats in the M-class, 25 in the H-class, and 

another 25 in the Q-class. This allocation aims to align fare 

offerings with customers' willingness-to-pay tendencies 

demonstrated by an elasticity curve.” 

In addition to determining the number of seats available for sale 

in each class, airlines also employ other methods to limit access 

to inventory (Birbil et al., 2014). For instance, an airline may 

impose a rule on service class Q that demands this fare be sold 

30 days before departure. Once this deadline has passed, 

customers can no longer buy this fare, even if the RM system 

indicates some inventory is still available. Other methods for 

restricting access include limitations based on days-to-

departure, specific days of the week, minimum stay 

requirements and blackout dates (Capocchi, 2018). 

It is important to highlight that RM systems typically do not 

take into account other fencing methods. In other words, the 

RM system's objective is to calculate the seat allocation within 

a specific class category without taking into consideration 

pricing restrictions affecting ticket sales (Huang & Liang, 

2011). This further emphasizes the distinct decisions made 

regarding setting seat availability based on service classes and 

determining the actual price for the next ticket sale (Capocchi, 

2018).” 

2. REVENUE MANAGEMENT  STRATEGIES 

Airlines typically employ one of two business approaches: hub-

and-spoke or point-to-point. In a point-to-point model, airlines 

focus on transporting passengers directly from a specific origin 

to a particular destination (Lederer & Nambimadom, 2014). On 

the other hand, in a hub-and-spoke system, airlines use feeder 

flights to transport passengers to a central hub and then provide 

connecting service to various destinations through specific 

paths known as origin–destination pairs (Birbil et al., 2014). 

Major legacy carriers often adopt the hub-and-spoke model, 

while many low-cost carriers favour the point-to-point strategy. 

Making inventory decisions that align with the chosen business 

strategy is crucial for maximizing revenue (Bieger & Wittmer, 

2011). One common revenue management strategy is to 

allocate a certain number of seats in each fare class based on 

historical demand data and customers' willingness-to-pay 

tendencies (Lapp & Weatherford, 2013). 

2.1 Leg-based revenue management 

Carriers opting for a point-to-point approach typically utilize a 

leg-focused RM strategy. In this scenario, the carrier makes all 

RM decisions at the level of individual legs, forecasting 

demand and service class at that level (Gallego & Topaloğlu, 

2019). Seat allocations are then determined based on an 

optimization model at the leg-class level, often using an 

Expected Marginal Seat Revenue (EMSR)method (Babić et al., 

2020). We will now expand our original example to illustrate 

the determination of service class allocations. Using this 

demand forecast, we can then determine the anticipated value 

for each seat on the specific flight. If the plane had a total of 10 

seats, then according to the algorithm, seven seats would be 

allocated to M-class and three seats to H-class for the optimal 

http://www.ijsrem.com/
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solution. Therefore, this flight's availability would include 

seven seats in M-class and three seats in H-class. 

Figure 1: PHX–DTW travel network example 

 

2.2  Network-based Revenue management 

Carriers “that use a hub-and-spoke model typically employ a 

network-informed RM system. This type of system conducts 

both forecasting and optimization at the level of origin-

destination (OD) classes (Oancea, 2015). In the given scenario, 

rather than having a direct service from PHX to DTW, an 

airline with a hub in Chicago requires passengers to first fly 

from PHX to ORD and then proceed on from ORD to DTW. 

This type of carrier utilizes a network-aware system and must 

make more intricate forecasts by predicting passenger routes 

through the ORD hub (Hsiao & Hansen, 2011). Furthermore, if 

this same carrier introduces the option for passengers to travel 

from PHX to Dallas before continuing on to DTW, it will need 

to forecast both the PHX–ORD–DTW and PHX–DFW–DTW 

routes. The upcoming section 'Forecasting issues' will outline 

some challenges associated with network-based forecasting.” 

Additionally, apart from making forecasts for OD and service 

class levels, the carrier is also required to conduct optimization 

at the network level. For network-based revenue management, 

carriers need to forecast demand and optimize seat allocations 

at the level of origin-destination classes (Huang & Liang, 

2011). Similarly to the previous example based on legs, the 

carrier needs to determine which inventory classes should be 

offered for the PHX–DTW itinerary. Carriers utilize network 

optimization techniques in order to make such decisions. A 

brief overview of some commonly used network-based 

optimization models found in practice will be provided in the 

next section. “ 

3. NETWORK REVENUE MANAGEMENT  

MODELS 

Airline business models have developed over time to depict the 

structure of their networks, such as the hub-and-spoke model. 

That is, instead of determining the number of seats to sell for 

each leg in the network, these models are designed to make 

optimal network decisions(Birbil et al., 2014). In this section, 

we present the five common network RM approaches and show 

how each one of these attempts to solve the problem of 

maximizing network revenue, including the (i) deterministic 

linear program (LP), (ii) stochastic LP, (iii) dynamic program 

(DP), (iv) probabilistic bid price (ProBP) and (v) displacement-

adjusted virtual nesting (DAVN) approach(Lapp & 

Weatherford, 2013). 

Before presenting each of the network RM models, we explain 

the idea of a bid price or the leg-based indifference point for 

passenger transport. This term is commonly used in most 

network RM models to denote the next acceptable fare for a 

specific flight segment. Essentially, the airline sets a (bid) price 

that represents the minimum amount required from customers 

to secure accommodation on a flight (Hsiao & Hansen, 2011). 

The notion of bid prices is expanded to cover multi-leg 

itineraries, requiring customers to compensate at least an 

aggregate amount equal to all bid prices across each flight 

segment they request (Karthik & Mitra, 2016). 

The aim of the network RM models described in this section is 

to calculate the offer price for the upcoming seat on each flight 

segment within the network.”  “ 

3.1 Deterministic Linear Program 

The deterministic LP”is potentially the most straightforward 

method for addressing a network RM issue. Its goal is to 

enhance income by choosing particular units of (passenger) 

demand for inclusion in the solution. “The optimization also 

produces leg bid prices that can be utilized to calculate a total 

sum of bid prices, or hurdle rate, for a specific itinerary 

(Kunnumkal et al., 2012). Two pieces of information are 

needed to formulate this optimization problem: (i) a demand 

forecast and (ii) remaining capacity (seats) for each of the flight 

legs in the network. As the name of this network RM approach 

suggests, any randomness around the forecast of demand is not 

taken into account when solving the optimization problem 

(Oancea, 2015).” “ 

The deterministic LP formulation is expressed as The set of 

all flight legs(L), The set of all itineraries(I). The set of all 

fares(F) and parameters (δil) A parameter that is 1 if itinerary i 

uses flight leg l and is 0 otherwise, (λi) A parameter that 

indicates the fare of itinerary i,(di) A parameter that indicates 

the demand for itinerary i, (cl) A parameter that indicates the 

remaining capacity on leg l. Variables are (xi) A variable that 

is a positive integer if itinerary i is selected for inclusion in the 

solution. sub to constraints Demand Constraint (1) Capacity 

Constraint (2) (Lapp & Weatherford, 2013). The formulation 

maximizes revenue by selecting itineraries with the highest 

reward, considering demand and capacity limitations. 

Constraint represents the deterministic demand constraint 

where xi must be less than or equal to the demand forecast. 

Constraint depicts the capacity limit based on flight legs used 

in a particular itinerary; passenger demand counts towards 

flight capacity. Finally, Constraint mandates that the x variable 

must be an integer, limiting transportation to whole passengers 

only (Lapp & Weatherford, 2013). This version of the network 

RM model is straightforward, but it efficiently calculates bid 

prices for all flights in the network. These bid prices can then 

guide decisions on which fares to make available for purchase. 

Interestingly, these bid prices are derived as a result of solving 

the linear program relaxation (Oancea, 2015). 

Solving the integer programming representation mentioned 

earlier as a linear program offers shadow prices for the capacity 

restriction. According to linear programming principles, the 

http://www.ijsrem.com/
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shadow price for this capacity limitation signifies an increase 

in the objective function for each additional unit of capacity 

(Bridgelall, 2022). To put it differently, the shadow price 

reflects the amount a traveler needs to pay in order to secure the 

next seat on a specific flight segment. In simple terms: if a 

passenger is prepared to offer this particular amount as 

compensation, then the airline ought to be willing to 

accommodate this passenger on that leg of travel (Oancea, 

2015). To calculate the cost for the next seat on a complete set 

of flights (known as an itinerary), the bid prices can be 

combined to create a threshold value for that specific journey. 

It's important to highlight that including shadow prices may not 

always result in optimal compensation for the itinerary (Milne 

et al., 2018). However, this is currently a widely adopted 

method among airlines.” “ 

3.2 Stochastic Linear Program model 

The deterministic LP incorporates the anticipated value of the 

demand prediction in creating the demand constraint. Since 

demand predictions are seldom completely accurate, the 

stochastic LP takes into account the discrepancy related to the 

demand forecast. The main aim of the stochastic LP is to 

optimize the expected revenue of the network while upholding 

identical constraints as those in place for a deterministic LP 

(Weatherford & Khokhlov, 2012). 

Building upon the symbols introduced in the prior section, we 

will now present the expression of the stochastic linear 

programming model as proposed by Williamson in 1992. 

Additional parameter f(xi) A parameter that indicates the 

random demand distribution for itinerary i. The stochastic LP 

formulation remains largely similar, with the only notable 

difference being in the adjustment of the objective function. In 

contrast to the deterministic LP, in this case, ensuring 

adherence to the demand constraint is incorporated into the 

objective function. Consequently, only two constraints are 

required: Constraint for observing remaining seat capacity and 

for maintaining integrality on decision variables (Lapp & 

Weatherford, 2013). Similar to solving the deterministic LP, 

solving the stochastic LP also involves obtaining bid prices for 

each flight leg in the network from the dual variables of the 

capacity constraint. The stochastic LP, like its deterministic 

counterpart, is based on certain assumptions such as 

instantaneous demand arrival. In the following sections, we 

will explore how these assumptions impact and influence bid 

prices. (Kemmer et al., 2012). 

3.3 Dynamic program model 

The DP approach contrasts with the use of linear programming 

approaches. In this methodology,  Decisions are made at 

specific time intervals throughout the flight's booking horizon 

in this approach. We now examine how the DP methodology 

can be applied to establish a bid price control mechanism for 

an airline network based on work done by,  Consider the airline 

network with m legs and n OD itineraries with p fare classes 

for each itinerary (Weatherford & Khokhlov, 2012).. The bid 

price is determined through a dynamic programming approach, 

where decisions are made at discrete time intervals throughout 

the booking horizon of a flight (Topaloğlu, 2009). 

Similar to deterministic and stochastic linear programming, the 

objective is to determine a range of bid prices for each: (i) time 

period, (ii) itinerary, (iii) remaining capacity and (iv) remaining 

demand. However, the dDP approach creates a bid price 

structure that is more intricate than the linear programming 

approach. The LP generates a single value for each leg in the 

network, regardless of remaining capacity, remaining demand, 

or time period (Weatherford & Khokhlov, 2012).” 

The dynamic programming problem can be segmented into 

stages (time periods), where a decision needs to be made at each 

stage that impacts the objective function. In the context of 

airline networks, the decision involves selecting between 

various itineraries/fare classes available, with the goal being to 

maximize total revenue (Oancea, 2015). Time is measured in 

reverse (time t represents a point t periods from the end of the 

horizon) and denoted by 'k' as illustrated in Figure 2. At each 

time period, we analyze and graph all possible decision 

outcomes. Each stage is associated with a number of states, 

representing the various possible conditions of the system at 

that stage.“The state of the airline network is described by a 

vector x indicating remaining leg capacities and matrix D 

denoting remaining demands for itinerary i and fare class g. 

The policy decision at each stage transforms the current state 

into a state associated with the beginning of the next stage. If 

itinerary i at fare class g is sold (accepted), the network's state 

changes from x to x−Ai and from dig to dig−1. The solution 

procedure aims to find an optimal policy for all stages, 

prescribing decisions for each possible state. An optimal path 

involves deciding which itineraries to accept in order to 

maximize revenue while considering demand and capacity 

constraints within the airline network problem (Lapp & 

Weatherford, 2013).” 

Figure 2: Flow of time in standard DP decision-making. 

 

The“DP method allows for finding all the best routes for the 

airline network (various combinations of selling different 

itineraries/fare classes), leading to maximum potential revenue 

(Kemmer et al., 2012). Bid prices are then computed only for 

states that are part of one of these optimal routes. This differs 

significantly from the LP solution and is far more intricate. The 

LP solution may involve two instances of itinerary a and three 

instances of itinerary b, whereas the DP needs to list out all 

possible sequences (Bilegan et al., 2014). For instance, among 

many possible sequences we have: (i) AABB, (ii) ABABB, (iii) 

BBABA and (iv)BBBAA. The deterministic DP method 

involves the next stage's state being fully”determined by the 

current stage's state and policy decision. In contrast, in the 

probabilistic scenario, the model assumes a probability 

distribution for the next state. 

3.4 Probabilistic bid price model “ 

In contrast to conventional network-based approaches, there 

are heuristic RM methods designed to incorporate "network-

http://www.ijsrem.com/
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awareness" without explicitly modeling actual revenue flow 

between connecting itineraries in a network. Solution strategies 

that utilize this approach are commonly known as "intermediate 

OD" solutions (Wright et al., 2010). Contrary to the 

conventional network RM models that were previously 

discussed, intermediate OD solutions do not need a complete 

forecast of demand at the itinerary level (Birbil et al., 2014). 

For instance, instead of predicting the service class demand 

from DTW to Los Angeles through a hub in PHX, intermediate 

OD solutions focus on forecasting demand at the individual 

flight leg level: DTW–PHX and PHX–LAX. Additionally, this 

approach aims to incorporate network awareness into these 

forecasts by also considering flight leg-level demand. One 

example of an intermediate OD approach is the ProBP 

method.” “ 

Not all airlines have the capability to conduct a comprehensive 

"origin/destination" forecast, but they still function within a 

hub-and-spoke system where passengers mainly make 

connections at major hubs (Oancea, 2015). In situations where 

forecasting is conducted for specific flight legs, airlines adjust 

the forecast to accommodate some of the traffic flow across 

those legs. It's worth noting that all models discussed so far 

have focused on optimizing revenue management based on 

given forecasts. The ProBP approach operates at both the 

forecast and optimization levels of a network revenue 

management system (Lapp & Weatherford, 2013). To elaborate 

on this method, let's start with an illustration. The DTW–LAX 

OD pair using the DTW–PHX leg for forecasting the quantity 

of passengers based on their service class. Another forecast is 

conducted specifically for estimating demand on the PHX–

LAX leg. The ProBP approach involves adjusting past 

bookings that contribute to the forecast.” 

If we make a booking from Detroit (DTX) to Los Angeles 

(LAX) for $400. That is, the passenger paid a total of $400 

to fly the full itinerary. Now In the realm of leg-based 

bookings, we are unable to allocate a $400 reservation to each 

individual leg such as DTWPHX and PHXLAX for forecasting 

purposes. If this were done, the forecaster would start 

predicting $400 bookings separately for each leg, suggesting a 

total revenue potential of $800, which one would be inaccurate. 

Over the long run, this approach would imply a continuous 

push toward higher service classes (Oancea, 2015).“The crucial 

element for the ProBP lies in an appropriate allocation process. 

While neither leg individually yielded $400, both contributed 

to the total value of $400. For instance, a RM system might 

determine that the DTWPHX leg produced $250 in value, while 

the PHXLAX leg generated $150 worth of value (Lapp & 

Weatherford, 2013). The forecaster will identify the true impact 

of each component on the network 

Figure 3: DTW–LAX flight connection through the PHX 

hub. 

 

  

 

Figure 4:  Sample prorated method for the previous DTW – 

LAX schedule.” 

 

Carriers experienced with the conventional EMSR method for 

forecasting and optimization on a leg-by-leg basis can employ 

a similar approach of expected revenue value to set bid prices 

for each leg. In the ProBP approach (Kemmer et al., 2012), the 

RM system utilizes a probabilistic proration function to 

distribute historical OD fares across individual legs. 

Subsequently, carriers will apply their forecasts to calculate 

demand expectations and error values. Combined, the leg-

based fare times the probability will generate a leg-based 

EMSR value (Oancea, 2015). The EMSR approach 

traditionally“involves using the EMSR values to calculate the 

actual availability of seats for each service class. In the ProBP 

method, the EMSR value is determined based on the fare of the 

itinerary. Once the ProBPs are determined, one would simply 

add the bid prices across all the legs that are used to create a 

future itinerary (Lapp & Weatherford, 2013). For example, 

suppose that we have two flights, one from DTW to PHX and 

a subsequent one from PHX to San Francisco (SFO). In this 

instance, we will utilize the EMSR values from each individual 

flight segment to calculate the total OD bid price for the next 

available seat on this route.The advantage of using the ProBP 

approach lies in its simplicity, as it leverages familiar existing 

concepts for many yield managers. Therefore, this heuristic 

network RM control method has a straightforward 

implementation process.”    “ 

3.5 Displacement-adjusted virtual nesting model 

To apply the ProBP method mentioned earlier, various 

proration schemes can be utilized. Common options include Y-

fare or mileage proration, which allows the RM system to 

compute the revenue contribution of each leg in the system. 

However, neither of these proration methods captures the actual 

displacement of down-line traffic. In simpler terms, there is no 

link between Y-fare (or mileage) and how likely a leg is to have 

a higher (or lower) bid price (Oancea, 2015). Therefore, a more 

advanced approach involves using actual network displacement 

http://www.ijsrem.com/
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for proration. Williamson demonstrates this in his DAVN 

method that utilizes historical OD fare and actual displacement 

at booking time for proration purposes. With adjustments made 

to forecast full itinerary fares on a per-leg basis, optimization 

can then calculate leg availability (Wittman et al., 2018). As 

previously described, traditional approaches like EMSR 

provide leg-level availability through implementations such as 

EMSRa (partitioned versus nested class), or EMSRb (super 

buckets). This however only generates availability at the leg 

level; thus creating availability at the OD level requires carriers 

to adopt one of several outlined approaches next (Kemmer et 

al., 2012).” 

Using the "limiting service class" approach is one way to 

generate OD availability. For example, if the DTW-PHX leg is 

restricted up to service class Q and H-class is the lowest 

available class on the PHX-LAX leg, then the presented price 

for customers would be based on a service class H price point 

since it holds more value than Q-class on both legs. A 

difference involves using the EMSR method to generate bid 

prices for each leg in order to produce availability for specific 

origins and destinations. For instance, if the incremental seat 

value for the DTW-PHX leg is $120, and the EMSR value for 

the PHX-LAX leg is $150, a bid price of $270 could be 

formulated by the reservation system. This would then result in 

an appropriate pricing point being offered for the DTW-LAX 

itinerary. As demonstrated in this section, the DAVN approach 

shares a major advantage with the ProBP in terms of its 

straightforward forecasting method (Wittman et al., 2018). In 

DAVN, the leg forecaster seeks to find a balance point between 

local and flow passengers that generates displacement-adjusted 

value for the leg. Additionally, research has confirmed the 

effectiveness of both DAVN and ProBP through simulation 

within a competitive large airline network. The results 

indicated revenue increases of 1–2 percent compared to leg 

EMSR when network load factors were between 78–87 per cent 

(Lapp & Weatherford, 2013). 

4. REVENUE FORECASTING ISSUES   “ 

4.1 Overview of airline forecasting 

The RM system's input consists of a demand estimate for each 

upcoming flight to be sold. This estimate includes two key 

details: (i) customers' willingness-to-pay and (ii) time of 

arrival(Cleophas et al., 2019). In an ideal scenario, airlines 

would prefer precise forecasts in the form of an elasticity curve, 

within the 'Sample RM approach' section, for a specific future 

itinerary period. With such accurate information, airlines could 

efficiently organize customer willingness-to-pay and maximize 

consumer surplus. However, real-world implementation of this 

process is far more intricate than this idealized concept 

suggests(Vinod, 2021). 

Before the advent of network RM models, predictions were 

made at the flight leg/class level. This involved creating a 

statistical forecast based on historical demand for a specific 

future flight and class(Poelt, 2011). For instance, for a 

particular flight (DTW–PHX on Friday, 20 December at 17:35) 

and class (e.g., M), forecasters would estimate the expected 

demand and its corresponding margin of error (variance). These 

forecasts typically relied on past demand data from previous 

departures of the same flight, in addition to considering factors 

like day-of-week(Huang & Liang, 2011).Typically, forecasting 

methods also accounted for trend and seasonality elements to 

adjust projections for cyclical variations. example 

unconstrained demand profile for flight 239 from DTW to PHX 

We observe that the unrestricted demand signifies the 

anticipated remaining demand from the forecast time until the 

day of departure. This demand measure is frequently known as 

"demand-to-come" or pickup among different airlines. The 

prediction for this "demand-to-come" is typically made at 

various detailed levels as Individual Flight Leg, Directional 

Level (e.g., DTWPHX vs PHXDTW), Day-of-the-week (e.g., 

Monday vs Saturday), Time of day (e.g., Morning vs 

Afternoon), Class of Service (e.g., Y-class vs H-class) 

To create a forecast like this, it's important to balance the level 

of detail with the margin of error. As the granularity increases, 

so does the potential for noise around the signal (i.e., error) 

(Oancea, 2015). For instance, a forecast that includes day-of-

week, time-of-day and price point may only be based on 52 

observations in a year (such as all morning flights on Fridays 

for service class H). When setting up an RM system, it's crucial 

to evaluate this trade-off between more detailed forecasts and 

the possibility of increased noise (Lapp & Weatherford, 2013).   

” 

“The network RM models discussed previously (in the section 

titled 'Network RM models') all rely on a demand prediction as 

an input. However, in the case of network RM models, this 

forecast necessitates a higher level of detail - specifically at the 

full origin/destination level. This includes determining how 

many travellers use the DTW-PHX flight to travel from DTW 

through PHX to reach Burbank, California. We will refer to a 

forecast at this passenger origin/destination level as an OD 

forecast. Consequently, along with other levels of granularity 

such as day-of-week and time-of-day, we further divide the 

forecast based on another dimension. For instance, for a flight 

from DTW to PHX, we now predict the OD composition of 

these passengers. It's important to note that in this scenario, 

DTW represents one end point and PHX serves as the central 

location in a hub-and-spoke network; therefore all passenger 

itineraries originate at DTW. 

To provide an example of this level of detail, let's revisit the 

journey taken by flight Traveling from Detroit to Phoenix on 

December 20, 2023. In a network RM system, it is essential for 

the forecaster not only to predict the number of passengers 

taking the DTW–PHX flight and then connecting to the PHX–

SBA flight but also their likely service class (B, M or H). 

Considering that a typical aircraft accommodates around 100 

passengers and that DTW–SBA accounts for approximately 

2.17% of traffic from DTW–PHX, forecasting passenger 

numbers for specific routes like DTW–SBA can result in 

expectations exceeding two passengers with associated error 

values. Therefore, when implementing a network RM system, 

it is important to consider potential inaccuracies caused by 

increased forecast errors (Cleophas et al., 2019)” 

5. OPTIMIZATION ISSUES 

In this part, we will discuss possible challenges from the 

perspective of optimization when incorporating a network RM 

system. Specifically, we will utilize our knowledge of the 
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network RM strategies outlined in the 'Network RM models' 

section and our practical experience in deploying such systems 

for major international carriers. Similar to addressing 

forecasting issues, it is recommended that readers assess the 

implementation of a network RM system and devise carrier-

specific resolutions for each mentioned challenge. “ 

5.1 Bid price generation 

In the "Deterministic LP" section, RM optimization models 

generate bid prices for each leg of the network. The shadow 

price of flight capacity represents the value that an airline may 

accept for transportation on a single flight leg (Karthik & Mitra, 

2016). For example, a passenger flying from PHX to ORD has 

a bid price of $210 determined by the airline's RM optimizer. 

If another passenger wants to fly from PHX to DCA via ORD, 

the airline needs to calculate a bid price for both legs. In this 

case, it would be $490 ($210 from PHX to ORD and $280 from 

ORD to DCA).” With this method, the airline can establish a 

minimum acceptable ticket price for all the routes available in 

its network. However, adding bid prices together to create these 

fares may become less precise over time as more bookings are 

made before any further adjustments are made (Wittman et al., 

2018). The shadow price, calculated as a by-product of the 

optimization, reflects the opportunity cost of a unit change to 

the capacity constraint. However, its effectiveness is limited 

within a certain range of changes in the right-hand side. If this 

range is exceeded, it necessitates additional pivot steps to 

establish a new optimal basis (Oancea, 2015). For example, an 

LP solution may indicate that the shadow price for a specific 

leg is $210 and is valid for -1 seat to +3 seats; beyond this 

range, the shadow price no longer applies. 

While having only the bid price of the next seat available may 

be“adequate for some airlines, it may not be enough for all. 

Take a major airline that handles 300,000 bookings per day or 

3.5 bookings per second. Even larger airlines may process 

around 15–45 bookings per second across their extensive 

networks. Therefore, the likelihood of a shadow price 

remaining valid for an entire day is relatively low and an 

updated solution to this problem must be found 

quickly(Kemmer et al., 2012). For a large network, this 

expectation is rather unrealistic and addressing the validity of 

bid prices becomes essential. Furthermore, practitioners should 

consider various scenarios in which bid prices become outdated 

and assess the potential revenue implications of such 

situations(Gallego & Topaloğlu, 2019).  ” 

5.2 Bid price gradient “  

To address with the problem discussed in the preceding section, 

certain carriers create estimations of a bid price curve. This 

involves calculating a form of distribution around the bid price 

and utilizing it to progress the availability calculation without 

having to recalculate the actual bid price. Essentially, this 

assumes that changes in bid prices remain fairly consistent 

regardless of other network alterations (Birbil et al., 2014). 

The network RM systems discussed in the section on "Network 

RM models" are designed to calculate the bid price based on 

the current system state, which includes factors like the number 

of seats booked, remaining capacity, and expected/achievable 

demand for a flight (Huang & Liang, 2011). When working 

with a network RM model, it's important to note that the bid 

price is specific to each individual seat and should ideally be 

recalculated every time a new booking occurs (Lapp & 

Weatherford, 2013).  

To deal with the issue of accurate and up-to-date bid price 

values, some network RM strategies have incorporated 

methods to estimate the bid price curve. This involves 

predicting the progression of bid prices based on historical data 

as bookings are made. While there may be variations in how 

different network RM systems carry out these approximations, 

the underlying concept remains consistent(Chaneton & 

Vulcano, 2011). The current bid price is determined using a 

network optimization model, which is then applied to an 

approximation curve that offers bid prices for all remaining 

seats on a specific flight(Capocchi, 2018). These curve 

approximations should be developed at the flight leg level, 

taking into account all relevant characteristics essential for 

forecasting purposes such as market conditions, day-of-week 

trends, time-of-day patterns etc(Li et al., 2014).” 

5.3 Bid price approximation within a Global Distribution 

System “ 

Regardless of the approach used to compute a series of bid 

prices for a specific route in the network, these actual amounts 

may not be directly usable within GDSs(Wittman et al., 2018). 

As previously mentioned, airlines use GDSs to publish their 

inventory (availability). These GDSs are contractually 

obligated to offer seats by fare class that match what the host 

airline has available. However, due to limitations in many GDS 

systems, representing bid price values becomes quite restrictive 

and necessitates certain approximations. In essence, while the 

solution to the network RM problem may generate a set of bid 

prices, a carrier may encounter challenges when trying to 

provide these exact bid prices via the GDS due to system 

constraints and hence must make certain approximations 

(Capocchi, 2018).” 

Approximating bid price curves is a commonly used method to 

ensure that the bid price value increases as the number of 

available seats decreases. However, current reservation 

systems face challenges in storing complete bid price curves for 

flights. For instance, even if all the bid prices for 50 remaining 

seats on a specific flight could be calculated, existing 

reservation systems lack the capability to store these values 

during availability calculations. A major airline operating 3000 

daily flights bookable up to 365 days in advance would need to 

store an immense amount of bid prices - approximately 

109,500,000 - assuming an average of 100 seats per flight. 

While this volume can easily be stored by modern computers, 

reservations systems still require adaptation to accommodate 

storage needs for bid price values. Therefore, Global 

Distribution Systems offer methods to approximate sets of bid 

prices instead (Lapp & Weatherford, 2013). “ 

In one approach, the GDS allows the carrier to provide a linear 

approximation along with a notification parameter to determine 

when a new approximation should be fetched. The carrier 

provides an intercept and slope of the bid price curve (e.g., $200 

and $10). For each incremental booking, the bid price increases 

by $10 from an initial value of $200. Additionally, the carrier 

may set the notification parameter to five bookings so that once 
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the bid price reaches $250, a new intercept and slope are 

requested from the carrier. With this scheme, determining 

piecewise linear approximation of bid prices is necessary for 

optimizing upload schedules and minimizing revenue leakage. 

In a perfect scenario, a carrier would aim to share the complete 

pricing curve with each of its stakeholders. GDSs. This way, a 

linear approximation of a likely non-linear curve could be 

avoided (Huang & Liang, 2011).” “ 

6. DISTRIBUTION ISSUES 

6.1 Pricing versus inventory 

As outlined in the 'Distribution overview' section, airlines make 

separate inventory decisions from the prices set for specific 

inventory classes. This means that an airline sets a certain fare 

class value it is willing to sell. After a passenger selects an 

itinerary and respective fare classes, the airline (or GDS) will 

then provide a price for the specific itinerary linked to, but not 

necessarily determined by, the class of service offered to the 

customer (Capocchi, 2018). 

Before we delve into the issue of separating pricing from 

availability, let's consider an illustration of how network 

availability is established. If a bid price for the LAX to PHX 

route at $320 and another bid price for the PHX–FLL route at 

$185. To generate OD availability, these bid prices are 

combined to form a hurdle rate of $505. An airline would then 

identify the lowest class fare that yields at least $505 in 

revenue. For instance, if the airline offers an H-class fare for 

$510 in this scenario, it exceeds the required hurdle point and 

thus service class H becomes available for purchase. Based on 

this network RM model calculation (Kemmer et al., 2012), each 

additional seat sold beyond the next one contributes to a 

calculated gradient - assuming a linear gradient here as an 

example with increments of $10 per seat. Consequently, 

subsequent hurdle points (for this specific itinerary) will be set 

at increasingly higher fares such as $515 and $525 until all 

seats on the respective aircraft are occupied. Note that once it 

reaches $515, exceeding no longer applies to the H-class fare; 

therefore only one seat in service class H becomes available 

while achieving further availability necessitates higher 

fare classes (Lapp & Weatherford, 2013)” 

At this stage, the RM system has translated a specified 

minimum rate into a specific fare category. The pricing system 

then determines the exact price for this travel route. For 

instance, the airline might have introduced a new cost of $520 

for an H-class ticket from LAX to FLL. It's important to note 

that depending on how the RM system generates availability, 

the calculated hurdle point may be compared with either a 

historical value (e.g., $510) or with the currently listed fare of 

$520. This disparity between availability and pricing arises 

because an airline cannot set a price for every individual hurdle 

point value that can be computed. 

From a perspective of reconciliation, the filed fare is crucial for 

creating a historical record of bookings that can be used for 

future forecasting. For example, if a customer buys an H-class 

fare for $520, it's important to reconcile this with the actual 

amount paid in order to ensure that the demand profile aligns 

with its true value. While most systems may only capture 

booking information based on fare classes, incorporating the 

actual paid fare into class valuation is essential for future 

network revenue calculations, especially within OD systems 

where different products within a fare class may have varying 

prices (Oancea, 2015). “ 

7.   COMPARATIVE ANALYSIS ON MATHEMATICAL 

MODELS AND CONSIDERATIONS. 

7.1 Analyst interaction with Revenue Management  

systems  

One of the primary drawbacks of pure network RM systems is 

the absence of evident external factors that can be applied to 

the system. Airlines typically utilize yield managers who, quite 

justifiably, make decisions to influence the RM system in order 

for it to respond to events that may not be within its direct 

awareness (Capocchi, 2018). For instance, if a major sporting 

event is taking place in Atlanta, flight analysts managing traffic 

at ATL might need to modify the RM system's settings to 

capitalize on potential additional revenue from travelers 

coming specifically for the sports event. An analyst can 

influence the RM system at different points in the business 

process, like pre-forecast or post-forecast steps. Similarly, they 

can also affect pre-optimization or post-optimization steps. 

Each case can be broken down further to determine whether the 

analyst should influence the system at a leg level or full OD 

itinerary level (Kemmer et al., 2012).” “Thus far, all analyst 

impacts have been centered on adjusting optimization outputs 

further down the line. In contrast, in some carriers' business 

processes, analysts are required to operate at the forecast level. 

Instead of modifying bid prices or OD fare values, analysts 

adjust the forecasts that serve as input into the optimization 

system. With this approach, analysts can avoid downstream 

effects on other parts of the network (i.e., they bear 

responsibility only for expected traffic on their managed 

flights) (Oancea, 2015). However, they must effectively 

manage their forecast expectations, particularly at the 

individual OD level (Lapp & Weatherford, 2013). If managing 

individual ODs is too detailed, forecast influences can be 

aggregated to the flight-leg level where analysts simply tweak 

aggregate demand expectations. 

There are numerous methods through which an analyst can 

engage with a RM system. This engagement is commonly 

influenced by the current business procedures(Kemmer et al., 

2012). When introducing a network RM system, it's essential 

to create a business process that facilitates the analyst's 

comprehension of such a system, allowing for effective 

decision-making as needed (Wright et al., 2010).
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Table 1. Analyst Intervention 

Analyst 

Intervention 

Point 

Network Level Impacted Description 

Pre-forecast Flight-leg or OD 

Analysts can adjust demand forecasts, either at the individual OD level or aggregated to the 

flight-leg level. This approach allows them to manage expectations for specific routes or 

origin-destination pairs. 

Post-forecast Flight-leg or OD 
Analysts can modify forecasts after the initial generation by the system. This provides 

flexibility to adapt to unforeseen circumstances. 

Pre-

optimization 
Leg 

Analysts can directly influence bid prices for specific legs within the network. This can be 

beneficial for situations like major sporting events in a particular city, where analysts might 

increase bid prices to capitalize on potential revenue opportunities. However, overriding a bid 

price on a single leg might not effectively control specific ODs that utilize that leg. 

Post-

optimization 
Leg or OD 

Analysts can adjust OD fare values or override system-generated values for specific fares. For 

example, they might restrict access to a particular fare class on a route if necessary. 

Table 2. A Review of Mathematical Models Used in Airline Network Revenue Management 

 

Model Focus Key Points Strengths Weaknesses Applications Sources 

Deterministic 

Linear 

Program 

(DLP) 

Optimizing 

revenue under 

fixed demand 

- Well-suited for predictable 

demand. - Limited in 

capturing demand uncertainty 

and dynamic pricing. - Useful 

for baseline solutions or 

network design. 

- Easy to 

implement and 

solve. - Provides a 

clear 

understanding of 

optimal solutions 

for fixed demand 

scenarios. 

- Does not reflect 

real-world demand 

variability. 

 

 - Limited in 

dynamic pricing 

strategies. 

- Initial network 

design and 

planning. - 

Benchmarking 

revenue under 

fixed demand 

assumptions. 

(Ahn et al., 2020), 

(Gaul & Winkler, 

2019),(An et al., 

2021), (Klein et 

al., 2020), 

(Duduke & 

Venkataraman, 

2021), (Subulan et 

al., 2016), 

(Szymański et al., 

2021) 

Stochastic 

Linear 

Program 

(SLP) 

Optimizing 

revenue with 

demand 

uncertainty 

- Accounts for demand 

variability in capacity 

allocation and pricing. - 

Computationally expensive 

for complex networks. - 

Relies on accurate demand 

forecasting. - Useful for 

analyzing the impact of 

demand uncertainty on 

revenue. 

- Captures 

demand 

variability for 

more realistic 

decision-making. 

- Enables analysis 

of risk and 

potential revenue 

under different 

demand scenarios. 

- Can be 

computationally 

expensive for large 

networks.  

 

- Reliant on 

accurate demand 

forecasting models. 

- Analyzing the 

impact of 

demand 

uncertainty on 

revenue. - 

Evaluating 

alternative 

pricing 

strategies under 

uncertain 

demand. 

(Shiina et al., 

2023), (Imai et 

al., 2021), 

(Terciyanlı & 

Avsar, 2019), 

(Boer et al., 

2002), (Bertsimas 

& Popescu, 2003) 

 

 

 

 

Dynamic 

Program (DP) 

Optimizing 

revenue with 

sequential 

decisions 

- Well-suited for dynamic 

pricing and time-dependent 

factors. - Offers flexibility for 

complex networks. - Can 

suffer from "curse of 

dimensionality." - Requires 

efficient algorithms for real-

world applications. - Useful 

for optimizing pricing in 

dynamic airline revenue 

management. 

- Enables 

dynamic pricing 

strategies based 

on real-time 

information. - Can 

handle complex 

network structures 

with time-

dependent factors. 

- Computationally 

challenging for 

large networks with 

many decision 

stages.  

 

- Requires efficient 

algorithms for real-

world applications. 

- Optimizing 

pricing 

decisions in 

dynamic airline 

revenue 

management 

environments. - 

Analyzing the 

impact of time-

dependent 

factors (e.g., 

cancellations, 

promotions). 

(Huang & Liang, 

2011), (Miyazawa 

et al., 2013), 

(Lagos et al., 

2020), 

(Weatherford & 

Khokhlov, 2012), 

(Kunnumkal & 

Topaloğlu, 2010), 

(Zhang, 2011) 
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Probabilistic 

Bid Price 

Model 

Setting prices 

based on 

probabilistic 

bidding 

- Accounts for competition 

among airlines. - Allows 

dynamic price adjustments 

based on competition and 

demand. - Requires advanced 

modeling and competitor 

data. - Computationally 

challenging for complex 

networks. - Useful for 

competitive airline networks 

with dynamic pricing. 

- Considers 

competition in 

pricing decisions, 

leading to 

potentially higher 

revenue. - Enables 

dynamic pricing 

adjustments based 

on competitor 

bids and 

passenger 

demand. 

- Requires advanced 

modeling 

techniques and data 

on competitor 

behavior. 

 

 - Can be 

computationally 

expensive for 

complex networks 

with many 

competitors. 

- Airline 

networks with 

significant 

competition and 

dynamic pricing 

strategies. - 

Analyzing the 

impact of 

competition on 

pricing and 

revenue. 

(Talluri & Ryzin, 

1998), (Belobaba 

& Jain, 2013), 

(Kumar et al., 

2021), (Akan & 

Ata, 2009), 

(Gallego & 

Topaloğlu, 2019)  

 

 

 

 

Displacement-

Adjusted 

Virtual 

Nesting 

Model 

(DAVN) 

Addressing 

demand 

displacement 

- Improves on traditional 

models by considering 

demand displacement. - 

Provides a more accurate 

picture of revenue potential. - 

Computationally complex for 

large networks. - Requires 

careful model parameter 

calibration. - Useful for 

airlines concerned about 

demand displacement and 

maximizing network revenue. 

- Provides a more 

accurate 

representation of 

revenue potential 

by accounting for 

demand 

displacement. - 

Useful for airlines 

with concerns 

about low-fare 

passengers 

displacing higher-

fare options. 

-Computationally 

complex for large 

networks with many 

booking classes. 

 

 - Requires careful 

calibration of model 

parameters based on 

historical data. 

- Airlines with 

concerns about 

demand 

displacement 

and maximizing 

network 

revenue. - 

Analyzing the 

impact of 

demand 

displacement on 

revenue 

strategies. 

(Ryzin & 

Vulcano, 2008), 

(Belobaba & Jain, 

2013), (Qiu, 

2020), (Fry & 

Belobaba, 2016), 

(Lapp & 

Weatherford, 

2013), (Ryzin & 

Vulcano, 2008) 

 

 

 

 

 

8. CONCLUSIONS ” “ 

The network-based revenue management (RM) necessitates the 

adoption of sophisticated mathematical models to optimize 

revenue generation across intricate airline networks. This 

review has undertaken a comprehensive examination of five 

key models that address various aspects of this challenge: 

Deterministic Linear Program (DLP), Stochastic Linear 

Program (SLP), Dynamic Program (DP), Probabilistic Bid 

Price Model, and Displacement-Adjusted Virtual Nesting 

Model (DAVN). 

DLP offers a transparent and computationally efficient 

approach for initial network design under predictable demand. 

For instance, airlines launching new routes with limited 

historical data might utilize DLP to determine initial seat 

allocations and pricing based on market research and industry 

averages. However, limitations exist in its ability to capture 

real-world demand uncertainties and incorporate dynamic 

pricing strategies Miyazawa et al., 2013); (Klein et al., 

2020);(Duduke & Venkataraman, 2021). SLP incorporates 

demand uncertainty into the model, providing a more realistic 

representation of the airline revenue management environment. 

This allows airlines to analyze risk and potential revenue under 

diverse demand scenarios. Imagine an airline planning for a 

major holiday weekend with historically high demand 

fluctuations. SLP can be used to model different demand 

possibilities (higher than usual, lower than usual) and estimate 

the potential revenue impact on each scenario. However, SLP 

models can be computationally expensive for very large and 

intricate networks, and their effectiveness is heavily reliant on 

the accuracy of demand forecasting (Imai et al., 2021); 

(Terciyanlı & Avsar, 2019).  DP excels in handling dynamic 

pricing strategies and time-dependent factors, making it ideal 

for optimizing pricing decisions in a continuously evolving 

environment. Airlines can leverage DP to adjust prices closer 

to the departure date based on remaining inventory and real-

time booking trends. For example, if a flight has many empty 

seats a few days before departure, DP can suggest lowering 

fares to attract last-minute bookings and maximize revenue. 

While it provides flexibility for complex networks, the "curse 

of dimensionality" can pose challenges for very large networks, 

necessitating the implementation of efficient algorithmic 

solutions (Huang & Liang, 2011);(Miyazawa et al., 2013); 

(Lagos et al., 2020); (Weatherford & Khokhlov, 2012). 

Probabilistic Bid Price Models differentiate themselves from 

traditional models by considering the competitive landscape. 

This enables dynamic price adjustments based on competitor 

bids and passenger demand, potentially leading to higher 

revenue generation. Imagine a airline competing with a low-

cost carrier on a popular route. A probabilistic bid price model 

can analyze competitor pricing strategies and adjust fares 

accordingly to capture demand at optimal price points. 

However, these models require advanced modeling techniques 

and access to competitor data, which can be challenging to 

obtain. Additionally, computational complexity can become an 

issue for networks with numerous competitors (Belobaba & 

Jain, 2013); (Kumar et al., 2021);(Gallego & Topaloğlu, 2019). 

DAVN addresses the crucial issue of demand displacement, a 

phenomenon where booking low-fare passengers may displace 

potential bookings at higher fares. This model provides a more 

accurate picture of revenue potential by accounting for this 

effect. For example, an airline might offer a limited number of 

discounted seats on a particular flight leg. DAVN can help 

determine the optimal number of discounted fares to maximize 

revenue while considering the potential displacement of full-

fare passengers on connecting flights. However, DAVN models 

can be computationally demanding for large networks with 

many booking classes and require careful calibration of 

parameters based on historical data (Belobaba & Jain, 2013), 

(Qiu, 2020), (Fry & Belobaba, 2016).  

The choice of the most suitable model depends on the specific 

needs and characteristics of the airline network. Airlines with 

predictable demand and a focus on initial network design might 
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find DLP a valuable tool, For those facing significant demand 

uncertainty, SLP offers valuable insights. In dynamic 

environments with time-sensitive pricing, DP emerges as a 

powerful tool. Airlines operating in competitive markets can 

benefit from the strategic pricing capabilities of Probabilistic 

Bid Price Models. Finally, DAVN proves valuable for airlines 

concerned about demand displacement and maximizing 

network revenue. 

8.1 Future Research Directions: 

While these models offer significant capabilities, the growing 

complexity of airline network revenue management 

necessitates further exploration in several key areas: 

Model Integration and Hybridization: Research could 

investigate how to integrate these models or develop hybrid 

approaches that combine the strengths of different models. This 

could lead to more comprehensive solutions that address a 

wider range of airline network revenue management 

challenges. 

Machine Learning and Artificial Intelligence: 

Advancements in machine learning (ML) and artificial 

intelligence (AI) hold immense potential for airline revenue 

management. Research could explore incorporating ML and AI 

techniques to enhance demand forecasting accuracy and 

develop dynamic pricing strategies that adapt to real-time 

market conditions and customer behavior. This could lead to 

more optimized pricing decisions and increased revenue 

generation. 

Real-Time Optimization and Algorithmic Efficiency: As 

network complexity and data volume increase, the need for 

real-time optimization and efficient algorithms becomes even 

more critical. Research could focus on developing efficient 

algorithms that enable airlines to make optimal pricing and 

capacity allocation decisions in real-time, maximizing revenue 

potential while considering computational constraints. 

Incorporating External Factors: Future research could 

explore ways to incorporate external factors that can 

significantly impact airline revenue, such as weather events, 

economic fluctuations, and political instability. By integrating 

these factors into network revenue management models, 

airlines can develop more robust and adaptable strategies that 

account for the ever-changing business landscape.” 
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