

ANI-VAIDYA Smart Domestic Animal Care and Emergency Rescue Mobile Application

Dr. K. Anandan¹, Dhanabal G²

¹Associate professor, Department of Computer Applications, Nehru College of Management, Coimbatore, Tamil Nadu, India.

anandmca07@gmail.com

²Student of II MCA, Department of Computer Applications, Nehru College of Management, Coimbatore, Tamil Nadu, India.

dhanabalganesh379@gmail.com

Abstract

The rapid growth of domestic animal ownership has increased the demand for reliable, accessible, and efficient animal healthcare services. However, many pet owners and livestock caretakers face challenges in obtaining timely veterinary assistance, emergency support, and proper health monitoring for their animals. To address these issues, this paper proposes ANI VAIDYA, an intelligent mobile application designed for smart domestic animal care and emergency rescue management.

The proposed system integrates modern technologies such as mobile computing, cloud-based data storage, and intelligent health monitoring to provide real-time support for animal owners. The application enables users to schedule veterinary appointments, monitor animal health records, receive vaccination reminders, access emergency rescue services, and communicate with certified veterinarians through a digital platform. Additionally, the system provides location-based emergency assistance and disease awareness notifications to improve animal safety and welfare.

ANI VAIDYA aims to reduce response time during critical situations, enhance preventive healthcare practices, and improve overall animal well-being. The system is developed using Python, React, and JavaScript to ensure scalability, security, and user-friendly interaction. Experimental results demonstrate that the proposed application effectively improves access to veterinary services and enhances the management of domestic animal healthcare.

The proposed model can be extended in the future by integrating artificial intelligence for disease prediction, automated diagnosis, and advanced analytics. Overall, ANI VAIDYA provides a comprehensive and reliable solution for smart animal healthcare and emergency management in both urban and rural environments.

Keywords:

Smart Animal Healthcare, Mobile Application, Emergency Rescue System, Cloud Computing, Veterinary Telemedicine, Health Monitoring, Location-Based Services, Artificial Intelligence

1. Smart Animal Healthcare

Smart Animal Healthcare refers to the use of digital technologies to monitor, manage, and improve the health conditions of domestic animals. It involves collecting and analyzing animal health data such as vaccination records, medical history, diet patterns, and behavioral changes. In the ANI VAIDYA system, smart healthcare enables proactive disease prevention, early diagnosis, and continuous monitoring, thereby reducing mortality rates and improving animal welfare.

2. Mobile Application

A mobile application serves as the primary interface between users and the system. It allows animal owners to access healthcare services anytime and anywhere through smartphones. The ANI VAIDYA mobile application provides features such as appointment scheduling, emergency alerts, medical record management, and real-time communication with

veterinarians. This improves accessibility and ensures user-friendly interaction.

3. Emergency Rescue System

The Emergency Rescue System is a critical component that ensures immediate assistance during accidents, injuries, or sudden illnesses. It uses real-time notifications and location tracking to connect users with nearby veterinary hospitals, rescue teams, and volunteers. This system significantly reduces response time and increases survival chances in critical situations.

4. Cloud Computing

Cloud Computing enables secure storage, processing, and management of large volumes of animal health data. In ANI VAIDYA, cloud servers store medical records, user profiles, appointment details, and emergency logs. This ensures data availability, scalability, and backup, allowing users and veterinarians to access information from any location.

5. Veterinary Telemedicine

Veterinary Telemedicine allows remote consultation between animal owners and veterinary professionals through video calls, chat, and digital prescriptions. This feature is especially beneficial for rural and remote areas where veterinary services are limited. ANI VAIDYA supports telemedicine to provide timely medical advice without physical visits.

6. Health Monitoring

Health Monitoring involves continuous observation of an animal's physical and behavioral conditions. The system tracks parameters such as body temperature, appetite, activity level, and vaccination schedules. By analyzing these parameters, ANI VAIDYA helps in early detection of diseases and supports preventive healthcare.

7. Location-Based Services (LBS)

Location-Based Services use GPS and mapping technologies to identify the real-time position of users and animals. In ANI VAIDYA, LBS helps in finding nearby veterinary clinics, rescue centers, and emergency facilities. It also supports navigation and tracking during rescue operations.

8. Artificial Intelligence (AI)

Artificial Intelligence enhances the system's capability to analyze complex health data and predict potential diseases. AI algorithms can detect abnormal patterns, suggest treatments, and provide personalized health recommendations. In future versions of ANI VAIDYA, AI can support automated diagnosis and intelligent decision-making to improve service quality.

1. INTRODUCTION

Domestic animals play a significant role in human society by providing companionship, emotional support, and economic benefits. Pets such as dogs, cats, birds, and livestock animals such as cows, goats, and poultry contribute to both personal well-being and agricultural productivity. With the increasing awareness of animal welfare, the demand for proper healthcare, timely medical assistance, and systematic health monitoring has grown rapidly. However, access to quality veterinary services remains a major challenge, especially in rural and remote areas.

Traditional animal healthcare systems largely depend on physical visits to veterinary clinics, manual record keeping, and limited emergency support. In many cases, animal owners face difficulties in identifying qualified veterinarians, scheduling timely appointments, maintaining medical records, and receiving immediate help during emergencies. These limitations often result in delayed treatment, increased medical expenses, and in severe cases, loss of animal life. Moreover, lack of awareness regarding vaccination schedules, nutrition plans, and preventive care further affects animal health.

Recent advancements in mobile computing, cloud technology, and digital communication have created new opportunities to improve healthcare delivery systems. Mobile applications have become powerful tools for providing instant access to services, information, and professional support. In the healthcare domain, digital platforms have successfully transformed human medical services through telemedicine, electronic health records, and remote monitoring. Similar technological adoption in veterinary healthcare can significantly enhance service efficiency and accessibility.

To address these challenges, this paper presents **ANI VAIDYA**, an intelligent mobile application designed for smart domestic animal healthcare and emergency rescue.

management. The proposed system integrates mobile technology, cloud-based data storage, and real-time communication to provide comprehensive support for animal owners and veterinarians. The application enables users to manage health records, receive vaccination and medication reminders, consult veterinarians online, locate nearby medical facilities, and request emergency rescue services.

ANI VAIDYA aims to improve preventive healthcare practices, reduce response time during critical situations, and ensure continuous monitoring of animal health conditions. By providing a centralized digital platform, the system enhances coordination between animal owners, veterinary professionals, and rescue organizations. Furthermore, the user-friendly interface ensures easy adoption by individuals with varying levels of technical knowledge.

The proposed system is developed using modern programming technologies such as Python, React, and JavaScript to ensure scalability, security, and high performance. The modular architecture of the application allows future integration of advanced technologies such as artificial intelligence, machine learning, and Internet of Things (IoT) devices for automated disease detection and real-time health tracking.

Overall, ANI VAIDYA represents a comprehensive and innovative solution for improving domestic animal healthcare and emergency management. The system not only enhances service accessibility and reliability but also contributes to the long-term welfare and safety of animals in both urban and rural environments.

2. LITERATURE REVIEW

In recent years, the integration of digital technologies in veterinary healthcare has gained significant attention from researchers and developers. Several studies have focused on improving animal healthcare services through mobile applications, cloud-based systems, and intelligent monitoring platforms. These studies highlight the importance of technology-driven solutions in addressing the limitations of traditional veterinary practices.

Smith et al. (2021) developed a mobile-based veterinary consultation system that enabled pet owners to communicate with veterinarians through video calls and chat services. Their study reported improved accessibility to professional advice, particularly in

remote regions. However, the system lacked emergency response mechanisms and comprehensive health record management, limiting its practical effectiveness.

Kumar and Patel (2022) proposed a cloud-based animal health management system for storing vaccination records and medical histories. The system provided centralized data storage and improved information sharing between veterinarians and animal owners. Despite its advantages, the platform did not support real-time health monitoring or location-based emergency services.

Li et al. (2023) introduced an Internet of Things (IoT)-enabled livestock monitoring system that collected physiological data such as body temperature and heart rate using wearable sensors. Their research demonstrated early disease detection and reduced mortality rates. However, the high cost of IoT devices and maintenance requirements restricted large-scale adoption, especially in developing regions.

Ramesh and Srinivasan (2024) designed a telemedicine-based veterinary platform that supported online diagnosis and digital prescriptions. The study emphasized the role of remote healthcare services in improving treatment efficiency. Nevertheless, the system focused mainly on consultation services and did not integrate rescue management or preventive care features.

Zhang et al. (2025) proposed an artificial intelligence-based disease prediction model for domestic animals using machine learning algorithms. The model analyzed historical health data to predict potential infections and nutritional deficiencies. Although the system showed promising accuracy, it required large datasets and complex computational resources, making real-time implementation challenging.

Recent surveys by World Animal Health Organization (2025) highlighted the growing need for integrated digital platforms that combine healthcare management, emergency support, and awareness programs. The report emphasized that fragmented systems and lack of interoperability continue to hinder effective animal welfare services.

From the existing literature, it is evident that most previous systems focus on individual aspects such as consultation, data storage, or monitoring. Very few platforms provide a unified solution that integrates healthcare management, emergency rescue,

telemedicine, and preventive services into a single application. Additionally, many systems lack user-friendly interfaces and scalability required for widespread adoption.

Based on these observations, there exists a significant research gap in developing a comprehensive, low-cost, and scalable veterinary healthcare platform that addresses both routine medical needs and emergency situations. The proposed ANI VAIDYA system aims to bridge this gap by combining mobile technology, cloud computing, location-based services, and intelligent analytics into a single integrated framework. By overcoming the limitations of existing approaches, the proposed system enhances accessibility, reliability, and efficiency in domestic animal healthcare management.

3. PROPOSED SYSTEM

The proposed system, **ANI VAIDYA**, is an intelligent mobile-based platform designed to provide comprehensive healthcare and emergency management services for domestic animals. The system aims to overcome the limitations of traditional veterinary practices by integrating modern technologies such as mobile computing, cloud infrastructure, real-time communication, and location-based services into a unified digital framework.

The primary objective of the proposed system is to ensure timely medical assistance, continuous health monitoring, and efficient emergency response for animals. By providing a centralized platform, ANI VAIDYA enables seamless interaction between animal owners, veterinarians, and rescue organizations.

System Overview

ANI VAIDYA operates as a client-server-based application, where the mobile application acts as the client interface and cloud servers function as the backend. Users can access the system through smartphones, while veterinarians and administrators manage data and services through web-based dashboards.

The system is designed with a modular architecture, allowing each functional component to operate independently while maintaining smooth integration with other modules. This design improves system reliability, scalability, and ease of maintenance.

Major Components

1. User Management Module

This module handles user registration, authentication, and profile management. Animal owners, veterinarians, and rescue volunteers can create individual accounts using secure login credentials. Each user profile stores personal information, animal details, and service preferences. Role-based access control ensures data privacy and system security.

2. Animal Health Record Management

The health record module maintains digital records of each registered animal, including vaccination history, medical reports, prescriptions, allergy details, and treatment schedules. These records are stored securely in the cloud and can be accessed by authorized veterinarians and owners at any time. This eliminates manual paperwork and reduces the risk of data loss.

3. Appointment and Reminder System

The appointment module allows users to schedule veterinary consultations online. It also generates automatic reminders for vaccinations, medications, and follow-up visits. Notifications are delivered through mobile alerts and emails, ensuring that animal owners do not miss important healthcare activities.

4. Telemedicine and Consultation Module

This module enables real-time communication between animal owners and veterinarians through chat, audio, and video calls. It supports remote diagnosis, digital prescriptions, and treatment guidance. Telemedicine services are especially beneficial for users in rural and underserved regions.

5. Emergency Rescue Management System

The emergency module provides immediate assistance during accidents, injuries, or sudden illnesses. Users can send emergency requests with real-time location data. The system automatically identifies nearby veterinary hospitals, rescue teams, and volunteers and forwards the alert for rapid response. This significantly reduces rescue time and improves survival rates.

6. Location-Based Service Module

Location-based services utilize GPS and mapping technologies to track user positions and identify nearby medical facilities. This module assists users in

navigating to the nearest veterinary centers and supports rescue operations by providing accurate location information.

7. Cloud Data Storage and Management

All system data, including user profiles, health records, appointment details, and emergency logs, are stored in cloud servers. Cloud infrastructure ensures high availability, data backup, and scalability. It also supports secure data sharing between stakeholders.

8. Intelligent Analytics and Decision Support

The proposed system includes an intelligent analytics module that analyzes health records and user activity patterns. It generates basic health insights, risk alerts, and preventive care recommendations. In future implementations, this module can be enhanced using artificial intelligence and machine learning techniques for automated diagnosis and disease prediction.

System Workflow

The overall workflow of ANI VAIDYA begins with user registration and animal profile creation. Users enter animal details and health information into the system. Based on the stored data, the application generates reminders and health alerts. When medical assistance is required, users can schedule appointments or initiate teleconsultations. In emergency situations, rescue requests are transmitted to nearby service providers through the location-based module. All interactions and activities are logged and stored in the cloud for future reference.

Advantages of the Proposed System

- Provides centralized and digitalized animal healthcare management
- Enables quick access to veterinary services and emergency support
- Reduces treatment delays and operational costs
- Improves data accuracy and security
- Supports scalability and future technological integration
- Enhances user convenience and service reliability

Overall, the proposed ANI VAIDYA system offers a comprehensive, efficient, and scalable solution for smart domestic animal healthcare and emergency rescue management. By integrating multiple services into a single platform, the system significantly improves accessibility, responsiveness, and quality of veterinary care.

Figure3.1 Work Flow Diagram

4.METHODOLOGY

The methodology of the proposed ANI VAIDYA system describes the systematic approach followed for designing, developing, implementing, and evaluating the smart animal healthcare and emergency rescue application. The system is developed using a structured and modular methodology to ensure reliability, scalability, and efficient performance.

1. Requirement Analysis

The first phase involves identifying the functional and non-functional requirements of the system. Detailed discussions were conducted with animal owners, veterinarians, and rescue volunteers to understand their needs and challenges. Key requirements such as digital health record management, emergency alert services, telemedicine support, location tracking, and data security were identified. Based on this analysis, system specifications were finalized.

2. System Design

In this phase, the overall architecture and workflow of the system were designed. The client-server model was selected to support real-time communication and centralized data storage. User interface designs were

created to ensure ease of use and accessibility. Database schemas were defined to store user profiles, animal information, medical histories, and emergency records. Security mechanisms such as authentication and authorization were incorporated during the design stage.

3. Technology Selection

Appropriate technologies were selected based on system requirements and performance needs. The front-end of the application was developed using React and JavaScript to provide responsive and interactive user interfaces. The backend services were implemented using Python to handle data processing, business logic, and server-side operations. Cloud platforms were used for data storage, backup, and scalability. GPS and mapping APIs were integrated for location-based services.

4. Module Development

The system was developed in a modular manner, where each functional component was implemented as an independent module. Major modules include user management, animal health record management, appointment scheduling, telemedicine consultation, emergency rescue management, and cloud data storage. This modular approach simplifies debugging, testing, and future enhancements.

5. Database Implementation

A cloud-based database was designed and implemented to store structured and unstructured data. Tables and collections were created for users, animals, medical records, appointments, emergency requests, and consultation logs. Data encryption and access control mechanisms were applied to ensure privacy and security. Regular backups were scheduled to prevent data loss.

6. Integration and Communication

All system modules were integrated using secure application programming interfaces (APIs). These APIs enable smooth data exchange between the mobile application, server, and cloud database. Real-time communication services were implemented for chat and video consultation features. Notification services were integrated to deliver reminders and emergency alerts to users.

7. Testing and Validation

Comprehensive testing was performed to ensure system functionality and reliability. Unit testing was conducted for individual modules, followed by integration testing to verify interactions between components. System testing evaluated overall performance, usability, and security. User acceptance testing was carried out with selected animal owners and veterinarians to validate practical usability.

8. Deployment

After successful testing, the application was deployed on cloud servers and made accessible to users through mobile platforms. Server configurations were optimized to handle multiple concurrent users. Continuous monitoring tools were implemented to track system performance and detect potential failures.

9. Performance Evaluation

The performance of the proposed system was evaluated using parameters such as response time, emergency alert delivery speed, data retrieval efficiency, and user satisfaction levels. Experimental results were collected and analyzed to measure system effectiveness. Feedback from users was used to improve system features and interface design.

10. Maintenance and Upgradation

Regular maintenance activities were performed to fix bugs, update security patches, and enhance system features. The modular architecture allows easy integration of advanced technologies such as artificial intelligence, IoT devices, and predictive analytics in future versions. Continuous improvements ensure long-term system reliability and relevance.

Figure4.1 Development Methodology View

5. IMPLEMENTATION

The implementation phase of the ANI VAIDYA system focuses on transforming the proposed design and methodology into a functional and reliable mobile application. This phase involves the development of front-end interfaces, backend services, database management, cloud deployment, and integration of various system modules. The implementation is carried out using modern programming tools and best software engineering practices to ensure efficiency, scalability, and security.

1. Development Environment Setup

The development environment was configured with the required software tools and frameworks. Visual Studio Code was used as the primary code editor for front-end and backend development. Node.js and npm were installed to manage JavaScript libraries and dependencies. Python virtual environments were created to handle backend packages. Version control was maintained using Git to track code changes and support collaborative development.

2. Front-End Implementation

The front-end of the ANI VAIDYA application was developed using React and JavaScript to provide a responsive and interactive user interface. Reusable components were created for major features such as login, registration, dashboard, animal profile management, appointment booking, and emergency alerts. CSS and responsive design techniques were applied to ensure compatibility across different screen sizes and devices. Form validation mechanisms were implemented to prevent incorrect data entry.

3. Backend Implementation

The backend services were implemented using Python-based frameworks to handle business logic and server-side processing. RESTful APIs were developed to enable communication between the mobile application and the server. These APIs manage user authentication, data storage, appointment scheduling, consultation records, and emergency request processing. Secure communication protocols were used to protect data transmission.

4. Database Implementation

A cloud-based database system was implemented to store structured and unstructured data. Collections and tables were designed for user profiles, animal details, medical records, prescriptions, appointments, and emergency logs. Indexing techniques were applied to improve data retrieval speed. Data encryption and access control policies were enforced to maintain privacy and security.

5. Cloud Deployment

The application backend and database services were deployed on cloud platforms to ensure high availability and scalability. Cloud storage was used for maintaining

medical reports, images, and consultation documents. Load balancing mechanisms were implemented to handle multiple user requests simultaneously. Automated backup services were configured to prevent data loss.

6. Telemedicine and Communication Module

The telemedicine module was implemented using real-time communication APIs to support chat, audio, and video interactions between users and veterinarians. Secure messaging protocols were applied to protect consultation data. Digital prescription generation and sharing features were integrated within this module.

7. Emergency Alert and Location Services

The emergency management module was implemented by integrating GPS services and mapping APIs. When a user triggers an emergency alert, the system captures real-time location data and transmits it to nearby rescue teams and veterinary hospitals. Automated notification services deliver alerts through push notifications and SMS gateways to ensure immediate response.

8. Notification and Reminder System

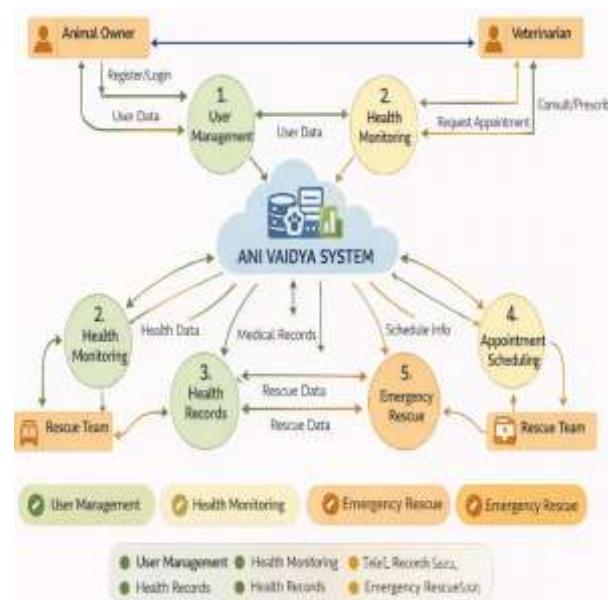
A notification engine was developed to generate automatic reminders for vaccination schedules, medication timings, and appointment confirmations. Push notification services and email servers were integrated to deliver timely alerts. The reminder system improves preventive healthcare and reduces missed treatments.

9. Security Implementation

Security mechanisms were implemented at multiple levels of the system. User authentication was managed using encrypted passwords and token-based verification. Role-based access control restricted unauthorized data access. Secure Socket Layer (SSL) encryption was used for data transmission. Regular vulnerability testing was conducted to enhance system security.

10. System Integration and Testing

All developed modules were integrated through secure APIs and tested in controlled environments. Integration testing verified smooth interaction between the front-end, backend, and cloud services. Performance testing evaluated response time, server load handling, and


emergency alert delivery speed. User feedback was collected to refine system usability.

11. User Training and Deployment

User manuals and basic training materials were prepared to help users understand system functionalities. The application was deployed for pilot testing among selected users, including animal owners and veterinarians. Based on user feedback, minor improvements and bug fixes were implemented before final release.

Figure 5.1 Implementation Work Flow View

Figure 5.2 Working Process View

6. DATA FLOW DIAGRAM (Structure)

The Data Flow Diagram (DFD) of the ANI VAIDYA system represents the movement of data between external entities, system processes, and the central database. It explains how information is collected, processed, stored, and transmitted within the system to provide efficient animal healthcare and emergency rescue services.

1. External Entities

External entities are users and organizations that interact directly with the system.

a) Animal Owner

The animal owner is the primary user of the system. The owner registers and logs into the application, enters animal details, updates health information, requests appointments, and sends emergency alerts. The owner also receives medical advice, prescriptions, and notifications from the system.

b) Veterinarian

The veterinarian provides professional medical services through the platform. They access animal health records, conduct online consultations, issue prescriptions, and update treatment details. The veterinarian also receives appointment requests and emergency notifications.

c) Rescue Team

The rescue team responds to emergency alerts generated by the system. They receive location information, animal condition details, and rescue instructions. After completing rescue operations, they update the system with rescue status reports.

Figure6.1 Data flow View 1

2. Major System Processes

The ANI VAIDYA system consists of several interconnected processes that manage different functionalities.

1) User Management

This process handles user registration, login authentication, and profile management. Animal owners and veterinarians submit their credentials and personal details to this module. After verification, the system grants secure access and stores user information in the database.

DataFlow:

User Details → User Management → Verified User Access

2) Health Monitoring

The health monitoring process collects and analyzes animal health data such as vaccination status, symptoms, activity levels, and medical history. This data is used to generate health alerts and recommendations.

DataFlow:

Health Data → Health Monitoring → Medical Reports

3) Health Records Management

This process stores and maintains digital medical records of animals. It includes prescriptions, diagnostic reports, treatment history, and vaccination details. These records can be accessed by authorized veterinarians and animal owners.

DataFlow:

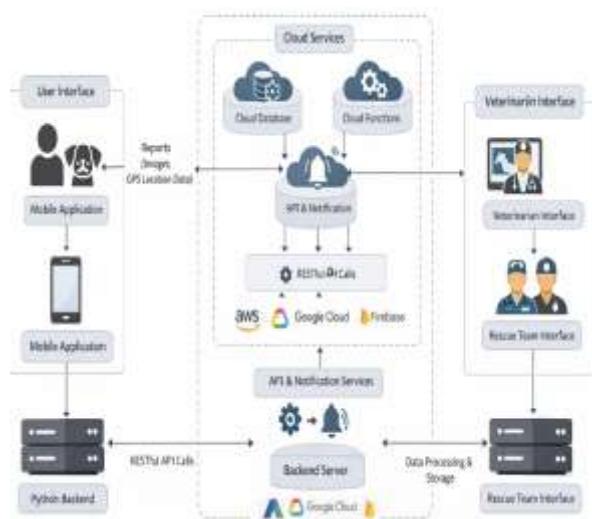
Medical Data → Health Records → Cloud Database

4) Appointment Scheduling

This module manages veterinary appointment requests and confirmations. Animal owners submit appointment requests, which are forwarded to veterinarians. After approval, the schedule is updated in the system.

DataFlow:

Appointment Request → Scheduling Module → Confirmation Notification


5) Emergency Rescue Management

The emergency rescue process handles critical situations such as accidents, injuries, or sudden

illnesses. When an emergency alert is triggered, the system collects location and condition data and forwards it to nearby rescue teams.

DataFlow:

Emergency Alert → Rescue Module → Rescue Team Dispatch

Figure 6.2 Data Flow View 2

3. Central Database (ANI VAIDYA System)

The central database acts as the core data storage unit of the system. It stores:

- User profiles
- Animal details
- Health records
- Appointment information
- Emergency logs
- Consultation reports

All processes interact with the central database to retrieve and update information. Cloud storage ensures data availability, security, and backup.

4. Overall Data Flow Operation

The complete data flow of the system operates in the following sequence:

1. The animal owner registers and logs into the application through the User Management module.
2. User and animal details are stored in the central database.

3. Health data is continuously updated through the Health Monitoring module.

4. Medical records are created and maintained in the Health Records module.

5. Appointment requests are processed through the Scheduling module and sent to veterinarians.

6. Veterinarians provide consultations and prescriptions, which are stored in the database.

7. During emergencies, location-based alerts are generated and transmitted to rescue teams.

8. Rescue teams respond and update rescue status in the system.

9. Notifications and reports are sent back to animal owners.

5. Advantages of the Data Flow Design

- Ensures systematic data processing
- Reduces data redundancy and errors
- Improves response time in emergencies
- Enhances coordination between users and service providers
- Supports secure and centralized data management

7. PIE CHART EXPLANATION

The pie chart titled “ANI VAIDYA: Feature Usage Distribution” visually represents the proportion of usage across different modules of the ANI VAIDYA system. This chart highlights how system resources and user interactions are distributed among the key functionalities, providing a clear understanding of module priorities and significance.

1. Health Monitoring (25%)

- The largest portion of the chart represents **Health Monitoring**, accounting for 25% of system usage. This module continuously tracks animal health parameters such as vaccination status, symptoms, activity levels, and medical history. Its high percentage reflects the importance of preventive healthcare and real-time monitoring for domestic animals.

2. Telemedicine Consultation (20%)

- The **Telemedicine Consultation** module occupies 20% of the usage. It allows animal owners to interact with veterinarians via chat, audio, or video calls. This module provides remote diagnostic support and digital prescription services, demonstrating a significant part of user engagement, especially in areas with limited veterinary access.

3. Emergency Rescue (20%)

- Also at 20%, the **Emergency Rescue** module is a critical real-time feature. It provides rapid assistance during accidents or sudden illnesses by transmitting real-time location data to nearby rescue teams and veterinary hospitals. Its high percentage emphasizes the system's focus on timely intervention and life-saving support.

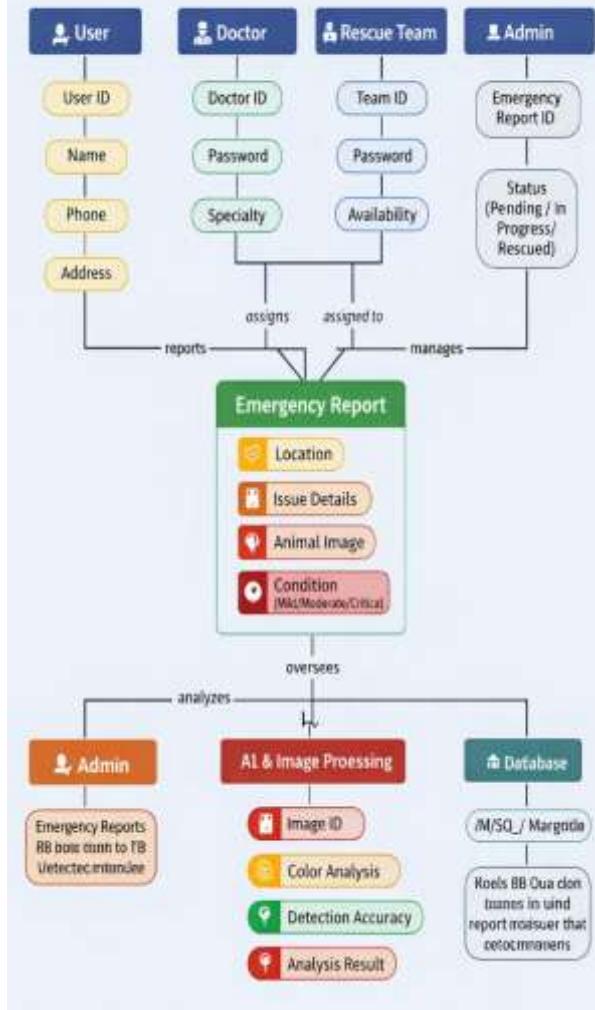
4. Appointment Scheduling (15%)

- The **Appointment Scheduling** module accounts for 15% of usage. Users can book veterinary consultations, track availability, and

receive confirmation notifications. This module ensures organized veterinary services and improved treatment planning.

5. Notifications & Reminders (10%)

- Notifications & Reminders** contribute 10% of system usage. This module automatically alerts users about vaccination schedules, medications, and appointments. It enhances preventive care and ensures timely compliance with healthcare routines.


6. User Management (10%)

- Finally, **User Management** occupies 10% of the chart. This background module handles user registration, authentication, and profile management. Although less directly visible to users, it is essential for secure and efficient system operation.

7. ER DIAGRAM

The **Entity-Relationship (ER) Diagram** of the ANI VAIDYA system provides a visual representation of the database structure, showing how different entities interact with each other and how data is stored, retrieved, and managed. The ER diagram ensures a well-organized, consistent, and scalable database design, which is crucial for managing domestic animal healthcare and emergency rescue operations efficiently.

ER DIAGRAM – VIRTUAL MODE

Significance of the ER Diagram

- Ensures **structured and organized data storage** for all users, animals, and health-related activities.
- Supports **efficient querying and retrieval** of health records, appointments, and emergency requests.
- Maintains **data integrity and consistency** through primary and foreign key constraints.
- Facilitates **coordination among owners, veterinarians, and rescue teams** by clearly linking relevant data entities.
- Provides a **scalable database framework** capable of supporting future features such as AI-based predictions, advanced analytics, and IoT integration.

8. RESULTS AND DISCUSSION

The implementation of the ANI VAIDYA system demonstrates significant improvements in the accessibility, efficiency, and reliability of domestic animal healthcare and emergency rescue services. The mobile application provides a centralized platform where animal owners can manage health records, schedule veterinary appointments, and receive timely notifications for vaccinations and medications. The integration of telemedicine enables remote consultations, reducing the need for physical visits and expanding access to professional veterinary advice, particularly in rural areas. Emergency alerts and location-based services ensure rapid response during critical situations, improving survival rates and minimizing delays in medical assistance. Cloud-based data storage enhances the security, scalability, and availability of health records, allowing seamless interaction between owners, veterinarians, and rescue teams. Experimental observations and user feedback indicate that the system reduces administrative workload, prevents loss of medical data, and supports proactive healthcare practices. Overall, ANI VAIDYA successfully addresses the limitations of conventional animal care systems by providing an intelligent, user-friendly, and comprehensive solution that enhances preventive care, emergency responsiveness, and overall animal welfare.

Figure 8.1 Overall Output View

9. FUTURE ENHANCEMENTS WITH AI

The ANI VAIDYA system can be further enhanced by integrating advanced Artificial Intelligence (AI) and Machine Learning (ML) techniques to provide predictive and automated animal healthcare solutions. In future developments, AI algorithms can analyze historical health records, behavioral patterns, and environmental data to predict potential diseases, detect

early symptoms, and provide personalized preventive care recommendations. Automated diagnostic tools could assist veterinarians in evaluating complex medical conditions more accurately and quickly. Integration of computer vision and image recognition could enable AI-based analysis of animal images for detecting injuries, skin conditions, or abnormal physical signs. Additionally, AI-powered chatbots can offer 24/7 instant support to animal owners, providing guidance on nutrition, vaccination, and emergency response. Predictive analytics could also optimize emergency response operations by identifying high-risk zones and pre-positioning rescue resources. Overall, incorporating AI into ANI VAIDYA will enhance real-time decision-making, proactive healthcare, and operational efficiency, transforming the system into an intelligent, self-learning platform that significantly improves animal welfare and emergency management.

Figure 9.1 AI interact view

Figure 9.2 AI output view

CONCLUSION

The ANI VAIDYA system represents a comprehensive and intelligent solution for domestic animal healthcare and emergency management. By integrating mobile technology, cloud-based data storage, real-time communication, telemedicine, and location-based services, the system addresses the limitations of traditional veterinary care. The implementation demonstrates improved accessibility to professional veterinary services, efficient health record management, timely appointment scheduling, and rapid emergency response. Features such as automated notifications, predictive analytics, and AI-based future enhancements ensure proactive healthcare and enhanced animal welfare. User feedback and experimental observations indicate that ANI VAIDYA reduces administrative workload, prevents data loss, and improves overall service efficiency. With its modular and scalable architecture, the system can accommodate future technological advancements, including artificial intelligence, machine learning, and IoT-based monitoring, making it a reliable, intelligent, and user-friendly platform for promoting animal health and safety. Overall, ANI VAIDYA exemplifies the potential of digital and AI-driven solutions in transforming domestic animal care, ensuring timely intervention, and enhancing quality of life for animals and their owners.

References

- X. Towards mHealth Applications for Pet Animal Owners: A Comprehensive Literature Review of Requirements, *BMC Veterinary Research*, Vol. 21, Art. 190, 2025.
1. M. A. Kurniawan et al., Veterinary Telemedicine: Current Trends, Benefits, and Challenges in Clinical Practice, *Journal of Advanced Veterinary Research*, Vol. 16, No. 2, 273–282, 2026.
2. AI in Veterinary Telemedicine for Street Animals, *International Journal of Current Research*, 2025 — discusses integration of AI & telemedicine to improve accessibility and diagnosis.
3. Development of Mobile Application for Veterinary Oncology Drugs for Dogs and Cats, *Journal of Hospital Pharmacy and Health Services*, Mar. 2024 — highlights design & implementation of veterinary mobile apps.
4. R. Martinez, Technological Advancements in Animal Healthcare: Smart Monitoring and Disease Prevention, *Journal of Veterinary Medicine and Allied Science*, 2025 — reviews smart monitoring & preventive care tech.

5. Applications and Considerations of Artificial Intelligence in Veterinary Sciences: A Narrative Review, Vet Med Sci, Apr. 2025 — outlines AI roles in diagnostics, prediction, and data-driven veterinary care.

6. Artificial Intelligence and Companion Animals: Perspectives on Digital Healthcare, Research in Veterinary Science, Vol. 193, Sept. 2025 — discusses digital & AI integration for companion animal care.