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Abstract— In this study, we address the challenge of generating images of individuals based on pose and appearance data. 

Specifically, we take an image, xa, of an individual and a target pose, P (xb), extracted from another image, xb. We then generate 

a new image of the same individual in the target pose, P (xb), while preserving the visual details from xa. 

To manage pixel-to-pixel misalignments caused by pose differences between P (xa) and P (xb), we incorporate deformable skip 

connections in our Generative Adversarial Network’s generator. Additionally, we propose a nearest-neighbour loss as an 

alternative to the standard L1 and L2 losses to match the texture of the generated image with the target image. 

Our approach demonstrates competitive quantitative and qualitative results using standard datasets and protocols recently 

proposed for this task. We also carry out a comprehensive evaluation using off-the-shelf person-identification (Re-id) systems 

trained with person-generation-based augmented data, a key application for this task. 

Our experiments reveal that our Deformable GANs can significantly boost Re-id accuracy, surpassing data-augmentation 

techniques specifically trained using Re-identification losses. 

index Terms—Conditional GAN, Image Generation, Deformable Objects, Human Pose. 
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The task of generating human images based on 

appearance and pose conditions aims to produce an 

image of a person based on two specific variables: (1) 

the appearance of a person in a given image, and (2) 

the pose of the same person in another image. The 

generation process aims to preserve appearance 

details (e.g., clothing colors, texture, etc.) from the 

first variable while performing a deformation on the 

person’s shape (the pose) according to the second 

variable. 

This task can be extended to generate images where 

the foreground, such as a deformable object like a 

face or body, changes due to a perspective variation 

or a deformable motion. The common assumption is 

that the object shape can be automatically extracted 

using a keypoint detector. 

Following the publication of the pioneering work of 

Ma et al., there has been a rapidly growing interest in 

this task, as evidenced by several recent papers on 

this topic. This interest is likely due to the many 

potential application scenarios, ranging from 

computer-graphics-based manipulations to data 

augmentation for training person re-identification 

(Re-id) or human pose estimation systems. 

However, most of the recently proposed deep-

network-based generative approaches, such as 

Generative Adversarial Networks (GANs) or 

Variational Autoencoders (VAEs), do not explicitly 

address the problem of articulated-object generation. 

Common conditional techniques are also included in 

this category. 
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 Fig. 1: (a) An example of a “rigid” scene era task, in 

which the conditioning and the output photograph 

local systems are nicely aligned. (b) In a deformable-

item generation task, the enter and output pictures 
aren't spatially aligned. GANs or conditional VAEs) can 
synthesize pics whose ap- pearances potential rely 
upon a few conditioning variables (e.g., a label or any 
other image). for example, Isola et al. [12] proposed 
an “image-to-image translation” for example, Isola et 
al. [12] proposed an “image-to-image translation”

 
] 

image y represented in any other “channel” (see Fig. 
1a). but, most of

 
those methods have problems when 

managing massive spatial picture. as an example, the 
U-net structure used by Isola et al. [12] is primarily 
based on skip connections which help keeping local 
statistics. among x and y. particularly, pass 
connections are used to replicate afterwhich 
concatenate the characteristic maps of the generator 
“encoder” (wherein data is downsampled the use of 
convolutional layers) to the generator “decoder” 
(containing the upconvolutional layers). but, the 
assumption utilized in [12] is that x and y are roughly 
aligned with each other and that they represent the 
same underlying structure. This assumption is 
violated whilst the foreground object in y undergoes 
huge spatial deformations with respect to x (seeFig. 
1b). By opposition to human face [13], [14], human 
body isa highly non-rigid object and the important 
misalignment betweenthe input and output poses 
may impact the generated image quality. As shown in 
[1], skip connections cannot reliably cope with 
misalignments between the two poses. In Sec. 2 we 
will see that U-Net based generators are widely used 
in most of the recent person-generation approaches, 
hence this misalignment problemis orthogonal to 
many methods 
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Our research focuses on the use of a masked L1 loss to 

generate an intermediate image conditioned on the target 

pose. In the second stage, another U-net based generator is 

trained using an adversarial loss to generate an appearance 

difference map, which brings the intermediate image 

closer to the appearance of the conditioning image. 

Unlike other methods, our U-net based approach is trained 

end-to-end, explicitly considering pose-related spatial 

deformations. We propose deformable skip connections 

that “move” local information according to the structural 

deformations represented in the conditioning variables. 

These layers are used in our U-net based generator. 

To move information according to specific spatial 

deformations, we first decompose the overall deformation 

by a set of local affine transformations involving subsets 

of joints. Then, we deform the convolutional feature maps 

of the encoder according to these transformations and use 

common skip connections to transfer the transformed 

tensors to the decoder’s fusion layers. 

In addition, we propose the use of a nearest-neighbour loss 

as an alternative to common pixel-to-pixel losses (e.g., L1 

or L2 losses) typically used in conditional generative 

techniques. This loss has proven beneficial in generating 

local details (e.g., texture) similar to the target image that 

are not penalized due to small spatial misalignments. 

This paper extends previous work in several ways. First, 

we present a more detailed analysis of related work, 

including very recently published papers dealing with 

pose-conditioned human image generation. Second, we 

demonstrate how a variation of our method can be used to 

introduce a third conditioning variable: the background, 

represented by a third input image. Third, we provide more 

details about our approach. 

Finally, we expand the quantitative and qualitative 

experiments by comparing our Deformable GANs with the 

latest work in this area. This comparison with the state of 

the art is carried out using: (1) the protocols proposed by 

Ma et al., and (2) Re-identification based experiments. 

These experiments show that Deformable GANs can 

significantly improve the accuracy of various Re-

identification systems. Conversely, most of the other state-

of-the-art techniques generate new training samples that 

are harmful for Re-identification systems, resulting in 

significantly worse performance compared to a non-

augmented training dataset. 

Although tested on the specific human-body problem, our 

approach makes few human-related assumptions and can 

be easily extended to other domains related to the 

generation of highly deformable objects. Our code and our 

trained models are publicly available. 

 

1 Related work 

Most common deep-learning-based methods for visual content 

generation can be categorized as either Variational Autoencoders 

(VAEs) or Generative Adversarial Networks (GANs). VAEs are based 

on probabilistic graphical models and are trained by maximizing a 

lower bound of the corresponding data likelihood. GANs consist of 

a generator and a discriminator, which are trained simultaneously. 

The generator attempts to “fool” the discriminator, and the 

discriminator learns to differentiate between real and fake 

images.Isola et al. proposed a conditional GAN framework for 

image-to-image translation problems, where a given scene 

representation is “translated” into another representation. The main 

assumption behind this framework is that there exists a spatial 

correspondence between the low-level data of the conditioning and 

the output image. VAEs and GANs are combined to generate 

realistic-looking multi-view images of clothes from a single-view 

input image. The target view is fed to the model using a perspective 

label such as front or left side, and a two-stage approach (pose 

integration and image refinement) is adopted.Ma et al. proposed a 

more general approach that allows synthesizing person images in 

any arbitrary pose. Similar to our proposal, the input of their model 

is a conditioning appearance image of the person and a target new 

pose defined by 18 joint locations. The target pose is defined by 

binary maps where small circles represent the joint locations. This 

work has been extended by learning disentangled representations of 

person images. More precisely, in the generator, the pose, the 

foreground, and background are separately encoded to achieve a 

disentangled description of the image. The input image is then 

reconstructed by combining the three descriptors. The main 

advantage of this approach is that it does not require pairs of images 

of the same person at training time. However, the generated images 

consequently suffer from a lower level of realism. 

Inspired by Ma et al., several methods have been recently proposed 

to generate human images. In these methods, the generation 

process. Specifically, the first generation stage generates the body 

pose in the new perspective. The second and third stages generate 

the foreground (i.e., the person) and the background, respectively. 

In addition to our proposal, Balakrishnan et al. partition the human 

body into different parts and separately deform each of them. Their 

method is based on generating a set of segmentation masks, one per 

body part, plus a whole-body mask which separates the human 

figure from the background. However, for the model to segment the 

human figure without relying on pixel-level annotations, training is 

based on pairs of conditioning images with the same background. 

This constraint prevents the use of this technique in applications 

such as Re-id data augmentation where training images are usually 

taken in different environments. 

In contrast to these methods, we demonstrate that a single-stage 

approach, trained end-to-end, can be used for the same task 

obtaining better qualitative results and that our approach can be 

easily used as a useful black-box for Re-identification data 

augmentation. 
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This method relies on a dense-pose estimation system that 

maps pixels from images to a common surface-based 

coordinate framework. However, as the dense-pose estimator 

requires training with a large-scale ground-truth dataset with 

manually annotated image-to-surface correspondences, it is not 

directly comparable with most other works, including ours, 

which rely on keypoint detectors trained with less human 

supervision. 

In another approach, a VAE is used to represent the appearance 

and pose with two separate encoders. The appearance and pose 

descriptors are then combined and passed to a decoder to 

generate the final image. Zanfir et al. estimate the human 3D 

pose using meshes, identifying the mesh regions that can be 

directly transferred from the input image mesh to the target 

mesh. The missing surfaces are then filled using a color 

regressor trained through Euclidean loss minimization. 

Typically, U-net based architectures are often used. However, 

standard U-net skip connections are not well-designed for large 

spatial deformations as local information in the input and 

output images is not aligned. In contrast, we propose 

deformable skip connections to address this misalignment 

problem and “commute” local information from the encoder to 

the decoder driven by the specific pose difference. This allows 

us to simultaneously generate the overall pose and the texture-

level refinement. 

Landmark locations are used for other generation tasks such as 

face synthesis. However, as the human face is considered a 

more rigid object than the human body, the misalignment 

between the input and output images is limited and high-quality 

images can be obtained without feature alignment. 

For discriminative tasks, different architectures have been 

proposed to handle spatial deformations. For example, 

Jaderberg et al. propose a spatial transformer layer, which 

learns how to transform a feature map into a “canonical” view, 

conditioned on the feature map itself. However, this only 

realizes a global, parametric transformation, while in this paper 

we deal with non-parametric deformations of articulated 

objects which cannot be defined by a single global affine 

transformation. 

Finally, our nearest-neighbour loss is similar to the perceptual 

loss and to the style-transfer spatial-analogy approach. 

However, the perceptual loss, based on an element-by-element 

difference computed in the feature map of an external classifier, 

is different from our approach. 

 

Deformable  GANs 

“In our experiment, similar to the one referenced as [1], we aim to 

generate an image, denoted as xˆ, that depicts a person with an 

appearance (such as clothing) that matches a reference image, xa. 

However, the body pose in the generated image is intended to resemble 

that in another image, xb, of the same individual. The pose P(x) is 

represented as a sequence of k 2D points (p1, …pk) that mark the 

positions of the human body joints in the image. To ensure a fair 

comparison with [1] and other related works, we also use the same 

number of joints (k = 18) and employ the same Human Pose Estimator 

(HPE) [9] used in [1] to extract P(). It’s important to note that this HPE 

is utilized during both testing and training phases, which means we do 

not rely on manually annotated poses. Consequently, the extracted joint 

locations might contain some localization errors or issues such as 

missing detections or false positives. For the training phase, we utilize 

a specific dataset.” 

 X = {(x(i), x(i))} containing   

The perceptual loss is primarily based on a detailed comparison 

conducted within the feature map of an external classifier. This 

comparison involves pairs of reference and target images of the same 

individual in varying poses. For each image pair (xa, xb), two poses 

P(xa) and P(xb) are derived from the respective images. 

H (p) = exp  − 
ǁp − pj ǁ    

 

The generator G is supplied with two inputs: (1) a noise 

vector z, which is drawn from a noise distribution and is 

implicitly introduced using dropout [12], and (2) a triplet (xa, 

Ha, Hb). It’s important to note that during testing, the target 

pose is known, allowing for the computation of H(P(xb)). 

Also, the joint locations in xa and Ha are spatially aligned by 

design, while they differ in Hb. This is a departure from [1] 

and [12], where Hb is not concatenated with the other input 

tensors. This is because the convolutional units in G’s encoder 

have a small receptive field that cannot capture large spatial 

displacements. For instance, if there’s a significant movement 

of a body limb in xb compared to xa, this limb is represented 

in different locations in xa and Hb, which may be too far apart 

to be captured by the convolutional units’ receptive field. This 

is particularly pronounced in the encoder’s initial layers, 

which represent low-level information. As a result, the 

convolutional filters cannot process texture-level information 

(from xa) and the corresponding pose information (from Hb) 

simultaneously. Therefore, we process xa and Ha separately 

from Hb in the encoder. Specifically, xa and Ha are 

concatenated and processed using the source stream of the 

encoder, while Hb is processed by the target stream, without 

weight sharing (Fig. 2). The feature maps of the primary 

stream are then fused with the layer-specific feature maps of 

the second stream in the decoder, following a pose-driven 

spatial deformation performed by our deformable skip 

connections (see Sec. 3.1). Our discriminator network is 

modeled after the conditional, fully-convolutional 

discriminator proposed by Isola et al. [12]. In our 

implementation, D accepts four tensors as input: (xa, Ha, y, 

Hb), where either… 

j σ2 
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Fig. 2: A schematic representation of our network architectures 

 

3.Training 

"D and G are trained using a combination of a widespread conditional 

adversarial loss LcGAN and our proposed nearest-neighbor loss 

LNN. Specifically, in our case, LcGAN is defined as follows: 

LcGAN(G,D)=E(xa,xb)∈X[logD(xa,Ha,xb,Hb)]+E(xa,xb)∈X,z∈Z

[log(1−D(xa,Ha,x^,Hb))], 

where  

x^=G(z,xa,Ha,Hb). 

Previous works on conditional GANs combine the adversarial loss 

with either an L2 or an L1-based loss, which is used only for G. For 

instance, the L1 distance computes a pixel-to-pixel difference 

between the generated and the real image. However, a well-known 

issue with using L1 and L2 is the production of blurred images. We 

hypothesize that this is also due to these losses’ inability to tolerate 

minor spatial misalignments between  

x^ 

and xb. For example, suppose that  

x^ 

, produced by G, is visually plausible and semantically similar to xb, 

but the texture details on the person’s clothes in the compared images 

are not pixel-to-pixel aligned. Both the L1 and the L2 losses will 

penalize this inexact pixel-level alignment." 

 

"Despite not being semantically important from a 

human perspective, alignment is still considered. These 

misalignments do not depend on the global deformation 

between xa and xb, as xˆ is supposed to have the same pose 

as xb. To mitigate this issue, we suggest using a nearest-

neighbor loss NN based on the following definition of 

image difference: 

LNN(xˆ,xb)=p∈xˆ∑minq∈N(p)∣∣g(xˆ(p))−g(xb(q))∣∣, 
 

where N(p) is a local neighborhood of point p. g(x(p)) 

is a vector representation of a patch around point p in image 

x, obtained using convolutional filters (more details 

below). Note that LNN () is not a metric because it is not 

symmetric. To effectively compute Eq. (7), we compare 

patches in xˆ and xb using their representation (g()) in a 

convolutional map of an externally trained network. In 

more detail, we use VGG-19 [29], trained on ImageNet 

and, specifically, its second convolutional layer (called 

conv1 2). The first convolutional maps in VGG- 19 (conv1 

1 and conv1 2) are both obtained using a convolutional 

stride equal to 1. As a result, the feature map (Cx) of an 

image x in conv1 2 has the same resolution as the original 

image x. Leveraging this fact, we compute the nearest-

neighbor field directly on conv1 2, without losing spatial 

precision. Subsequently, we define: g(x(p)) = Cx(p), which 

corresponds to the vector of all the channel values of Cx 

with respect to the spatial position p. Cx(p) has a receptive 

field of 5x5 in x, thus effectively representing a patch of 

dimension 5x5 using a cascade of convolutional layers 

interspersed by a non-linearity. Using Cx, Eq. (7) becomes: 

LNN(xˆ,xb)=p∈xˆ∑minq∈N(p)∣∣Cxˆ(p)−Cxb(q)∣∣. 
 

In Sec. 4.1, we demonstrate how (8) can be efficiently 

implemented using GPU-based parallel computing. The 

final LNN -based loss is: 

LNN(G)=E(xa,xb)∈X,z∈ZLNN(xˆ,xb). 

 

Combining Eq.(5) and Eq (9) we obtain our objective: 

 

G∗=argGminDmaxLcGAN(G,D)+λLNN(G) 

, 

with λ = 0.01 used in all our experiments. The value of 

λ is small because it acts as a normalization factor in Eq. 

(8) with respect to the number of channels in Cx and the 

number of pixels in xˆ (more details in Sec.)." 
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4 IMPLEMENTATION  DETAILS 

In this stage, we provide additional technical details about 

our suggested approach. Firstly, we demonstrate how the 

proposed nearest-neighbour loss can be efficiently 

calculated using optimized matrix multiplications, a 

common technique in GPU-based programming. 

Secondly, we explain how the symmetry of the human 

body can be utilized to handle potential missing or non-

detected body parts. Finally, we outline the specifics of the 

architectures and the training process used in our 

experiments. 

4.1 Nearest-neighbour loss implementation 

Our suggested nearest-neighbour loss is derived from 

LNN (xˆ, xb) as specified in Eq. (8). In this equation, for 

each point p in xˆ, the point q in xb that is “most similar” 

(in the Cx-based feature space) needs to be identified 

within an n x n neighborhood of p. This operation can be 

time-consuming if implemented using sequential 

computing (i.e., a “for loop”). We illustrate how this 

calculation can be accelerated by utilizing GPU-based 

parallel computing, where different tensors are processed 

concurrently. 

Given Cxb, we compute n shifted versions of Cxb: {Cxb}, 

where (i, j) is a translation offset within a relative n x n 

neighborhood  

(i, j ∈ {− n−1 , …, + n−1 }) and C(i,j) is populated with 

D(i,j) = |Cxˆ − C(i,j)| 

This represents the channel-by-channel absolute 

difference between Cxˆ(p) and Cxb (p + (i, j)). Then, for 

each D(i,j), we sum all of the channels where c spans all 

the channels and the sum is performed pointwise. S(i,j) is 

a matrix of scalar values, with each value representing the 

L1 norm of the difference between a point p in Cxˆ and a 

corresponding point 

 p + (i, j) in Cxb. 

 

In this context, c spans all channels and the sum is computed 

pointwise. S(i,j) is a matrix of scalar values, each value 

representing the L1 norm of the difference between a point p 

in Cxˆ and a corresponding point p + (i, j) in Cxb: 

S(i,j)(p) = ||Cxˆ(p) − Cx (p + (i, j))||1 

For each point p, we can now calculate its best match in a 

local neighborhood of Cxb simply by using: 

M (p) = min(i,j)S(i,j)(p). 

Finally, Eq. (8) becomes: 

LNN (xˆ, xb ) =M (p). p 

Since we do not normalize Eq. (12) by the number of 

channels nor Eq. (15) by the number of pixels, the final value 

LNN (xˆ, xb) is typically very high. For this reason, we use a 

small value λ = 0.01 in Eq. (10) when weighting LNN with 

respect to LcGAN. 

 

5 EXPERIMENTS 

 

In this section, we compare our approach with other state-

of-the-art character generation methods, both qualitatively 

and quantitatively, and present an ablation study. Since the 

quantitative evaluation of generative methods remains an 

ongoing research challenge, we adopt various criteria, 

which include: (1) the evaluation protocols recommended 

by Ma et al., (2) human evaluations, and (3) experiments 

based on Re-identification training with data augmentation. 

It’s important to note that we do not use the background 

conditioning information in all but the qualitative 

experiments shown in Section 5.6. In fact, since most of the 

methods we compare with do not use additional 

background conditioning information, we also omitted this 

for a fair comparison. 
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5.1Metrics 

 

Evaluating generative tasks can be challenging. In our 

experiments, we use a variety of metrics, following the 

approach of 1. These include Structural Similarity (SSIM) 

[34], Inception Score (IS) [35], and their masked versions, 

mask-SSIM and mask-IS 1. The latter are obtained by 

masking out the image background. This is because no 

background information of the target image is input to G, 

so the network cannot predict what the target background 

looks like (note that we do not use background 

conditioning in these experiments). It’s important to note 

that the evaluation masks we use to compute both the 

mask-IS and mask-SSIM values do not correspond to the 

mask ( Mh ) we use for training. The evaluation masks 

were constructed following the method proposed in 1 and 

used in that work for both training and evaluation. As a 

result, the mask-based metrics may be biased in favor of 

their method. Furthermore, we note that the IS metrics 

[35], based on the entropy computed over the class 

neurons of an external classifier [36], are not very suitable 

for domains with only one item class (the character class 

in this case). For this reason, we suggest using an 

additional metric that we call Detection Score (DS). In 

addition to the class-based metrics FCN-score, used in 

[12], DS is based on the detection outcome.

 

6.Conclusions 

In this paper, we introduced a GAN-based method for 

generating images of individuals, conditioned on their 

appearance and pose. We proposed two novel concepts: 

deformable skip connections and nearest-neighbour loss. 

The former addresses common issues in U-net based 

generators when dealing with deformable objects, while 

the latter helps to mitigate the misalignment between the 

generated image and the ground-truth image. 

Our experiments, which were based on both automated 

evaluation metrics and human judgments, demonstrated 

that our proposed method either outperforms or is on par 

with previous work in this task. Importantly, we showed 

that, unlike other popular character-generation methods, 

our Deformable GANs can significantly improve the 

accuracy of various Re-identification systems using data 

augmentation. The performance improvement achieved 

is even greater than a state-of-the-art Re-id specific data-

augmentation method. 

Although we tested our Deformable GANs on the 

specific task of human generation, we made only a few 

assumptions related to the human body. We believe that 

our concept can be easily adapted to handle other 

deformable-object generation tasks. 
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