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Abstract – floating solar photovoltaic (FPV) systems are 

gaining global attention due to their efficient use of water 

surfaces and natural cooling effects. However, the variability in 

environmental factors affecting FPV systems presents a 

significant challenge for accurate power forecasting. This 

paper investigates short-term forecasting of FPV power output 

using machine learning (ML) techniques. Models including 

Support Vector Regression (SVR), Random Forest (RF), and 

Long Short-Term Memory (LSTM) networks are developed 

and compared. A detailed analysis of feature importance, 

model performance, and error metrics is presented. The results 

demonstrate that LSTM achieves superior accuracy with a 

Mean Absolute Percentage Error (MAPE) of 2.5%, making it a 

promising tool for FPV power management. 
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I.INTRODUCTION 

 

The increasing global demand for renewable energy has led 

to significant advancements in solar energy technologies. 

Among these, floating solar photovoltaic (PV) systems have 

gained attention due to their innovative design, ability to 

utilize water bodies, and improved efficiency compared to 

ground-mounted systems. However, the intermittent nature 

of solar energy remains a challenge for effective integration 

into power grids. Accurate short-term forecasting of energy 

generation is crucial for optimizing operation, ensuring grid 

stability, and maximizing the economic viability of floating 

solar system. 

 

A. Objective of Study 

This study aims to leverage machine learning models to 

forecast the energy output of floating solar systems over 

short time horizons. By combining historical energy 

generation data, meteorological inputs, and advanced ML 

techniques, the study seeks to: Enhance the accuracy of 

energy output predictions. Improve operational decision 

making for energy dispatch and storage. Contribute to the 

efficient integration of floating solar systems into existing 

power grids. 

II. METHODOLOGY 

While specific studies on FPV system are limited, 

methodologies applied to traditional PV system can be 

adapted for FPV forecasting. This methodology outlines the 

step-by-step approach for developing a machine learning 

framework to forecast short term power generation from 

floating photovoltaic system, utilizing data collection, 

preprocessing, feature engineering, model training, 

evaluation and comparison. 
 

Fig 1. Architecture Diagram 

This image represents a machine learning workflow for 

power generation predication using weather flow data. 

 

A. Dataset Used 

The datasets for this project are sourced from Kaggle spans 

a period from 15 June 2020 to 17 July 2020 with data points 

recorded every 15 minutes. 

Power Generation Dataset: Contain columns such as Date 

time, Plant ID, Source Key, DC Power, AC Power, Daily 
Yield, Total Yield 

Weather sensors dataset: Contain columns such as Date 

time, Plant ID, source key, ambient temperature, module 

temperature, module temperature, irradiation. 
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B. Data Pre-Processing 

Data Cleaning: Remove any duplicate entries and handle 
missing values using appropriate imputation techniques, 

such as mean or interpolation. 

Data Merging: Merge the two datasets based on common 

columns (DATE TIME, PLANT ID, SOURCE KEY) to 

create a comprehensive dataset that integrates both power 

generation and weather data. 

Data Type Conversion: Ensure that the data types of each 

column are appropriate for analysis, such as converting 

timestamps to datetime objects. 

 

C. Feature Engineering 

Time-Based Features: Extract time-based features from the. 
DATE TIME column, including day of the week, month, 

hour, and year. 

Lagged Features: Create lagged features to capture temporal 

dependencies: 

DC POWER LAG 1: DC power from the previous time step. 

AC POWER LAG 1: AC power from the previous time step. 

Final Feature Set: The final feature set used for model 

training includes DC Power, AC Power, Daily Yield, Total 

Yield, Ambient Temperature, Irradiation, DC Power Lag 1, 

AC Power Lag 1. 

 

C. Model Selection 

Choose ML models based on the forecasting horizon 

(minutes, hours, or days). 

Traditional ML Models- Linear Regression (LR): Simple 

baseline model. Random Forest (RF): Captures non-linearity 

well. Support Vector Regression (SVR): Works well for 

complex relationships. 

Deep Learning Models-Artificial Neural Networks 

(ANNs): Good for capturing intricate dependencies. Long 

Short-Term Memory (LSTM): Suitable for time series 

forecasting. 

Transformer Models: Used for advanced forecasting (e.g., 

Temporal Fusion Transformers). 

 

III. RESULTS AND DISCUSSION 
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Fig 2 Correlation Matrix 

Correlation matrix is a table that show the correlation 

coefficients between different variables in a dataset. It helps 

in understanding the relationship between features, which is 

crucial for feature selection and model performance 

improvement. 

The table presents performance metrics for evaluating these 

models. RMSE (Root Mean Squared Error) and MSE (Mean 

Squared Error) indicate overall prediction accuracy MAE. 

(Mean Absolute Error) and Median AE (Median Absolute 

Error) measure error magnitude. R² Score assesses how well 

the model explains variance in the data. Max Error and 

MAPE (Mean Absolute Percentage Error) show worst-case 

errors and percentage error, respectively. Model Loss and 

RMSLE (Root Mean Squared Logarithmic Error) are used 

for deep learning models. 

Gradient Boosting has the best performance (lowest RMSE: 

0.4510, highest R²: 0.6893), making it the most suitable 

traditional 

ML model. LSTM has a lower MAPE (11.25), indicating it 

might perform well for sequential forecasting Neural 

Networks (NN) show higher RMSLE (0.2195), which 

suggests room for improvement. 

 

IV. CONCLUSION 

The comparison of machine learning models for short-term 

forecasting of a floating solar system highlights Gradient 

Boosting as the best-performing model. It achieves the 

lowest RMSE (0.4510), MAE (0.3945), and MSE (0.2034) 

while attaining the highest R² score (0.6893), indicating 

strong predictive accuracy. Random Forest and SVR show 

moderate performance but have higher errors and lower R² 

values, making them less reliable. ELM performs even worse, 

with higher RMSE (0.6370) and MAE (0.5490), suggesting 

weaker forecasting capability. 

LSTM and Neural Network (NN) models have missing key 

evaluation metrics, but NN shows high RMSLE (0.2195) 

and Model Loss (0.1172), indicating suboptimal 

performance. The high MAPE values for ELM and SVR 

suggest significant percentage errors. Overall, Gradient 

Boosting is the most effective model, offering the best 

tradeoff between accuracy and error minimization, making it 

the most suitable choice for short-term floating solar system 

forecasting. 
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