
          International Journal of Scientific Research in Engineering and Management (IJSREM) 

                        Volume: 09 Issue: 03 | March - 2025                            SJIF Rating: 8.586                                ISSN: 2582-3930                                                                                                             

 

© 2025, IJSREM      | www.ijsrem.com                                 DOI:  10.55041/IJSREM42520                                            |        Page 1 

Applying TOPSIS Method for Optimal Data Mining Algorithm Selection in Software 

Defect Prediction Systems 

Dr. Manuj Joshi1 

1Assistant Professor, FCI, Sir Padampat Singhania University, Udaipur 
 

---------------------------------------------------------------------***---------------------------------------------------------------------
Abstract - In software defect prediction systems, choosing 

the best data mining classification algorithm is essential for 

efficient decision-making. The Technique for Order of 

Preference by Similarity to Ideal Solution (TOPSIS) method 

for ranking classification algorithms according to several 

criteria is assessed in this study. Classifiers were evaluated and 

ranked using the AR1 and JM1 datasets using a structured 

multi-criteria decision-making (MCDM) methodology. 

According to the results, Lazy-IBK continuously performs 

better than other classifiers, demonstrating how well TOPSIS 

finds the top-performing models. Furthermore, the comparative 

study of classification algorithms shows how reliable the 

approach is when taking into account variables like scalability, 

accuracy, and computational efficiency. According to the 

results, TOPSIS considerably enhances classifier selection 

when it comes to software defect prediction, resulting in data 

mining applications that make better-informed and impartial 

decisions. 

 
Key Words: MCDM, Software Defect Prediction, TOPSIS 

 

 

1.INTRODUCTION  

 
Organizations use data mining classification algorithms to 

glean insightful information and make well-informed decisions 
in today's data-driven world. The process of choosing the best 
classification algorithm is difficult since it takes into account a 
number of factors, including scalability, interpretability, 
accuracy, and computational efficiency. Methods known as 
Multi-Criteria Decision-Making (MCDM) offer an organized 
way to assess and rank these algorithms according to a number 
of performance metrics. Because it ranks alternatives by 
comparing them to an ideal and a negative-ideal solution, the 
Technique for Order of Preference by Similarity to Ideal 
Solution (TOPSIS) is one of the most popular MCDM 
techniques. By taking into account both the best and worst-case 
scenarios, TOPSIS guarantees a fair assessment of classification 
algorithms according to predetermined standards. 

The impact of the TOPSIS method on choosing the best data 
mining classification algorithm in organizational information 
systems is investigated in this study. Organizations can improve 
decision-making efficiency, priorities different classification 
models according to business goals, and evaluate them 
methodically by implementing TOPSIS. The goal of the study 
is to demonstrate how the approach enhances model selection, 
boosts accuracy, and improves information systems decision 
support generally. 

2. LITERATURE REVIEW 

 
The Early software defect detection is essential for 

increasing software dependability and cutting development 
expenses. With a growing emphasis on Multi-Criteria Decision 
Making (MCDM) techniques for algorithm selection and 

optimisation, numerous studies have investigated machine 
learning and deep learning approaches for software defect 
prediction. 

In their thorough analysis of MCDM applications in data 
mining, Raeesi Vanani and Emamat (2019) emphasised their 
function in choosing the best classification algorithms. By 
assessing several performance criteria at once, the TOPSIS 
method improves classification accuracy and is a useful tool for 
decision-making, according to the study. Their study backs up 
the use of MCDM techniques to enhance data mining model 
selection and algorithm efficiency.[1] 

In their 2018 study, D'souza and Nayak examined the use of 
MCDM techniques in software engineering for algorithm 
ranking and performance assessment. According to their 
findings, TOPSIS and related methods facilitate the objective 
comparison of various classification models according to 
criteria like computational efficiency, scalability, and accuracy. 
Software engineers can improve defect prediction and 
maintainability evaluation by optimising model selection 
through the use of MCDM techniques.[2] 

The usefulness of deep learning and machine learning 
models in software defect prediction was investigated by 
Albattah and Alzahrani (2024). Based on classification 
performance metrics like accuracy and F1 scores, the study 
assessed eight distinct models using a dataset that included 60 
software metrics from open bug repositories. Long short-term 
memory (LSTM) models performed better than other methods, 
according to the results, with an accuracy of 0.87. This 
highlights the potential of deep learning techniques to enhance 
software reliability and defect detection.[3] 

By integrating optimisation techniques into software 
modelling, Boussaïd, Siarry, and Ahmed-Nacer (2017) 
investigated search-based model-driven engineering (SBMDE). 
The study evaluated the effect of metaheuristic algorithms on 
software model structure refinement, including simulated 
annealing and genetic algorithms. Their study showed that by 
facilitating more efficient classification and decision-making 
procedures, the integration of optimisation strategies improves 
software maintainability and defect prediction.[4] 

A multi-objective optimisation model was put forth by 
Chhabra (2017) with the goal of enhancing object-oriented 
software package structures. The study aimed to improve 
software modularity and maintainability by utilising 
optimisation algorithms and weighted class connections. The 
findings showed that by optimising software architecture, 
search-based and machine learning approaches successfully 
lower software defect rates and maintenance expenses.[5] 

Ensemble learning methods for software maintainability 
prediction were empirically studied by Elish, Aljamaan, and 
Ahmad (2015). Their research contrasted ensemble techniques 
like bagging, boosting, and stacking with conventional machine 
learning models. The results showed that ensemble learning is a 
dependable technique for predicting software defects and 

http://www.ijsrem.com/


          International Journal of Scientific Research in Engineering and Management (IJSREM) 

                        Volume: 09 Issue: 03 | March - 2025                            SJIF Rating: 8.586                                ISSN: 2582-3930                                                                                                             

 

© 2025, IJSREM      | www.ijsrem.com                                 DOI:  10.55041/IJSREM42520                                            |        Page 2 

evaluating maintainability since it greatly improves prediction 
accuracy and robustness.[6] 

The use of machine learning algorithms to forecast the fault-
proneness of software modules was examined by Gondra 
(2008). Support vector machines (SVMs), decision trees, and 
neural networks were among the classification models that were 
compared in the study. The findings demonstrated that feature 
selection and ensemble learning strategies increase fault 
prediction accuracy, underscoring the significance of automated 
defect prediction systems.[7] 

A data-efficient learning method for forecasting software 
performance in configurable systems was presented by Guo et 
al. (2018). The study focused on how machine learning models 
can predict system behaviour with little training data, negating 
the need for thorough performance reviews. The study 
emphasised the importance of sampling and feature selection 
strategies in creating flexible machine learning models for 
defect prediction.[8] 

The problem of self-admitted technical debt (SATD) in 
open-source software projects was the main focus of Huang et 
al. (2018). In order to find instances where developers 
acknowledged technical debt in code comments, the study 
employed text mining techniques. The results showed that 
SATD has a major impact on software quality and 
maintainability, and that by detecting latent software problems 
early in the development cycle, natural language processing 
(NLP) techniques can improve software defect prediction 
models.[9] 

In order to generate source code summaries using deep 
learning techniques—specifically, recurrent neural networks 
(RNNs) with attention mechanisms—Iyer et al. (2016) proposed 
a neural attention model. According to the study, AI-driven 
techniques enhance code comprehension and review 
procedures, which enhances software maintainability and defect 
prediction.[10] 

In their systematic review of the literature on software 
maintainability, Malhotra and Chug (2016) emphasised 
important elements like software metrics, design patterns, and 
code complexity. The study examined a number of statistical 
and machine learning models and suggested that search-based 
optimisation and deep learning could improve automated 
software quality assessment even more.[11] 

Mishra and Sharma (2015) investigated the prediction of 
software maintainability in object-oriented applications using 
fuzzy systems based on adaptive networks. The study created an 
interpretable software quality assessment model by combining 
machine learning and fuzzy logic techniques. According to the 
findings, hybrid machine learning techniques enhance 
maintainability predictions, especially when object-oriented 
metrics like coupling and inheritance depth are included.[12] 

A fuzzy-based machine learning model was created by 
Ahmed and Al-Jamimi (2013) to forecast software 
maintainability. Their method produced an interpretable 
prediction system by combining fuzzy logic with decision trees 
and neural networks. The study demonstrated the potential of 
fuzzy-based approaches in software defect prediction by 
highlighting their benefits in handling imprecise and ambiguous 
software metrics.[13] 

The literature review highlights the increasing importance of 
optimisation, deep learning, and machine learning methods in 
predicting software defects and assessing maintainability. 
Hybrid models, feature selection tactics, and advanced AI 

techniques have shown encouraging results in improving 
software quality. By combining fuzzy logic, search-based 
optimisation, and natural language processing for automated 
software quality assessment, future studies can further enhance 
predictive models. 

 
3. RESEARCH METHODOLOGY 

 
The impact of the TOPSIS method in choosing the best data 

mining classification algorithm for software defect prediction is 
assessed in this study using a quantitative research 
methodology. Classification algorithms like Decision Tree, 
Support Vector Machine, Naïve Bayes, Random Forest, K-
Nearest Neighbours, and Artificial Neural Networks will be 
taken into consideration, and publicly accessible benchmark 
datasets or real-world organisational datasets will be used. 
Decision criteria will be based on key evaluation metrics, such 
as scalability, accuracy, precision, recall, F1-score, and 
computational efficiency. The algorithms will be ranked using 
the TOPSIS method, which compares them to both an ideal and 
a negative-ideal solution. The findings will be examined to 
determine how TOPSIS enhances decision-making in software 
defect prediction systems and influences algorithm selection. 

Objectives:  

1. To analyse the effectiveness of the TOPSIS method in 
selecting the optimal data mining classification 
algorithm for organizational decision-making. 

2. To compare classification algorithms based on 
multiple criteria, such as accuracy, computational 
efficiency, and scalability, using the TOPSIS method. 

Hypotheses: 

Based on the above objectives following hypotheses was 
being framed: 

 H01: The use of the TOPSIS method does not significantly 
impact the selection of the most appropriate data mining 
classification algorithm in organizational information systems. 

 Ha1: The use of the TOPSIS method significantly improves 
the selection of the most appropriate data mining classification 
algorithm in organizational information systems. 

 

4. RESULTS AND DISCUSSION 

 
The Technique for Order of Preference by Similarity to Ideal 

Solution (TOPSIS) is a multi-criteria decision-making 
(MCDM) method used to rank alternatives based on their 
distance from an ideal and a negative-ideal solution. It evaluates 
multiple criteria simultaneously, ensuring an objective and 
structured selection process. The method calculates a relative 
closeness score for each alternative, identifying the most 
optimal choice. TOPSIS is widely used in various domains, 
including data mining, software defect prediction, and 
organizational decision-making. 

The JM1 dataset is a software defect prediction dataset from 
NASA's Metrics Data Program (MDP), containing 10,885 
instances and 22 attributes, primarily used for predicting 
software defects to enhance software reliability. It is publicly 
available through repositories like the PROMISE Software 
Engineering Repository. The AR1 dataset, on the other hand, is 
a software defect prediction dataset collected from a Turkish 
White-Goods manufacturer and was donated by the Software 
Research Laboratory (Softlab). Both datasets serve as valuable 

http://www.ijsrem.com/


          International Journal of Scientific Research in Engineering and Management (IJSREM) 

                        Volume: 09 Issue: 03 | March - 2025                            SJIF Rating: 8.586                                ISSN: 2582-3930                                                                                                             

 

© 2025, IJSREM      | www.ijsrem.com                                 DOI:  10.55041/IJSREM42520                                            |        Page 3 

benchmarks for evaluating machine learning models in software 
defect prediction. 

4.1 MCDM Method - TOPSIS for AR1 Dataset (10-Fold 
Cross –Validation): 

The TOPSIS evaluation for the AR1 dataset using 10-fold 
cross-validation reveals that the Lazy-IBK classifier performs 
the best, achieving the highest TOPSIS value of 0.9239 and 
securing the top rank. This indicates that Lazy-IBK is the most 
effective classifier in terms of similarity to the ideal solution, 
demonstrating superior predictive capabilities for this dataset. 
The SMO classifier follows in second place with a TOPSIS 
score of 0.51, while Lazy-K Star ranks third with 0.495. These 
results suggest that instance-based learning methods (Lazy-IBK 
and Lazy-K Star) perform well, along with support vector-based 
approaches (SMO). The strong ranking of these classifiers 
implies that they are well-suited for the specific characteristics 
of the AR1 dataset. 

Table 4.1: Comparative Analysis of Classifiers based on 
TOPSIS Score for AR1 Dataset 

 

  

Among the moderately performing classifiers, Naïve Bayes 
(0.4777, Rank 5) and Rules-PART (0.4836, Rank 4) exhibit 
competitive results, making them viable alternatives in certain 
scenarios. Multilayer Perceptron (0.4664, Rank 7) and J48 
(0.4664, Rank 8) show similar performance, indicating that 
decision tree and neural network-based models have 
comparable effectiveness in this dataset. On the lower end, 
BayesNet (0.4201, Rank 13) and Misc-HyperPipes (0.1625, 
Rank 15) show significantly weaker performance, suggesting 
their limited applicability for AR1 dataset classification. 
Overall, the results emphasize the dominance of Lazy-IBK and 
SMO, making them the most suitable choices for classification 
tasks on this dataset. 

4.2 MCDM Method - TOPSIS for JM1 Dataset (10-Fold 
Cross –Validation) 

The TOPSIS evaluation for the JM1 dataset using 10-fold 
cross-validation indicates that Lazy-IBK (0.8013, Rank 1) is the 
most effective classifier, closely followed by Lazy-K Star 
(0.7987, Rank 2). These results highlight the dominance of 
instance-based learning methods for this dataset, suggesting that 
these classifiers efficiently capture patterns within JM1. SMO 
(0.51, Rank 3) also demonstrates strong performance, making it 
a viable choice for classification tasks. The Naïve Bayes 
classifier (0.3965, Rank 4) outperforms several rule-based and 
tree-based classifiers, suggesting that probabilistic approaches 
are relatively effective for the JM1 dataset. 

Table 4.2: Comparative Analysis of Classifiers based on 
TOPSIS Score for JM1 Dataset 

 

In the mid-range, J48 (0.3758, Rank 5), Tree-REP (0.3688, 
Rank 6), and Rules-PART (0.3622, Rank 7) exhibit moderate 
classification ability, indicating that decision tree-based 
techniques perform fairly well. However, Multilayer Perceptron 
(0.3352, Rank 10) and AdaBoostM1 (0.3181, Rank 11) show 
relatively lower effectiveness, implying that neural networks 
and boosting techniques may not be the best-suited models for 
this dataset. On the lower end, Rules-ZeroR (0.294, Rank 13), 
HyperPipes (0.1934, Rank 15), and Misc-VFI (0.2494, Rank 14) 
exhibit weak classification performance, confirming their 
limitations for JM1. Overall, the results emphasize that Lazy-
IBK and Lazy-K Star remain the top-performing classifiers, 
making them the most suitable choices for classification tasks 
on JM1. 

4.3 Effectiveness of the TOPSIS Method 

The results obtained from the AR1 and JM1 datasets 
demonstrate the effectiveness of the TOPSIS (Technique for 
Order Preference by Similarity to Ideal Solution) method in 
ranking classification algorithms for software defect prediction. 
By considering multiple criteria, such as accuracy and 
computational performance, TOPSIS provides a systematic 
approach to identifying the most suitable classifier for 
organizational decision-making. In both datasets, Lazy-IBK 
consistently ranked highest, indicating its strong predictive 
capability in software defect classification tasks. This reinforces 
the utility of the TOPSIS method in real-world applications 
where organizations must select optimal models based on 
multiple performance measures. 

4.4 Comparison of Classification Algorithms Using TOPSIS 
Based on Multiple Criteria 

The comparative analysis of classification algorithms using 
the TOPSIS method highlights significant variations in their 
performance. For both datasets, Lazy-IBK and Lazy-K Star 
emerged as top-ranked classifiers, demonstrating superior 
predictive accuracy. SMO also performed well, securing a high 
rank in both datasets. Conversely, algorithms like HyperPipes 
and Misc-VFI ranked lowest, indicating lower suitability for 
defect prediction. The rankings emphasize the importance of 
considering multiple criteria, as some classifiers may excel in 
accuracy but lag in computational efficiency or scalability. The 
results validate the applicability of TOPSIS in evaluating 
classifiers, offering a structured and quantitative approach to 
decision-making in organizational data mining tasks. 

 

http://www.ijsrem.com/


          International Journal of Scientific Research in Engineering and Management (IJSREM) 

                        Volume: 09 Issue: 03 | March - 2025                            SJIF Rating: 8.586                                ISSN: 2582-3930                                                                                                             

 

© 2025, IJSREM      | www.ijsrem.com                                 DOI:  10.55041/IJSREM42520                                            |        Page 4 

4.5 Hypothesis Testing Results 

H01: The use of the TOPSIS method does not significantly 
impact the selection of the most appropriate data mining 
classification algorithm in organizational information systems. 

Ha1: The use of the TOPSIS method significantly improves 
the selection of the most appropriate data mining classification 
algorithm in organizational information systems. 

The results from the AR1 and JM1 datasets demonstrate that 
the use of the TOPSIS method significantly improves the 
selection of the most appropriate data mining classification 
algorithm in organizational information systems, leading to the 
rejection of the null hypothesis (H01) and acceptance of the 
alternative hypothesis (Ha1). The rankings generated by 
TOPSIS provide a structured approach to evaluating classifiers 
based on multiple criteria, ensuring a more balanced and 
informed decision-making process. For example, Lazy-IBK 
consistently emerges as the top-performing classifier across 
both datasets, highlighting the robustness of the TOPSIS 
ranking in identifying optimal models. 

Furthermore, the application of TOPSIS enables the 
simultaneous consideration of multiple performance factors, 
such as accuracy, computational efficiency, and scalability, 
rather than relying solely on traditional accuracy-based 
measures. This suggests that organizations can leverage 
TOPSIS to make more data-driven and objective classifier 
selections, reducing biases and improving decision-making 
efficiency. The consistent ranking patterns across datasets 
reinforce the reliability of TOPSIS in classifier selection, 
making it a valuable tool for optimizing data mining processes 
in organizational information systems. 

 

5. CONCLUSIONS 

 
      The study demonstrates that TOPSIS is a very successful 

technique for choosing the best classification algorithm for 

predicting software defects. The dependability of the TOPSIS 

method is demonstrated by the rankings derived from the AR1 

and JM1 datasets, which consistently show that Lazy-IBK 

performs better than other classifiers. TOPSIS offers a 

systematic and impartial framework for decision-making by 

integrating multiple performance criteria, which lessens biases 

and improves classifier selection accuracy. Furthermore, 

TOPSIS considerably enhances classifier evaluation in 

comparison to conventional selection techniques, as further 

supported by the rejection of the null hypothesis (H01). 

Additionally, this study highlights the useful benefits of multi-

criteria decision-making (MCDM) approaches in data mining 

applications. Businesses that choose classifiers that strike a 

balance between accuracy, scalability, and computational 

performance can use TOPSIS to improve predictive modelling 

and decision-making effectiveness. The results demonstrate 

how MCDM can be used to optimise classifier selection, 

opening the door for further study into hybrid strategies that 

combine TOPSIS with deep learning models or other MCDM 

techniques to enhance classifier selection in challenging 

decision-making situations. 

 

ACKNOWLEDGEMENT 

 
I sincerely appreciate the resources and support that facilitated 

this research. The access to relevant datasets and research 

materials greatly contributed to the study. Constructive insights 

helped refine the analysis. Lastly, I acknowledge the 

motivation that enabled the successful completion of this work. 

 

REFERENCES 

 
1. Raeesi Vanani, Iman & Emamat, Seyed Mohammad Mohsen. 

(2019). “Analytical Review of the Applications of Multi-Criteria 

Decision Making in Data Mining”. 10.4018/978-1-5225-5137-

9.ch003, pp. 5225-5137. 

2. D'souza, Rio & Nayak, Veena. (2018).” A Survey on Multi-Criteria 

Decision-Making Methods in Software Engineering”. Vol. 3, Issue 

7, July – 2018 International Journal of Innovative Science and 

Research Technology ISSN No:-2456-2165, pp. 366-367. 

3. Albattah, W., & Alzahrani, M. (2024). Software Defect Prediction 

Based on Machine Learning and Deep Learning Techniques: An 

Empirical Approach. AI, 5(4), 1743-1758. 

https://doi.org/10.3390/ai5040086. 

4. Boussaïd, I., Siarry, P., & Ahmed-Nacer, M. (2017). A survey on 

search-based model-driven engineering. Automated Software 

Engineering, 24(2), 233–294. 

5. Chhabra, J. K. (2017). Improving package structure of object-

oriented software using multi-objective optimization and weighted 

class connections. Journal of King Saud University - Computer and 

Information Sciences, 29(3), 349–364. 

6. Elish, M. O., Aljamaan, H., & Ahmad, I. (2015). Three empirical 

studies on predicting software maintainability using ensemble 

methods. Soft Computing, 19(9), 2511–2524. 

7. Gondra, I. (2008). Applying machine learning to software fault-

proneness prediction. Journal of Systems and Software, 81(2), 

186–195. 

8. Guo, J., Yang, D., Siegmund, N., Apel, S., Sarkar, A., Valov, P., 

Czarnecki, K., Wasowski, A., & Yu, H. (2018). Data-efficient 

performance learning for configurable systems. Empirical 

Software Engineering, 23(4), 1826–1867. 

9. Huang, Q., Shihab, E., Xia, X., Lo, D., & Li, S. (2018). Identifying 

self-admitted technical debt in open-source projects using text 

mining. Empirical Software Engineering, 23(1), 418–451. 

10. Iyer, S., Konstas, I., Cheung, A., & Zettlemoyer, L. (2016). 

Summarizing source code using a neural attention model. In 

Proceedings of the 54th Annual Meeting of the Association for 

Computational Linguistics (pp. 2073–2083). Berlin, Germany: 

Association for Computational Linguistics. 

11. Malhotra, R., & Chug, A. (2016). Software maintainability: 

Systematic literature review and current trends. International 

Journal of Software Engineering and Knowledge Engineering, 

26(9-10), 1221–1253. 

12. Mishra, S., & Sharma, A. (2015). Maintainability prediction of 

object-oriented software by using adaptive network-based fuzzy 

system technique. International Journal of Computer Applications, 

119(19), 24–27. 

13. Ahmed, M. A., & Al-Jamimi, H. A. (2013). Machine learning 

approaches for predicting software maintainability: A fuzzy-based 

transparent model. IET Software, 7(6), 317–326. 

 

 
 

 

http://www.ijsrem.com/

