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Abstract

In this paper, a theorem on degree of approximation of function in the generalized Zygmund class by
double Euler summability means of Fourier series has been established.
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1. Introduction

The degree of approximation of function belonging to different classes like Lip a, Lip (a,r), Lip(é(t),r),
W (L., &(t)) have been studied by many researchers using different summability means (see [5], [6] ). The error
estimation of function in Lipschitz and Zygmund class using different means of Fourier series and conjugate
Fourier series have been great interest among the researcher.The generalized Zygmund class Zﬁ“’) (r=1) has
studied by Leindler [2] Moricz [3 ], Moricz and Nemeth [4 ] etc. Recently Singh et al. [9 ], Mishra et al. [7 ],
Pradhan et al. [8], Das et al. [1], find the results in Zygmund class by using different summability means .
In this paper we find the degree of approximation of function in the generalized Zygmund class by (N, p,)
(E, g) means of Fourier series.To the best of our knowledge, degree of approximation of function in the
generalized Zygmund class by (E, 1) (E, 1) product summability means of Fourier series has not been
studied so far.

2. Definition
Let f be aperiodic function of period 2m integrable in the sense of Lebesgue over [=, - w]. Then the
Fourier series of f given by
flt) = % + Yn=q1(a,cos nx + bysin nx) (2.1)
Zygmund class z is defined as
Z={fell-mm] |fx+)+f(x—1t)=2f()]=0(tD}

Let w: [0,2m] — R be an arbitrary function with w(t) > 0 for 0 <t < 27

limi_ow(t) = w(0) =0 define
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IfC++fC ) =20l
Z;V::{feLp:1SpSoosup w0 <
lF C+D+7(=)-27 Ol
and WFIIp == 1Ifllp, + sup Eop=1l (2.2)

w(t)
Clearly ||.|l3 isanormon Zy'.

Hence the Zygmund space Z} is a Banach space under the norm || [l .
We write through the paper

DO =fx+t)—2f(x)+ f(x— 1) (2.3)
n n sin (v+%)t
Kn(®) = Gty Zheol) {2l () “2met]. @4)
3. Main Result

In this paper we prove the following theorem.

Theorem - Let f be a 2m periodic function, Lebesgue integrable in [0,2r] and belonging to generalized

Zygmund class Zﬁw) (r = 1). Then the degree of approximation of function f by (E, 1) (E, 1) product mean
of Fourier series is given

by Ea(f) = inf 1655 = £l = o (£ 22 ar)
T tv(®)
where w(t) and v(t) denotes the Zygmund moduli of continuity such that % is positive and
increasing .
4 Lemma-To prove the theorem we need the following Lemma.
Lemma4(a) - For 0 <t<—— wehave sinnt = nsint
|Kyn ()] = o(n) (4.1)

Proof- For 0<t< # and sinnt = n sint then

sin (v+l)t
|Kn(t)| = W ;CL=O(Z) {2115:0 (:j) sin (5 }
(2v+1)sin (5)
< e B {80 P
< Gy | Zio(f) @k + D{ZE-o(D)]
= (2)"+1rr |Z;€1=O(Z) (2k + 1)|
_ (2n+1)
T om
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Lemma 4(b) - For nn: <t<m, % > % and sinnt <1 we have
| Ka(®)] = 0(3) (42)
Proof - For%StSn, %2% and sinnt<1

| Kn(0)] =

sin (v+l)t
(2)n+k+1n- (n) {ZU 0 (k) ; £2 }

sin (2)

1

S (2)n+k+1n-

no() 2o )|
< e B (o)
< ﬁlzycgo(;clﬂ

1
=o(3)
Lemma4(c) - Let f € Z,(,W) thenfor 0<t<m

) Nl Dll, = ow(®)

o(w(t)

(i) loC+y, ) +d(—y,t) =20, D, = {O(W(y)

(iii) If w(t) and v(t) are defined as intheorem then

w(t)
v(t)

1pC+7,0) + ¢(.—3,8) — 26, DI, = {v() 22
where p(x,t) = f(x +t) + f(x — t) — 2f (x).
5. Proof of Theorem 3
Let s,(x) denotes the partial sum of fourier series given in (2.1) then we have

sin (n+ )t

S (%) — f(x)——f 2(t)

(5.1)

2

The (E, 1) transform EX  of s,is given by ELl—f(x)= —71'(2;”"'1 f:(b(t){ () S”‘( ())}

(5.2)

The (E, 1), (E, 1) transform of s, (x) is given by

EE() = F() = = Zeo () I @(t){zkz,, o(")sm(())}dt (53)
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= [7O() k(D). (5.4)

Let  1,(0) =thE — f(x) = [T O(x,t) ky(t)dt then

Lhx+y)+ Lix—y)=21,(x) = f[d)(x +y, 0+ ¢x =y, 1) = 20(x, )] ky(t) dt.
0

Using the generalized Minkowaski’s inequality we get

¢4y, + $(=3,6) =26, Oll, = {52 J; Tl + ) + Ln(x =) = 21, (P dx}?

27T

= 1S TG+ 3,0 + px —y,6) = 206, B)] kn(6) dt |dx JP
< TR0+ 7,0+ 96— 7,0 - 260, 0] Ky OIP ax ] de

LTIp 0+ 3,6 + ¢ — y,6) = 20 G, OIIP dx]”

1
21

= U k(O |
= [TIoC+y.0) + ¢ =y, ) = 2¢(, Dllp| kn(®)] dt

=JﬁWMA%w+¢vwﬁ—ZMJwﬂkﬂMdtf@Jﬂﬁ%o+¢«wﬁ—

2¢(, Ollp| kn(®) dt
= L, +1,. (say) (5.5)
®

Using Lemma 4(a) and 4(c) and the monotonically of % with respect to t, we have

L = [T +7,0) + b —3,0) — 26.(, Dlly| kn(O] dt

= Jp+io (v(y) %) o(n) dt

_ ——w(t)
=0 (nv(y) J: ) dt) :
Using second mean value theorem of integral, we have

Lw(f)
L <o (nv(y) fon“ﬁ dt)

=0 < v(y) (:(("—Il)))> : (5.6)
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For I, using lemma 4(b) and 4(c) , we have

L =[5 pC+y, ) + d(.—y,0) = 2¢(, )| kn(®)| dt

n+1

=o (/2 (b)) } )

_o<v(y) [ (:;((?)) dt). (5.7)

From (5.5), (5.6) and (5.7), we get

1 C49) + 1 =3) = 2L, Ol = o(v(y) (( )))>+ o (v [5 (22) at)

tv(t)

SUP Ly (49 + 1= —20,0ll, [ ©(57) (n w(t) )
y#0 o) —0( =y +ol( [ ( ) (5.8)

Again using Lemma we have

laCllp < (74 5.) 160, O 0] de

n+1

(0]

Ja w(t)dt) ( f’i@ dt)

n+1

() +o (12 29 ar)
n+1 n+1 — t

n+1

+o ( [ el dt) . (5.9)

n+1

=0

(n
(5
=o(0())

From (5.8) and (5.9), we obtain

SUD [l (A + 1 (=) =21, Ol
MGl = Ml + g Ll 20l

o0 ) o (15,22 ) o (55) o (11, (22)

n+1 n+1

Z 1]1 '
Now we write J; in terms of J; and J,, J; in term of J,.

In view of the monotonicity of v(t) we have

w(t) = (wEg) v(t) < v(m) ((;Eg) 0 (%) forO<t<m

therefore we can write

Ji=0(J3).
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Again using monotonicity of v(t)

=[5 2P dr=[1 (E3) dt < v [5(

n+1 t n+1 tv(t)

n+1

) dt = o(J,).

Using the fact % is positive and non decreasing , we have
o= 5 (29) ar zw(ﬁ)fﬂl (2) at = o3
RO o) T

n+1
therefore we can write

J3=0(4) .

so we have

IOl = 0Gs) = o5 (22) ar).

n+1

Hence

Ba(f) = inf Ol = 0 (5 (262) at )

n+1

This completes the proof.

7. Conclusion.

In this study, different types of results on the degree of approximation of periodic function belonging to the
Lipschitz classes and Zygmund classes of function are reviewed.The established theorem in this paper is on
degree of approximation of function in the generalized Zygmund class by (E, 1) (E, 1) summability means
of Fourier series. The result can be extended for other functions belonging to weighted Zygmund class.
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