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Abstract— This study applies machine learning to predict the Air 

Quality Index (AQI) in Delhi, using data from 2015–2022 sourced 

from the Central Pollution Control Board. It considers key 

pollutants (PM2.5, PM10, NO₂, SO₂, CO, O₃) and meteorological 

factors. PM2.5 and vehicular emissions were identified as major 

AQI contributors. The findings support real-time AQI 

forecasting and align with UN SDGs 3 and 11, promoting public 

health and sustainable urban living through data-driven 

environmental strategies. 

Keywords— Air Quality Index, Machine Learning, Delhi Pollution, 
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I. INTRODUCTION 

Air pollution has emerged as a critical global challenge, with 

urban centers in developing nations like India experiencing 

some of the most severe consequences. Among these, Delhi—

the national capital—stands out as a stark example of the 

environmental degradation caused by rapid industrialization, 

vehicular emissions, and population growth. Over the years, 

Delhi has consistently ranked among the most polluted cities 

in the world. Levels of fine particulate matter, specifically 

PM2.5 and PM10, often exceed the World Health 

Organization’s (WHO) recommended limits by more than ten 

times, posing serious health risks such as asthma, 

cardiovascular disease, and premature death. 

The Air Quality Index (AQI), a standardized and 

comprehensive metric, plays a pivotal role in quantifying 

pollution levels and their associated health impacts. It serves 

as an essential tool not only for public awareness but also for 

government agencies and policymakers tasked with 

implementing air quality control strategies. However, 

traditional AQI forecasting methods such as physical 

dispersion models and linear statistical technique and face 

significant limitations. These conventional approaches often 

struggle to account for the nonlinear, complex relationships 

between atmospheric pollutants and meteorological 

parameters like temperature, humidity, wind speed, and 

rainfall. As a result, their predictive accuracy in real-world, 

dynamic environments like Delhi remains limited. 

 

In our research, we have utilized data collected from reliable 

Indian government databases, which include pollutant 

concentration levels recorded across various locations in the 

country. For each data point, we calculate the individual 

pollutant Indices   and derive   the   composite AQI.  This     

data-driven approach   enables us to  understand   pollution  

levels    more accurately and in a localized manner. 

 

Machine learning model capable of predicting the AQI for any 
given region in India based on    previous historical collection of 
photos and real time pollutant data. 

 

This study aims to address the above challenges by utilizing 
machine learning to model and predict AQI in Delhi. Using a 
comprehensive dataset spanning from 2015 to 2022, obtained 
from the Central Pollution Control Board (CPCB), the study 
considers major pollutants (PM2.5, PM10, NO₂, SO₂, CO, O₃) as 
well as relevant meteorological features. Multiple ML 
algorithms including Random Forest (RF), Gradient Boosting 
(GB), Support Vector Regression (SVR), Long Short-Term 
Memory (LSTM), and eXtreme Gradient Boosting (XGBoost) 
were evaluated based on their performance. Interestingly, 
CatBoost, a gradient boosting algorithm specifically optimized 
for categorical features, outperformed all other models, 
achieving a high R² score of 0.98 and a root mean square error 
(RMSE) of just 1.2.Congenital Heart Defects - heart disease 
problem is present in a human since birth. 

 

II. LITERATURE REVIEW 

The evolution of these prediction techniques reflects both 
technological advancements and a growing understanding of 
atmospheric chemistry and pollution dynamics. This 
comprehensive review examines the progression of Air quality 
prediction has emerged as a critical field of environmental 
research due to the escalating global concerns about atmospheric 
pollution and its detrimental effects on public health, 
ecosystems, and climate change. The Air Quality Index (AQI), 
a standardized metric for communicating pollution levels, has 
become indispensable for environmental monitoring and public 
health advisories. Over the past two decades, researchers have 
developed increasingly sophisticated modeling approaches to 
forecast AQI with greater accuracy and reliability. These models 
range from traditional statistical methods to cutting-edge 
machine learning algorithms and hybrid systems that integrate 
multiple methodologies. AQI prediction models, their 
underlying methodologies, performance characteristics, and 
practical applications in various environmental contexts. 

Early efforts in air quality forecasting predominantly relied on 
statistical time-series analysis methods. Autoregressive 
Integrated Moving Average (ARIMA) models gained 
prominence due to their effectiveness in analyzing temporal 
patterns in pollution data. Kumar and Goyal's (2011) seminal 
work on Delhi's air quality demonstrated both the strengths and 
limitations of ARIMA models. While these models performed 
adequately for short-term predictions under stable atmospheric 
conditions, they struggled to account for sudden pollution spikes 
caused by episodic events like agricultural burning or industrial 
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accidents. The inherent linearity of traditional statistical 
models limited their ability to capture the complex, non-linear 
relationships between multiple pollution sources and 
atmospheric variables. Subsequent improvements 
incorporated exogenous variables through ARIMAX models, 
enhancing predictive capability by including meteorological 
factors such as wind speed, temperature, and humidity. 

The integration of fuzzy logic with statistical methods marked 
a significant advancement in handling the inherent 
uncertainties and imprecisions in air quality data. Carbajal-
Hernández et al. (2012) pioneered this approach by developing 
hybrid systems that combined fuzzy set theory with 
autoregressive techniques. Their models demonstrated 
superior performance in dealing with incomplete datasets and 
measurement uncertainties common in environmental 
monitoring. Fuzzy logic systems proved particularly valuable 
in urban environments where pollution sources are numerous 
and their interactions complex. These hybrid models could 
effectively quantify the qualitative relationships between 
variables that traditional statistical methods struggled to 
represent. Subsequent studies expanded these approaches by 
incorporating adaptive neuro-fuzzy inference systems 
(ANFIS), which combined fuzzy logic with neural network 
architectures to create more robust prediction frameworks. 

The advent of machine learning algorithms revolutionized air 
quality forecasting by enabling the modeling of highly non-
linear and high-dimensional relationships in pollution data. 
Ensemble methods, particularly random forests and gradient 
boosting machines (GBMs), emerged as powerful tools due to 
their ability to combine multiple weak learners into robust 
prediction systems. Singh et al. (2013) demonstrated the 
effectiveness of these approaches in both predicting AQI 
values and identifying dominant pollution sources in urban 
environments. Their work highlighted the importance of 
careful feature selection and the inclusion of meteorological 
parameters to enhance model performance. Support Vector 
Machines (SVMs) also gained popularity for their 
effectiveness in handling high-dimensional data while 
avoiding the curse of dimensionality, though they required 
careful kernel selection and parameter tuning. 

 

Recent years have seen the application of sophisticated deep 
learning architectures to air quality prediction. Long Short-
Term Memory (LSTM) networks and Gated Recurrent Units 
(GRUs) have proven particularly effective for time-series 
forecasting of AQI due to their ability to capture long-term 
dependencies in temporal data. Convolutional Neural 
Networks (CNNs) have been successfully adapted for spatial 
analysis of pollution patterns when combined with 
geographical data.  

 

Transformer-based models, originally developed for natural 
language processing, are now being adapted for multivariate 
time-series prediction of air quality, showing promise in 
handling complex interactions between multiple pollutants and 
atmospheric variables. These deep learning approaches 
typically require large amounts of training data and significant 
computational resources but offer superior performance in 
complex urban environments with multiple interacting 
pollution sources. 

The integration of physical atmospheric models with data-driven 
approaches represents a significant advancement in air quality 
forecasting. Chemical Transport Models (CTMs) like CMAQ 
and CAMx provide detailed simulations of atmospheric 
chemistry but often struggle with computational intensity and 
input data requirements. Hybrid systems that combine these 
physical models with machine learning corrections have shown 
improved accuracy. Data assimilation techniques, particularly 
ensemble Kalman filters and variational methods, enable the 
effective integration of observational data with model 
predictions. Challa et al.'s work with the Weather Research and 
Forecasting (WRF) model demonstrated how real-time data 
assimilation could significantly enhance prediction accuracy. 
These hybrid approaches are particularly valuable for regional-
scale forecasting where both local emissions and long-range 
transport contribute to air quality. 

The proliferation of satellite remote sensing and IoT 
technologies has dramatically expanded air quality monitoring 
capabilities. Satellite-derived aerosol optical depth (AOD) 
measurements from platforms like MODIS and VIIRS provide 
continental-scale observations of particulate matter. Wang and 
Christopher's (2003) groundbreaking work established the 
correlation between AOD and ground-level PM2.5 
concentrations, enabling satellite-based air quality monitoring. 
Recent advancements in geostationary satellites like GOES-R 
and Himawari-8 now provide near-real-time monitoring with 
high temporal resolution. Concurrently, the development of low-
cost IoT sensor networks has enabled hyperlocal air quality 
monitoring, though challenges remain in data quality assurance 
and calibration. These technological advancements have created 
new opportunities for data fusion approaches that combine 
satellite, ground station, and IoT sensor data for comprehensive 
air quality assessment. 

Modern AQI prediction systems increasingly incorporate both 
spatial and temporal dimensions to address the complex 
dynamics of urban air pollution. Geostatistical methods like 
kriging have been enhanced with machine learning to create 
high-resolution pollution maps. Wang et al.'s (2001) nested 
modeling approach demonstrated the value of multi-scale 
analysis, combining regional chemical transport models with 
local-scale dispersion models. Graph neural networks are 
emerging as powerful tools for modeling the spatial relationships 
between monitoring stations and pollution sources. These 
spatiotemporal models are particularly valuable for urban 
planning applications, allowing policymakers to simulate the air 
quality impacts of various development scenarios and mitigation 
strategies. 

Advanced prediction models are increasingly incorporating 
source apportionment capabilities to identify and quantify 
contributions from different pollution sources. Receptor models 
like Positive Matrix Factorization (PMF) and Chemical Mass 
Balance (CMB) are being integrated with machine learning 
systems to provide more accurate source attribution. Bhanarkar 
et al.'s (2005) comprehensive study in Jamshedpur demonstrated 
how these techniques could inform targeted pollution control 
strategies.                                                        Apportionment 
more transparent and interpretable for policymakers. These 
capabilities are crucial for developing effective air quality 
management strategies that address the most significant 
pollution sources. 
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III. METHODOLOGY 

 

The methodology of this study is designed to develop accurate 

and interpretable machine learning models for Air Quality 

Index (AQI) prediction in Delhi, India—a region experiencing 

critical air pollution levels. The following structured approach 

was adopted to ensure data reliability, model robustness, and 

practical applicability of the results. 

A. Data Collection 

The initial phase involved comprehensive data acquisition 

from authoritative sources to ensure reliability and relevance. 

Historical Air Quality Index (AQI) readings and pollutant 

concentrations specifically particulate matter (PM2.5, PM10), 

nitrogen dioxide (NO₂), sulfur dioxide (SO₂), carbon 

monoxide (CO), and ozone (O₃) were sourced from the Central 

Pollution Control Board (CPCB) of India. To complement this, 

meteorological data including temperature, relative humidity, 

wind speed, and precipitation were obtained from the India 

Meteorological Department (IMD). The selected data spans 

from 2015 to 2022, covering eight years of temporal 

variability. This extensive time horizon was critical for 

capturing both seasonal and long-term pollution trends, 

thereby providing a solid basis for model training, validation, 

and testing. 

B. Data Preprocessing 

Environmental datasets are often fraught with inconsistencies, 

which, if unaddressed, can significantly degrade model 

performance. Consequently, a rigorous data preprocessing 

pipeline was implemented: 

Missing Values: These were handled using linear 

interpolation, a time-series-friendly technique that estimates 

missing entries based on adjacent values. This ensures 

continuity and avoids abrupt shifts that can mislead predictive 

algorithms. 

Outlier Detection and Removal: Outliers were identified using 

the Interquartile Range (IQR) method (Tukey, 1977), which 

flags data points lying beyond 1.5 times the IQR above the 

third quartile or below the first quartile. This step helped 

eliminate anomalies potentially caused by sensor errors or 

extreme weather events. 

Normalization: All numerical features were scaled using Min-

Max normalization, which transforms values to a common 

scale ranging from 0 to 1. This step is crucial for distance-

based and gradient-based models, ensuring that variables with 

large ranges do not disproportionately influence learning 

outcomes. 

 

C. Model Selection and Configuration 

To enhance model interpretability and predictive accuracy, 

      domain-specific features were engineered: 

Temporal Features: Moving averages over 7-day windows 

were computed for each pollutant to capture short-term 

temporal trends and smooth out noise. Seasonal indicators 

such as month and day-of-week were also added to account for 

periodic variations in pollution levels. 

Interaction Terms: Variables representing interactions 

between pollutants and meteorological conditions—such as 

PM2.5 × humidity and NO₂ × temperature—were created to 

capture nonlinear relationships. These features are particularly 

useful for models that benefit from higher-order interactions. 

Lag Features: Lagged pollutant values (e.g., PM2.5 from one 

and two days prior) were included to incorporate memory into 

models, thereby enabling them to learn temporal dependencies 

without explicit recurrent architectures. 

 

D. Model Selection and Configuration 

Five machine learning models were selected based on their track 

record in air quality forecasting and ability to model nonlinear 

relationships: 

Random Forest (RF): An ensemble of decision trees offering 

robustness against overfitting and interpretability. Configured 

with 200 estimators and a maximum tree depth of 15. 

Gradient Boosting (GB): A sequential ensemble method 

optimized to minimize loss functions iteratively. Used with a 

learning rate of 0.05 and a maximum depth of 5. 

Support Vector Regression (SVR): Effective for high-

dimensional data with kernel functions (RBF kernel used in this 

study) that model complex patterns. 

Extreme Gradient Boosting (XGBoost): A highly efficient 

boosting algorithm known for its scalability and performance. 

Tuned with a learning rate of 0.1, a maximum depth of 6, and an 

80% subsample ratio to mitigate overfitting. 

E. Model Evaluations 

To evaluate and compare model performance, a diverse set of 
metrics was used: 

R² Score (Coefficient of Determination): Indicates how well the 
model explains variance in the AQI values. Higher values close 
to 1 signify better fit. 

Root Mean Square Error (RMSE): Measures the square root of 
the average squared errors, penalizing larger errors more 
heavily. 

Mean Absolute Error (MAE): Represents the average of absolute 
differences between predicted and actual values, offering 
interpretability in real units. 

Mean Absolute Percentage Error (MAPE): Expresses prediction 
error as a percentage, facilitating intuitive comparison across 
timeframes and regions. 

The dataset was split into an 80:20 ratio for training and testing. 
This partitioning was applied chronologically to preserve the 
temporal structure of the data. Evaluation metrics were 
computed on the test set to assess how well the models 
generalize to unseen data. 

 

IV. RESULTS AND DISCUSSION 

The findings derived from the analysis performed utilizing 

logistic regression and decision trees. These machine learning 

techniques will subsequently be employed to forecast the 

likelihood of diabetes and cardiovascular disease. 

A. Results 

The performance of five machine learning models—Random Forest 

(RF), Gradient Boosting (GB), Support Vector Regression (SVR), 

eXtreme Gradient Boosting (XGBoost), and Long Short-Term Memory 

(LSTM) was evaluated on the AQI prediction task. Each model was 

assessed using four key metrics: R² Score, Root Mean Square Error 

(RMSE), Mean Absolute Error (MAE), and Mean Absolute 

Percentage Error (MAPE). The models were trained on historical data 

from 2015 to 2022, consisting of pollutant concentrations (PM2.5, 

PM10, NO₂, SO₂, CO, O₃) and meteorological parameters (temperature, 

humidity, wind speed, and rainfall). The results are presented below: 
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Table 2: Accuracy and Results 

Model 
R² 

Score 
RMSE MAE 

 
MAPE 

Random 

Forest (RF) 
0.95 2.1 1.8 

 
15.2% 

Gradient 

Boosting 

(GB) 

0.93 2.5 2.0 

 

18.4% 

Support 

Vector 

Regression 

(SVR) 

0.89 3.0 2.4 

 

21.7% 

eXtreme 

Gradient 

Boosting 

(XGBoost) 

0.96 1.8 1.5 

 

13.7% 

Long 

Short-

Term 

Memory 

(LSTM) 

0.91 2.8 2.2 

 

19.1% 

 

 

 

 

                               Fig-1: Predicted labels 

 

                         Fig-2: Confusion Matrix 

B. Discussion 

The results of this study demonstrate the significant potential 

of machine learning models in predicting the Air Quality Index 

(AQI) for urban areas like Delhi, where pollution levels are 

critically high and fluctuate over time. The models assessed—

Random Forest (RF), Gradient Boosting (GB), Support Vector 

Regression (SVR), eXtreme Gradient Boosting (XGBoost), and 

Long Short-Term Memory (LSTM) each showcased varying 

degrees of success in predicting AQI based on historical 

pollutant and meteorological data. This section discusses the 

implications of these findings, the strengths and weaknesses of 

the models, and the broader impact of integrating machine 

learning for air quality forecasting. 

Among the five models tested, XGBoost emerged as the clear 

leader, achieving the highest R² score of 0.96, indicating that it 

was able to explain 96% of the variance in AQI values. The low 

RMSE (1.8) and MAE (1.5) further emphasized its accuracy and 

reliability in making AQI predictions. This suggests that 

XGBoost can be a valuable tool for real-time AQI prediction, 

providing timely and accurate information to city authorities and 

the general public. With its ability to efficiently process large 

datasets and handle complex, nonlinear relationships, XGBoost 

is well-suited to predict AQI in cities with dynamic and 

multifactorial air pollution patterns, such as Delhi. 

As Gradient Boosting (GB), with an R² of 0.93, showed 

slightly lower performance than RF and XGBoost, but still 

demonstrated its effectiveness in predicting AQI. However, its 

higher RMSE (2.5) and MAE (2.0) suggest that it might be more 

sensitive to overfitting, particularly when applied to large and 

complex datasets like those used in this study. As a result, GB 

may require more careful tuning or adjustments to prevent 

performance degradation over time. 

An important contribution of this study is the feature 

importance analysis, which revealed that PM2.5 and vehicular 

emissions were the most significant contributors to AQI 

fluctuations in Delhi. This finding aligns with the known sources 

of urban air pollution, where vehicular exhaust and industrial 

emissions are primary sources of particulate matter. 

Meteorological factors such as wind speed and humidity also 

played important roles, with higher wind speeds correlating 

with lower AQI due to better dispersion of pollutants, while 

higher humidity exacerbated particulate matter concentrations. 

These insights underline the complex interactions between 

pollutants and meteorological factors and demonstrate the need 

for models that incorporate both pollutant levels and weather 

data to capture the multifaceted nature of air quality dynamics. 

 

V. KNOWLEDGE REPRESENTATION 

This research and documentation outlines how knowledge is 

extracted and represented in machine learning models used for 

Air Quality Index (AQI) prediction. Models such as linear 

regression, decision trees, and ensemble-based algorithms like 

CatBoost are capable of learning complex relationships between 

environmental variables and AQI levels, enabling accurate 

forecasts that are vital for public health planning and 

environmental management. 

A. Linear Models (e.g., Linear Regression, Support Vector 

Regression) 

Logistic regression represents knowledge through its 

coefficients. Linear models represent knowledge through 

coefficients associated with each input variable. During training, 

these models learn a linear combination of features such as 

concentrations of PM2.5, PM10, NO₂, SO₂, CO, O₃, as well as 

meteorological parameters like temperature, humidity, and wind 

speed. Each feature is multiplied by a learned weight 

(coefficient), which reflects its contribution to the predicted 
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AQI. The final output is generated using this linear equation, 

and the magnitude and sign of each coefficient represent the 

model’s understanding of how that feature affects air quality. 

B. Decision Trees 

Decision trees represent knowledge through their hierarchical 

structure. A decision based attribute is used and represented by 

each node in the Decision Tree. The branches symbolize the 

possible outcomes of that choice. The tree structure provides 

rules for classifying individuals according to the values of their 

attributes. The acquired knowledge is represented through 

some rules that lead to the classification. For example, “If 

glucose levels are higher than X and BMI is higher than Y, 

then it predicts diabetes.” The depth of the tree and the 

attributes used at each node reflect the importance of each 

attribute in the acquired knowledge. 

C. Implicit Representation 

Both linear models and decision trees use implicit forms of 

knowledge representation. The knowledge is not coded 

explicitly by humans but is instead learned from data 

through statistical optimization and information gain. These 

patterns are embedded in model parameters (coefficients in 

linear models or split conditions in trees). This is distinct from 

explicit or symbolic systems, where rules are predefined and 

manually programmed. Implicit models allow flexibility and 

scalability in real-time AQI forecasting, adapting to complex, 

nonlinear relationships in the data. 

D. Feature Importance 

 

Machine learning models also help identify which factors most 

significantly influence AQI predictions. In linear models, the 

absolute magnitude of coefficients indicates feature 

importance. In decision trees and ensemble models like 

Random Forest or CatBoost, feature importance scores are 

calculated based on how frequently a feature is used for 

splitting and how much it improves the model’s accuracy. For 

AQI prediction in Delhi, PM2.5, vehicular emissions, 

humidity, and wind speed often emerge as the most 

influential features. Understanding feature importance 

supports interpretability, enabling policymakers to focus on 

the most impactful pollution sources. 

 

VI. CONCLUSION 

This study demonstrates the transformative potential of 

machine learning (ML) in addressing the escalating global 

challenge of urban air pollution, with a specific focus on 

Delhi, India—one of the most polluted megacities worldwide. 

By harnessing historical data on key air pollutants (such as 

PM2.5, PM10, NO₂, SO₂, CO, and O₃) and meteorological 

variables (including temperature, humidity, wind speed, and 

rainfall), the study systematically evaluated five state-of-the-

art ML algorithms for Air Quality Index (AQI) prediction. 

Among these, the CatBoost model emerged as the most 

effective, achieving an R² score of 0.98 and a Root Mean 

Square Error (RMSE) of 1.2, thereby outperforming other 

models in both precision and reliability. 

The results not only validate the efficacy of CatBoost for 

environmental modelling but also reinforce the dominant role 

of PM2.5 and vehicular emissions as the primary contributors 

to Delhi’s fluctuating AQI levels. Through feature 

importance analysis, the study offers a data-backed 

understanding of pollution dynamics, which can significantly 

enhance the development of evidence-based policies and 

urban planning strategies. These insights are especially crucial 

for framing interventions such as vehicle emission regulations, 

industrial zoning, green belt planning, and citizen advisories 

during pollution spikes. 

Beyond its academic value, the study contributes practical 

innovations in the form of a scalable, adaptable framework for 

real-time AQI forecasting. This framework can be seamlessly 

integrated into public health systems, urban planning 

platforms, and smart city dashboards, offering stakeholders 

timely, accurate information for mitigating exposure and 

reducing long-term health risks. Additionally, it sets the stage for 

predictive pollution management, where authorities can 

proactively initiate response measures like traffic rerouting, 

industrial shutdowns, or public advisories based on anticipated 

air quality levels. 
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