

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 10 | Oct - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | https://ijsrem.com DOI: 10.55041/IJSREM52965 | Page 1

Architectural Design and Scalability: A Hybrid Approach with Kotlin,

Mongodb And PostgreSQL

Hareeshkumar.rapolu

Nikhitha Gundeti

Navya Punna

Hareeshkumar.rapolu@gmail.com

Abstract

This research paper has been based on the topic:

Architecture Design and Scalability - A hybrid

approach with Kotlin, MongoDB, and

PostgreSQL, for a modern web service. This

research paper has discussed the importance of

architectural design and scalability, and how it

builds up a system and helps it stay reliable and

is able to grow. This maintains its costs and the

speed of the system. There has been an analysis

of three very important components or

approaches: Kotlin, MongoDB and PostgreSQL

that are often used in developing software. They

act as some of the best tools for resolving any

commonly occurring challenges in the

development of modern applications.

I. INTRODUCTION

Architectural design and scalability are two

concepts that are interconnected in engineering

software. The choices in architecture tend to

determine the scale of one's system without a huge

drop in the system's performance. Scalability is

when a system is able to handle or manage the

growing amount of work in a graceful way. The

choices of design that are made in architecture are

very important, especially when it comes to loose

coupling and horizontal scaling. There are various

design techniques, like caching and load balancing,

that could be used so that a scalable architecture

performs well enough.

Figure 1: Archtectural Design and Scalability

II. ARCHITECTURAL DESIGN AND

SCALABILITY

Architectural Design - This acts as the process of

explaining a structure, its elements and interfaces of

a system, analysing its behaviour as well. The

design helps systems to fix bugs, if any, in addition

to new features and understanding the code from

time to time. It allows the system to be reliable and

maintain its stability over a period of time. The

system can adapt to the requirements of businesses

that do not stay the same all the time without

additional costs1. The systems can perform in an

efficient way to process all the data and make

responses to requests made by the users. The design

has to be made in such a way that it is able to

accommodate the workload that increases from time

to time. Designing architecture is not just about

allowing the systems to work, but to ensure it is

stable for a very long time. Some qualities that may

help individuals to make design decisions are

modularity, high cohesion, loose coupling, and fault

tolerance and resilience. Some components of

design are monolith, microservices and an

architecture that is event-driven.

Architectural Scalability - The Scalability of

architecture is the capabilities and abilities of

systems that tend to handle an amount of work that

is growing gracefully. This could be achieved either

by adding more resources and upgrading the ones

that are already there, scaling out and scaling up,

respectively. To help the system grow, horizontal

scaling is important. This tends to allow the system

to manage large growing spikes2. To control the

costs of the system, modular design could be used.

This would allow one to scale the elements that are

under great load. This allows one to save costs by

reducing the provision of resources for the overall

system. To enhance the experiences for the users,

caching and load balancing is necessary. This makes

sure that the performances are fast and stay

consistent to help with user experience. This may

reduce the loading times that are slow and prevent

users from leaving. For future proofing, loose

coupling is important. This allows the system to

upgrade or even change important components

without actually changing or rebuilding the entire

application. This and the design need to be managed

from the beginning3. This could not be changed later

on.

https://ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 10 | Oct - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | https://ijsrem.com DOI: 10.55041/IJSREM52965 | Page 2

Figure 2: Kotlin

III. KOTLIN APPROACH

● This approach is more of a modern take on

developing software that is focused more on the

productivity of the developers, code of safety,

and efficient interoperability in the Java

ecosystem that already exists.

● This could be seen as just a language, but it is

not. It is a choice of design and adds digis on

writing, fewer boilerplate codes, and building up

more applications that are resilient4. It has many

technical features, and they tend to resolve many

challenges as well.

● It helps to decrease the quantity of code that is

required for tasks by using features like classes

of days and lambda. Developers will not have to

spend much time typing out their code

repetitively and will be able to focus more on

business logic, leading to cycles of

development. This is known to be Kotlin's most

important design.

● It acts as a difference between the variables

which can and cannot hold a null variable over

a period of time. If there are any infamous NPEs,

they are effectively eliminated. This leads to a

lot of crashes in Java. If they are prevented, then

the applications are made more stable and

reliable.

Figure 3: Mongo DB

IV. MONGODB APPROACH

● This is an approach used to manage data that

does not want to accept the table-based and

rigid structure of older types of databases.

This model is highly agile and has horizontal

scalability. It is known to be easy for

developers to use.

● The two most important features of this

approach would be the document model and

schema flexibility5. The document model

does not store data in tables but stores data

in JSON-like documents. Each of these

documents is filled with data structures,

which may include sub-documents and

arrays as well. It has been designed in a way

that data that is accessed together should

also be stored together.

● In this approach, there are no such

restrictions, but it is quite flexible.

Documents that are in the same collection

tend to have different areas, types of data

and structures as well.

Figure 4: PostgreSQL

V. POSTGRESQL

● This approach is also used for the management

of data that is focused more on robustness,

advanced features, and adherence to different

standards (SQL). This is based on the integrity

of data and complexity, as well as the

manipulation of data.

● PostgreSQL is also known as a powerful

RDBMS or Relational database management

System. Unlike the MongoDB Approach,

PostgreSQL is quite strict when it comes to

organising data into tables with columns that are

defined and effective techniques. Here, the data

needs to be organised in a way that makes the

data reliable and accurate6. This acts as the

foundation for most financial systems and

inventory.

● It also follows the SQL standards while also

staying highly extensible. This ensures that the

system is stable while developers are also

allowed to add on whenever deemed necessary.

Custom data types, functions, and add on's are

extended.

https://ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 10 | Oct - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | https://ijsrem.com DOI: 10.55041/IJSREM52965 | Page 3

● It is important to follow the PostgreSQL

approach as it promotes data integrity, reliability

and complexity.

VI. CONCLUSION

The analysis of Architectural Design and Scalability

with a choice of Kotlin, MongoDB and PostgreSQL

has helped provide a clear understanding of modern

software development. Architectural design only

acts as a plan that needs to be followed. Most

efficient and effective systems are created with

Kotlin, MongoDB and PostgreSQL approaches and

other tools are effective for design and scalability7.

This makes the structure of the architecture quite

resilient and well structured. This refers to the

foundation of complexity and high performance,

which builds up various digital products and

systems as well.

Abbreviation

SQL: Structured Query Language

DB: Database

JSON: JavaScript Object Notation

NPE: Null Pointer Exception

ACKNOWLEDGEMENT

I would like to express my gratitude towards my

professor for providing me with all the necessary

support that has helped me to achieve the goals of

the research. I would also like to thank my

classmates and my peer members who have

constantly supported me in gaining better

understanding of the areas of the research.

REFERENCES

[1] U. K. Rapolu, “Optimizing Cloud Costs

Through Serverless Computing in Google Cloud

Platform,” Google.com, 2024.

https://scholar.google.com/citations?view_op=vie

w_citation&hl=en&user=EQz5sccAAAAJ&citatio

n_for_view=EQz5sccAAAAJ:Y0pCki6q_DkC

(accessed Oct. 02, 2025).

[2] Upesh Kumar Rapolu, “Developing Custom

Software Solutions for Compliance in Multi-Cloud

Environments,” INTERANTIONAL JOURNAL OF

SCIENTIFIC RESEARCH IN ENGINEERING AND

MANAGEMENT, vol. 08, no. 01, pp. 1–7, Jan. 2024,

doi: https://doi.org/10.55041/ijsrem28015.

[3] A. Makris, K. Tserpes, G. Spiliopoulos, D.

Zissis, and D. Anagnostopoulos, “MongoDB Vs

PostgreSQL: A comparative study on performance

aspects,” GeoInformatica, vol. 25, Jun. 2020, doi:

https://doi.org/10.1007/s10707-020-00407-w.

[4] Mukesh Reddy Dhanagari, “Scaling with

MongoDB: Solutions for Handling Big Data in

Real-Time,” Journal of Computer Science and

Technology Studies, vol. 6, no. 5, pp. 246–264, Dec.

2024, doi:

https://doi.org/10.32996/jcsts.2024.6.5.20.

[5] C. Ashok Jahagirdar, “The Advantages of Using

Multi - Dimensional Databases: A Comprehensive

Analysis,” International Journal of Science and

Research (IJSR), vol. 14, no. 1, pp. 1149–1154, Jan.

2025, doi: https://doi.org/10.21275/sr25126111728.

[6] D. Iovescu and C. Tudose, “Real-Time

Document Collaboration—System Architecture and

Design,” Applied Sciences, vol. 14, no. 18, p. 8356,

Sep. 2024, doi:

https://doi.org/10.3390/app14188356.

[7] Marko Aleksendrić et al., Mastering MongoDB

7.0. Packt Publishing Ltd, 2024.

https://ijsrem.com/
https://scholar.google.com/citations?view_op=view_citation&hl=en&user=EQz5sccAAAAJ&citation_for_view=EQz5sccAAAAJ:Y0pCki6q_DkC
https://scholar.google.com/citations?view_op=view_citation&hl=en&user=EQz5sccAAAAJ&citation_for_view=EQz5sccAAAAJ:Y0pCki6q_DkC
https://scholar.google.com/citations?view_op=view_citation&hl=en&user=EQz5sccAAAAJ&citation_for_view=EQz5sccAAAAJ:Y0pCki6q_DkC
https://doi.org/10.55041/ijsrem28015
https://doi.org/10.1007/s10707-020-00407-w
https://doi.org/10.32996/jcsts.2024.6.5.20
https://doi.org/10.21275/sr25126111728
https://doi.org/10.3390/app14188356

