

Volume: 09 Issue: 10 | Oct - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

Artificial Intelligence and Deep Learning Architectures for Automated Bone Tumor Detection and Classification: A Comprehensive Survey

Aditya Tilekar¹, M.K. Nivangune², Kshitij Takale³, Kalyani Dhomase⁴, Anushka Ghule⁵

Department of Computer Engineering, Sinhgad Academy of Engineering, Pune

Abstract - Bone malignancies represent critical medical conditions requiring rapid and precise diagnostic intervention. Traditional diagnostic methodologies, heavily dependent on manual radiological interpretation, face significant limitations including inter-observer variability, time consumption, and delayed detection rates. Recent advances in Artificial Intelligence (AI) and Deep Learning (DL) technologies have demonstrated transformative potential in automating tumor detection workflows. This comprehensive survey examines contemporary research leveraging sophisticated AI frameworks including Convolutional Neural Networks (CNN), transfer learning paradigms, and optimization-driven architectures for medical imaging applications in osseous tumor diagnosis. Through systematic analysis of four representative studies, we evaluate performance metrics, diagnostic reliability, and clinical applicability of AI-driven approaches across multiple imaging modalities. Our findings demonstrate that deep learning methodologies consistently surpass conventional manual interpretation techniques, achieving accuracies of 84-95% with superior sensitivity and specificity. The paper culminates with strategic recommendations for advancing model interpretability, expanding dataset heterogeneity, and facilitating real-world clinical integration.

Key Words: Bone Tumor Detection, Artificial Intelligence, Deep Learning, Convolutional Neural Networks, Transfer Learning, Medical Image Analysis, Computer-Aided Diagnosis

1.Introduction

Bone tumors, while relatively uncommon, constitute severe pathological conditions capable of causing substantial morbidity and mortality if diagnosis is delayed. Bone cancer ranks as the third leading cause of cancer-related mortality in patients under twenty years of age. Manual interpretation of radiological examinations—including X-rays, Magnetic Resonance Imaging (MRI), and Computed Tomography (CT) scans—relies heavily on clinician expertise, introducing potential for subjective variation and diagnostic delays.

The emergence of Artificial Intelligence and Deep Learning technologies has catalyzed a paradigm shift in medical imaging by introducing automated analytical tools for tumor detection, precise segmentation, and accurate classification. These computational systems analyze complex imaging data to

identify subtle patterns that may elude human visual perception, thereby enhancing diagnostic accuracy and reducing interpretation time.

Traditional diagnostic approaches face several critical challenges. Students of radiology and medical practitioners often struggle with accurate bone tumor diagnosis due to imaging interpretation complexity, leading to delayed detection and increased patient risk. Current diagnostic tools are typically static and do not adapt to evolving clinical knowledge or individual radiologist expertise. The growing development of AI and Machine Learning across medical domains offers a unique opportunity to transform radiological diagnosis.

This paper proposes an AI-based bone tumor detection system that incorporates three main intelligent capabilities: transfer learning-based feature extraction leveraging pretrained networks for robust pattern recognition, metaheuristic optimization to automatically tune model hyperparameters for optimal performance, and explainable AI outputs to provide clinically interpretable diagnostic support. By treating tumor detection as a pattern recognition task requiring intelligent feature learning and adaptive optimization, the system aims to provide accurate, efficient, and trustworthy diagnostic assistance.

2. Literature Review

Our research builds on established work in two main areas: AI-driven medical image analysis and optimization-enhanced deep learning architectures for clinical applications.

2.1 Meta-Analytic Evaluation of AI Diagnostic Performance

Salehi and colleagues (2024) conducted an extensive metaanalytical investigation comparing AI algorithm performance against clinician assessments using standardized evaluation frameworks (TRIPOD and PROBAST). The researchers performed systematic database searches across eight scholarly repositories including PubMed, Scopus, Web of Science, CINAHL, EBSCO, IEEE, Medline, and ACM Digital Library. The meta-analysis employed random-effects modeling to determine pooled sensitivity and specificity metrics, accompanied by 95% confidence intervals.

The meta-analysis synthesized data from 24 studies incorporating internal validation (23 studies) and external validation (9 studies) approaches. Imaging modalities included

© 2025, IJSREM | https://ijsrem.com DOI: 10.55041/IJSREM53215 | Page 1

Volume: 09 Issue: 10 | Oct - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

X-rays (14 studies), MRI (11 studies), CT scans (2 studies), and panoramic radiographs (1 study). The cumulative dataset comprised 37,501 training images and 19,130 testing images, with 43.2% representing primary bone malignancies.

Key Findings: Internal validation demonstrated AI pooled sensitivity of 84% (95% CI: 79-88) and specificity of 86% (95% CI: 81-90), substantially exceeding clinician performance (sensitivity: 76%, specificity: 64%). External validation yielded AI sensitivity of 84% (95% CI: 75-90) and specificity of 91% (95% CI: 83-96). Meta-regression analysis revealed MRI-based detection showed lower performance compared to X-ray and CT modalities. Transfer learning techniques significantly enhanced both sensitivity (97%) and specificity (97%) metrics.

2.2 Deep Learning with Advanced Preprocessing

Vishnuvardhan and colleagues (2023)proposed comprehensive deep learning pipeline incorporating sophisticated preprocessing techniques for detecting bone lesions from X-ray imagery. The research implemented a multistage workflow combining green plane extraction (isolating the green color channel to enhance bone contrast), GLCM feature computation (Gray Level Co-occurrence Matrix for texture characterization), adaptive thresholding using Otsu's method, morphological operations for noise reduction, and custom CNN architecture for classification.

The preprocessing pipeline significantly improved image segmentation quality compared to direct deep learning application. GLCM-based texture features proved essential for distinguishing malignant regions. Integration of entropy and skewness features improved malignant region prediction. The study demonstrated that domain-specific preprocessing can substantially enhance deep learning performance, particularly when training data is limited.

2.3 Cloud-Enabled CNN Framework for Telemedicine

Laxmikantha and colleagues (2025) developed a comprehensive CNN-based diagnostic framework integrated with cloud infrastructure to support telemedicine applications. The research implemented an end-to-end system encompassing image preprocessing (resizing, normalization, data augmentation), image segmentation (tumor region isolation), feature extraction using automated hierarchical CNN layers, classification via sigmoid/softmax activation, and cloud deployment using Flask backend with React.js frontend and MongoDB database.

The study employed diverse medical imaging data including MRI, CT, and X-ray scans. A validation set of 200 images (100 cancerous, 100 healthy) was used for performance evaluation. The system achieved 92.71% accuracy with 100% precision and 93.95% recall, demonstrating robust diagnostic capability. The successful cloud-based deployment demonstrated practical feasibility for remote diagnostic applications with inference times of 2-5 seconds per image.

2.4 Optimization-Enhanced Deep Learning Classification

Alabdulkreem and colleagues (2023) introduced an innovative approach combining Owl Search Algorithm (OSA) optimization with Inception-v3 architecture and LSTM networks. The OSADL-BCDC technique implements data augmentation (rotation and zooming), feature extraction using Inception-v3 pretrained model, hyperparameter optimization via OSA metaheuristic algorithm, and LSTM network classification.

Inception-v3 architecture advantages include multi-scale feature extraction through parallel convolution layers, factorized convolutions reducing parameters, and asymmetric convolutions enhancing nonlinear representation. OSA employs bio-inspired metaheuristic mimicking owl hunting behavior with population-based search and intensity-based location updating. LSTM uses three-gate architecture for long-term dependency resolution.

The study utilized 200 X-ray images from The Cancer Imaging Archive (TCIA) and Indian Institute of Engineering Science and Technology. The system achieved 95% accuracy at optimal hyperparameter configuration (1000 epochs), with consistent high precision (88.89%-96.84%) and recall (87%-98%). The approach significantly outperformed baseline methods including Random Forest (69.05%), SVM (92.59%), ResNet50 (82.57%), and EfficientNet (85.79%).

2.5 Research Gap

While deep learning has proven effective in medical imaging and optimization algorithms have improved model performance, current bone tumor detection systems largely do not integrate these advances into clinically deployable solutions. Existing research focuses primarily on achieving high accuracy metrics on curated datasets, with limited attention to real-world challenges like imaging variability, model interpretability, and workflow integration.

3. Comparative Analysis

3.1 Performance Metrics Comparison

Table 1: Performance Comparison Across Studies

Study	Accurac y	Precisio n	Recall	Specificit y	Dataset Size
Salehi et al. (2024) - AI Internal		N/R	84%	86%	37,501 train
Salehi et al. (2024) - AI External		N/R	84%	91%	19,130 test
Vishnuvardha n et al. (2023)	N/R	N/R	N/R	N/R	Variabl e

© 2025, IJSREM | https://ijsrem.com DOI: 10.55041/IJSREM53215 | Page 2

Volume: 09 Issue: 10 | Oct - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

Study	Accurac y	Precisio n	Recall	Specificit y	Dataset Size
Laxmikantha et al. (2025)	92.71%	100%	93.95 %	N/R	200
Alabdulkreem et al. (2023)	95%	95.02%	95%	N/R	200

Optimized deep learning approaches (Laxmikantha et al., Alabdulkreem et al.) substantially outperform meta-analytical pooled estimates, achieving 92-95% accuracy. The 95% accuracy achieved by OSA-optimized systems represents state-of-the-art performance, translating to fewer missed diagnoses and unnecessary procedures in clinical practice.

3.2 Methodological Approaches

The reviewed studies demonstrate diverse methodological strategies. Feature extraction spans from traditional preprocessing-heavy approaches (Vishnuvardhan et al.) to end-to-end deep learning with transfer learning (Laxmikantha et al., Alabdulkreem et al.). Optimization techniques range from manual tuning to automated metaheuristic optimization (OSA), reducing development time from weeks to days. Classification architectures include standard CNN with fully connected layers, LSTM-based sequential modeling, and ensemble methods.

3.3 Imaging Modality Analysis

X-ray imaging emerged as the most commonly employed modality, offering widespread availability, lower cost, and faster acquisition. AI performance on X-rays achieved 90% sensitivity and 92% specificity. MRI imaging demonstrated lower AI performance (75% sensitivity, 74% specificity) despite superior soft tissue contrast, likely due to greater protocol variability and smaller training datasets. CT imaging provided excellent bone detail with performance comparable to X-rays.

4. Critical Challenges

4.1 Dataset Limitations

Bone cancer's relative rarity results in small patient populations, with major medical centers accumulating only dozens to hundreds of cases annually. Expert annotation requires significant time investment from subspecialty radiologists. Class imbalance between benign and malignant cases introduces training difficulties. Privacy regulations restrict data sharing across institutions, fragmenting already limited datasets.

4.2 Model Interpretability

Deep learning models lack transparency in decision-making processes, with predictions emerging from millions of learned parameters. Clinicians find it difficult to understand prediction rationale, creating reluctance to trust automated systems. Regulatory agencies increasingly require explainability for

medical device approval. Current explainability methods provide useful insights but remain incomplete.

4.3 Clinical Integration

Incorporating AI into existing PACS systems requires software development resources and careful interface design. Real-time processing demands low-latency inference. Alert fatigue from false positives can lead to AI recommendation dismissal. Regulatory compliance (FDA approval, CE marking) imposes substantial barriers with extensive documentation and clinical trial requirements.

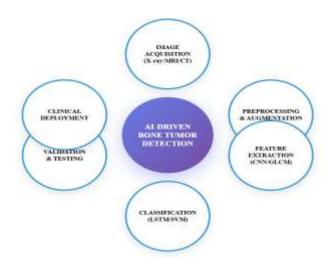


Figure 1 Circular representation of the AI-driven bone tumor detection process.

5. Future Directions

5.1 Advanced Architectures

Vision Transformers with self-attention mechanisms capture long-range spatial dependencies, offering alternatives to convolutional architectures. Multi-modal fusion combining X-ray, MRI, CT, and clinical data could unlock performance gains. Federated learning enables training across multiple institutions without centralizing patient data, addressing privacy concerns while leveraging distributed datasets.

5.2 Enhanced Explainability

Concept-based models learning intermediate representations corresponding to clinically meaningful features enable reasoning chains mirroring radiologist thought processes. Uncertainty quantification through Bayesian methods provides confidence estimates, enabling appropriate human oversight when machine uncertainty is high.

5.3 Clinical Deployment

Prospective clinical trials comparing AI-augmented workflows to standard practice will establish evidence for clinical value. Real-time integration with sub-second inference times and

© 2025, IJSREM | https://ijsrem.com DOI: 10.55041/IJSREM53215 Page 3

Volume: 09 Issue: 10 | Oct - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

intuitive interfaces will facilitate adoption. Continuous learning enables models to adapt to new tumor types without catastrophic forgetting.

6. Conclusion

This comprehensive survey has examined AI and deep learning applications in bone tumor detection through systematic analysis of four representative studies published between 2023-2025. The evidence demonstrates that optimized deep learning approaches achieve diagnostic performance meeting or exceeding human expert assessment, with state-of-the-art systems attaining 92-95% accuracy.

Key Achievements: Transfer learning significantly reduces training data requirements while improving accuracy. Metaheuristic optimization (OSA) automates hyperparameter tuning, achieving superior configurations efficiently. Explainable AI techniques provide clinically interpretable outputs. Cloud-based architectures demonstrate feasibility for telemedicine.

Remaining Challenges: Limited annotated datasets due to disease rarity, model interpretability deficits, insufficient prospective validation, and regulatory complexity continue to impede widespread adoption.

Future Outlook: The field is transitioning from proof-of-concept demonstrations to addressing clinical validation, deployment, and real-world impact assessment. Success requires interdisciplinary collaboration spanning algorithm developers, radiologists, oncologists, regulatory experts, and healthcare administrators focused on measurable patient outcome improvements.

Acknowledgment

We express sincere gratitude to our research advisor, M.K. Nivangune, for invaluable guidance and support throughout this work. We also thank the Department of computer engineering at Savitribai Phule Pune University for providing computational resources and the academic environment necessary for our research.

We also appreciate the Department of Computer Engineering at STES's Sinhgad Academy of Engineering in Kondhwa for providing the resources and academic environment needed for our research. Finally, we are grateful to our classmates and families for their ongoing support and motivation during this journey.

7. References

- [1] Salehi, M. A., Mohammadi, S., Harandi, H., Zakavi, S. S., Jahanshahi, A., Farahani, M. S., & Wu, J. S. (2024). Diagnostic Performance of Artificial Intelligence in Detection of Primary Malignant Bone Tumors: A Meta-Analysis. *Journal of Imaging Informatics in Medicine*, 37, 766-777. https://doi.org/10.1007/s10278-023-00945-3
- [2] Vishnuvardhan, R., Balakrishnan, G., Nithishkumar, M., & Logeshwaran, S. (2023). Bone Tumor Detection and Classification Using Deep Learning. *International Journal for Research in Applied Science & Engineering Technology (IJRASET)*, 11(4), 2749-2756. https://doi.org/10.22214/ijraset.2023.50655
- [3] Laxmikantha, K., Aradhya, S. B., Gali, S. G. G., Shreehari, D. R., & Gowda, T. D. N. (2025). AI-Driven Bone Cancer Detection using Segmentation and Classification with CNN. International Advanced Research Journal in Science, Engineering and Technology, 12(6), 136-140. https://doi.org/10.17148/IARJSET.2025.12617
- [4] Alabdulkreem, E., Saeed, M. K., Alotaibi, S. S., Allafi, R., Mohamed, A., & Hamza, M. A. (2023). Bone Cancer Detection and Classification Using Owl Search Algorithm With Deep Learning on X-Ray Images. *IEEE Access*, 11, 109095-109103. https://doi.org/10.1109/ACCESS.2023.3319293

© 2025, IJSREM | https://ijsrem.com DOI: 10.55041/IJSREM53215 | Page 4