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Abstract: The highway transportation of hazardous materials poses unique safety and security challenges that demand 

innovative risk management and routing strategies. Artificial intelligence (AI) techniques are increasingly being applied 

to predict accident risk and optimize routing for hazardous cargo. This article reviews AI‐based risk prediction systems 

and AI‐driven route optimization methods specifically in the context of U.S. highway hazmat transport. Discuss accident‐

prediction models leveraging historical crash data, real‐time sensor and telematics integration, and predictive maintenance 

insights. On the routing side, we examine reinforcement‐learning and optimization frameworks that incorporate safety 

constraints, time‐varying traffic conditions, and regulatory requirements. Real‐world examples from U.S. Department of 

Transportation initiatives and industry platforms (e.g. Convoy, KeepTruckin/Project44) are integrated to illustrate current 

practices. Key risk factors (e.g. population density, material hazard class, driver conditions) are summarized in a structured 

risk table. We also outline a conceptual AI system architecture for hazmat routing, highlighting data sources and decision‐

support components. The review concludes that AI can significantly enhance proactive safety management and efficient 

routing of hazardous shipments, supporting federal safety goals. Future work should address data integration challenges, 

model validation, and regulatory acceptance of AI systems. 
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Transporting hazardous materials on U.S. highways is critical to commerce but carries high stakes in terms of safety and 

security. Although hazmat truck crashes occur relatively infrequently, their consequences can be severe. The U.S. DOT 

estimates that about 7% of all trucks carry hazardous cargo, accounting for 11% of truck freight by weight. A single 

highway crash involving hazmat can incur far greater human and economic costs than typical freight incidents. For 

example, FMCSA reports that hazmat incidents impose over $1 billion per year in societal costs. Even if hazmat crashes 

are under‐represented in sheer numbers, their disproportionate risk to public health and infrastructure has spurred federal 

action. Recent safety objectives have targeted significant reductions in hazmat incidents (e.g. a 20% cut from 2000 

baselines by 2010), reflecting the importance of predictive safety measures. In this context, artificial intelligence holds 

promise to augment traditional methods by analyzing vast data and adapting to dynamic conditions [1]. 

Hazmat road transport risk is driven by factors in four broad categories: Material properties, exposure, operational 

conditions, and vehicle/driver factors. Material‐level factors include the hazard class of the cargo (e.g. flammability, 

explosivity, toxicity) which determines the severity of a release. Liquid flammables and gases are commonly cited; for 

example, U.S. crash statistics show flammable liquids (Classes 3) and corrosives (Class 8) dominate hazmat accidents. 

Exposure factors reflect the potential impact on the public: densely populated areas, proximity of sensitive sites (schools, 

hospitals), and route segment lengths near communities all raise risk. Federal routing guidelines explicitly use population 

density as a proxy for consequence. In a recent rail‐hazmat risk model, critical risk factors were population near the route, 

distance of transport from residential zones, and presence of “sensitive third parties” (e.g. vulnerable populations). Similar 

spatial factors apply on highways, where routes through urban areas or bridges/tunnels can amplify risk [2]. 

Operational conditions include road geometry (curves, grades, narrow lanes), traffic volume, weather, and time‐of‐day. 

For example, poor weather and night driving both increase accident likelihood, and heavy congestion can both elevate 

collision risk and complicate response. From the vehicle perspective, risk rises with improper loading or maintenance 

issues; AI based on telematics can flag unsafe vehicle states.  
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Table 1. Key risk factors in highway hazardous cargo transport (summarized from industry and DOT sources). 

Factor Category Examples Impact on Risk 

Cargo Hazard 

Class 

Flammable liquids/gases; 

explosives; toxic chemicals 

Determines severity of release if crash occurs; higher‐

hazard materials carry greater consequences. 

Population 

Exposure 

Nearby residential/urban areas; 

schools, hospitals; traffic density 

Populations near routes increase potential impact;  

Route 

Characteristics 

Road curvature, grade, intersections, 

tunnel/bridge restrictions 

Complex road geometry and regulatory constraints can 

increase accident likelihood or require detours. 

Traffic & Weather Congestion levels; weather (rain, 

fog, ice, wind) 

Adverse weather and heavy traffic elevate crash 

probability and reduce margin for error. 

Vehicle Condition Maintenance history; loading 

integrity; telematics alerts 

Poor maintenance or overloading raises breakdown/crash 

risk; real‐time diagnostics can predict issues. 

Driver Behavior Hours of service, fatigue, distraction, 

skill level 

Fatigued or unsafe driving (speeding, harsh braking) 

raises crash risk; monitoring can prompt corrections. 

Emergency 

Response 

Availability of hazmat response 

teams; communication systems 

Limited response capacity increases consequence of 

incidents; better planning/coordination lowers impact. 

Regulatory 

Compliance 

Licensing, routing restrictions, escort 

requirements 

Non‐compliance can raise risk (e.g. unauthorized roads); 

adherence to safety rules mitigates risk. 

 

Thus, routes with longer travel distance through populous regions incur higher risk scores. Safety planners typically 

balance this risk metric against efficiency: a longer but safer route may be preferable to the shortest path. These factors 

underline why simple shortest‐path shipping is insufficient for hazmat; instead, risk‐aware analytics is needed. 

Artificial intelligence offers tools to predict and prevent accidents involving hazardous cargo by analyzing complex, high‐

volume data streams. Key approaches include machine‐learning models trained on historical crash data, real‐time sensor 

integration (vehicle telematics and infrastructure IoT), and predictive maintenance systems. Collectively, these methods 

aim to anticipate incidents before they occur or escalate [3]. 

Machine‐learning models can be trained on large crash datasets to identify patterns and contributing factors unique to 

hazmat incidents. Although U.S. datasets like FMCSA’s Motor Carrier Management Information System (MCMIS) and 

NHTSA’s crash databases are not always broken out by cargo type, emerging studies separate hazmat crashes. For 

example, Bayesian networks and ensemble methods have been applied to highway hazmat crash data to quantify severity 

outcomes and key predictors. These models typically use features such as vehicle type, hazard class, road type, weather, 

and driver records. One study using Bayesian networks on hazardous cargo accident records found strong correlations 

between crash severity and factors like roadway type, collision type, and speed. 

Supervised learning (e.g. random forests, support vector machines) can predict accident likelihood given certain 

conditions, enabling hotspot identification. Recent traffic safety research shows that models combining spatial analysis 

and machine learning can predict accident rates and propose safer detours. In the hazmat context, accident‐prediction 

models are extended to consider material‐specific risk: for instance, a crash involving a toxic tank is inherently more 

dangerous than one with non‐hazard cargo. Such models can assign risk scores to road segments or origin‐destination 

pairs for hazmat shipments. By continuously updating with new data, ML models can capture trends (e.g. seasonal weather 

patterns) to provide timely risk forecasts [4]. 

Real‐time data streams are crucial for dynamic risk assessment. Modern trucks and trailers carry an array of IoT sensors 

(GPS, accelerometers, engine diagnostics, temperature/humidity gauges for temperature‐sensitive loads). By 2024, a 

significant share of U.S. hazmat carriers equip vehicles with electronic logging devices (ELDs) and telematics. Projects 

like Project44’s integration with KeepTruckin collect high‐fidelity GPS location and driver‐behavior data, aiming to offer 

“visibility beyond tracking”. 

Sensor data feeds into AI algorithms to detect anomalies and triggering events. For example, sudden deceleration or lane 

departure alerts can be flagged in real time to warn drivers or dispatchers. Predictive maintenance is an early application: 

machine learning models analyze engine metrics and past failure data to forecast when a brake component might fail. 

Ensuring vehicle reliability is especially critical for hazmat loads; failures that might be tolerable for ordinary freight 

could have catastrophic consequences under hazmat [5]. 
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Infrastructure sensors also play a role. Traffic cameras, weather sensors, and intelligent transportation systems can feed a 

central AI system. The Internet of Things (IoT) in road safety has become a “game-changer,” collecting large volumes of 

data on vehicle dynamics, driver behavior, and road conditions. For instance, connected roadway sensors (incorporating 

radar, cameras, or embedded road‐surface monitors) can detect hazards like ice patches or heavy fog. AI algorithms fuse 

these inputs: real‐time weather data, congestion levels, and hazmat convoy positions to estimate evolving risk. One 

architecture might use stream‐processing of incoming telemetry to continuously update probabilistic risk maps along the 

planned route. 

Such systems enable early alerts: an AI model may predict a high accident probability if a convoy enters a congested 

interchange during peak hours in rain, prompting rerouting or speed advisories. By maintaining a “situational awareness” 

frame of highway hazards, AI supports proactive avoidance. For example, freight TMS platforms are beginning to include 

risk‐prediction modules that warn carriers of incident risk spots [5]. 

Beyond predicting crashes, AI can model the consequences of a hazmat release. In the event of a breach, simulation tools 

(sometimes AI‐augmented) can quickly estimate plume spread or fire propagation based on chemical properties and 

meteorology. For instance, if a chlorine tank is breached on a bridge, a trained neural network could estimate evacuation 

zones faster than traditional calculators. AI can also analyze historical spill response data to recommend optimal 

emergency actions. Integrating such “post-crash” AI into a risk prediction system ensures that transportation planners 

account for worst‐case scenarios. For example, an AI might score routes not only by crash probability but by potential 

plume impact area, combining accident likelihood with spill modeling. This holistic risk assessment – from prevention 

through response – is an emerging focus in hazmat safety planning [6]. 

Route optimization for hazardous cargo must reconcile safety, regulatory, and efficiency objectives. AI methods here 

include both classic optimization techniques and learning‐based approaches. In practice, optimization frameworks often 

encode multiple criteria (risk, time, cost) and constraints (road bans, loading limits) to generate optimal routes. Recent 

advances explore reinforcement learning (RL) and predictive analytics to handle the dynamic, uncertain environment of 

highway transportation. 

Early optimization models for hazmat routing used mixed‐integer programming (MIP) with risk‐adjusted costs. For 

example, FMCSA’s federally guided planning tool scores routes by a weighted sum of accident probability and travel 

deviation. Road segments through more populated areas incur a “risk cost” (often using CVaR or population-weighted 

distance) while drivers penalize longer travel. Researchers have extended these bilevel and mixed‐integer models to 

include uncertainties in accident probabilities and multi-modal links. Such models yield routes that balance a “safety 

objective” (minimize risk metrics) against efficiency [6]. 

AI augments these by enabling flexible, data-driven search. Heuristic and metaheuristic solvers (genetic algorithms, ant 

colony, particle swarm) can incorporate AI‐learned risk functions. They can quickly explore route alternatives under 

complex constraints (e.g. mandatory rest stops, hazardous cargo restrictions on tunnels). Some modern logistic platforms 

offer APIs (e.g. Google Maps and specialized routing) that factor in weight limits and hazmat restrictions. For instance, 

NextBillion.ai provides a hazmat‐aware routing API that considers traffic and custom hazard zones in real time. This 

illustrates how commercial AI tools now integrate dynamic data for hazmat routing: if a highway incident occurs, the API 

can re‐compute a safe detour automatically [6]. 

Reinforcement learning is an emerging approach for adaptive routing in uncertain environments. In RL, an agent (e.g. a 

routing system) interacts with a traffic network modeled as a Markov decision process (MDP), receiving rewards for 

timely, safe deliveries. The agent learns a policy mapping states (current location, traffic conditions, cargo type) to actions 

(next road segment). Critically, RL can learn from experience to avoid high-risk states. For example, a deep Q-network 

could be trained in simulation to steer trucks away from incident-prone interchanges during peak hours. 

In practice, full RL deployment requires a digital simulation of the highway network and streaming data inputs. However, 

even simpler “predictive logistics” uses machine learning: a system may predict travel times and safety levels on candidate 

routes using predictive models (e.g. time‐series forecasting of traffic). Combined with optimization solvers, this yields 

“predictive routing” where the planner anticipates traffic jams or peak risks and preemptively adjusts routes. Many 

trucking TMS now incorporate such features, using machine learning forecasts of ETA and risk. 

An ideal AI routing system is dynamic: it continually updates route plans based on live data. Using reinforcement learning 

or decision-tree logic, the system monitors sensors (traffic flow, weather, incident reports) and adjusts the route if the 

predicted risk along the original path exceeds thresholds. For example, if a spill or heavy congestion appears ahead, the 
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AI can flag the next‐best route that maintains hazmat criteria. This requires integration of geospatial information and fast 

network updates. 

Today’s AI-driven platforms indeed offer real-time rerouting. Convoy’s freight platform, for instance, uses machine 

learning to match loads and optimize transport on the fly. In effect, load‐matching ML can reduce empty miles, and by 

extension it can assign hazmat loads to carriers with optimal routes. Similarly, a Project44/KeepTruckin integration 

enables dispatchers to see carrier‐collected data in real time; such visibility is key to enabling automated rerouting 

decisions. In other words, when sensors detect increased risk, modern systems can "plan B" a new safe itinerary and notify 

the driver or logistics coordinator immediately. This real-time AI integration significantly reduces the operator burden of 

manual route monitoring, and is a frontier of present-day practice [7]. 

FMCSA Hazardous Materials Program: FMCSA has long targeted hazmat safety. Its 2009 Routing Plan Guidance to 

Congress mandated GIS-based analysis of routes. That report highlighted the need for decision support tools for state 

officials to model routes and risks, encouraging GIS integration. Building on this foundation, FMCSA’s goals included a 

20% reduction in hazmat incidents (from 574 in 2000) by 2010, reflecting agency commitment. More recently, FMCSA’s 

research arm has adopted AI for crash analysis: a 2024 project is exploring AI/DSS tools to process crash reports in its 

Crash Preventability program. That work uses AI to accelerate review of crash police reports and reduce human labor. 

Although not specific to hazmat, it shows FMCSA applying AI to truck safety data. 

DOT AI Strategy: At a higher level, the U.S. Department of Transportation’s technology strategy calls for predictive 

safety using AI. A 2023 DOT whitepaper states that AI can identify leading indicators of risk from complex data. In 

practical terms, this means using AI to forecast safety issues rather than reacting to them, aligning with the predictive 

approach described earlier. DOT initiatives encourage pilot projects on AI in logistics and safety through programs like 

TechCelerate and others. 

A practical AI system for hazardous cargo routing would integrate multiple data sources and decision modules (Figure 1). 

Key components include: - Data Ingestion: Telemetry from vehicles (GPS, ELD, environmental sensors), traffic and 

weather feeds, static road network (GIS with restrictions), and historical crash records. IoT devices on highways and 

satellite/Aerial imagery may also feed into the system. - Data Warehouse/Stream Processing: A centralized platform (often 

cloud-based) stores historical data and ingests real-time streams. Big data tools or streaming frameworks preprocess and 

align the diverse data (e.g. synchronizing time stamps). - Risk Prediction Module: Machine learning models consume 

current and historical data to output risk metrics. This can include classification (predict crash/no-crash on a segment) or 

regression (expected severity), as well as anomaly detection (sudden hazard event alerts). - Optimization Engine: Given 

risk maps and cost functions, an optimization solver or RL agent computes optimal or improved routes. This module can 

operate in two modes: (a) Planned routing for scheduling shipments in advance, using predictive traffic; and (b) Dynamic 

rerouting that responds to new information (accident reports, weather changes). It accounts for constraints (hazmat 

restrictions, vehicle limits). - Decision Support Interface: The output routes and risk assessments are presented to 

dispatchers or drivers via dashboards or in-cab guidance. Alerts (e.g. “Route ahead has high risk, consider alternate 

highway”) should be clear and actionable. Visualization of the route with risk hotspots helps human oversight. - Feedback 

Loop: After execution, data on actual performance (arrival times, incidents avoided) is fed back to retrain models, 

improving future predictions. This closes the loop for continuous learning. 
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Fig 1. Conceptual AI-driven hazard cargo routing system (illustrative). Sensor and traffic data feed AI risk models, which 

inform an optimization engine that plans safe routes. The system iterates with real‐time updates. 

 

Data-driven risk models can uncover subtle patterns beyond human intuition, while optimization algorithms handle 

complex trade-offs. Real-world examples (e.g. Convoy, NextBillion.ai) demonstrate ROI: reduced delivery times, fewer 

incidents, and regulatory compliance. 

However, challenges remain. One key issue is data quality and availability: many useful signals (e.g. cargo schedules, 

driver logs) are proprietary, and crash databases may underreport hazmat details. Integration of disparate data (especially 

from smaller carriers) is needed for holistic models. Moreover, AI models must be interpretable for regulators; a 

completely opaque neural net route recommendation may not satisfy safety auditors. Thus, many developers blend AI 

with known risk formulas (like population‐weighted risk) to ensure transparency. 

Another challenge is standardization: there is no single “hazmat AI” standard in industry. Firms and agencies are 

experimenting with different architectures. Interoperability (for example, Project44 integrating KeepTruckin data) is a 

promising trend. Cybersecurity is also vital since hacking any part of the system (e.g. spoofing GPS) could create hazards. 

Finally, human factors and policy must adapt. Drivers and dispatchers need training to trust and correctly use AI 

recommendations. At the policy level, authorities may begin to require or incentivize AI risk analysis in routing plans. 

For instance, FEMA and PHMSA encourage better emergency response planning, which AI can support. In the future, 

one might imagine a DOT-certified routing tool that carriers are mandated to use for certain high-risk shipments [7]. 

Artificial intelligence is transforming hazardous cargo transportation on U.S. highways by enabling proactive risk 

management and smarter routing. AI-based risk prediction models (trained on historical crash data and fed by real-time 

sensor streams) can identify high-risk situations and alert carriers in advance. Similarly, AI-driven optimization 

techniques, including reinforcement learning and predictive scheduling, generate routes that balance safety and efficiency 

under regulatory constraints. Real-world deployments—whether DOT research projects or commercial platforms like 

Convoy and Project44—illustrate significant benefits [7]. 

This integration of AI into hazmat logistics aligns with federal goals to reduce incidents and mitigate impacts. While data 

integration and validation remain challenges, the trajectory is clear: leveraging big data and machine learning will become 

standard practice in hazmat transport. Future research should focus on rigorous validation of AI models in field trials, 

improvement of explainability (so that AI-based decisions can be audited), and enhanced public-private data sharing. As 

the volume of U.S. hazmat highway transport grows, AI-enabled systems will be essential tools for safeguarding 

communities and the environment. 
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