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Abstract: The highway transportation of hazardous materials poses unique safety and security challenges that demand
innovative risk management and routing strategies. Artificial intelligence (Al) techniques are increasingly being applied
to predict accident risk and optimize routing for hazardous cargo. This article reviews Al-based risk prediction systems
and Al-driven route optimization methods specifically in the context of U.S. highway hazmat transport. Discuss accident-
prediction models leveraging historical crash data, real-time sensor and telematics integration, and predictive maintenance
insights. On the routing side, we examine reinforcement-learning and optimization frameworks that incorporate safety
constraints, time-varying traffic conditions, and regulatory requirements. Real-world examples from U.S. Department of
Transportation initiatives and industry platforms (e.g. Convoy, KeepTruckin/Project44) are integrated to illustrate current
practices. Key risk factors (e.g. population density, material hazard class, driver conditions) are summarized in a structured
risk table. We also outline a conceptual Al system architecture for hazmat routing, highlighting data sources and decision-
support components. The review concludes that Al can significantly enhance proactive safety management and efficient
routing of hazardous shipments, supporting federal safety goals. Future work should address data integration challenges,
model validation, and regulatory acceptance of Al systems.

Keywords: Hazardous materials, highway transportation, accident prediction, route optimization, artificial intelligence,
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Transporting hazardous materials on U.S. highways is critical to commerce but carries high stakes in terms of safety and
security. Although hazmat truck crashes occur relatively infrequently, their consequences can be severe. The U.S. DOT
estimates that about 7% of all trucks carry hazardous cargo, accounting for 11% of truck freight by weight. A single
highway crash involving hazmat can incur far greater human and economic costs than typical freight incidents. For
example, FMCSA reports that hazmat incidents impose over $1 billion per year in societal costs. Even if hazmat crashes
are under-represented in sheer numbers, their disproportionate risk to public health and infrastructure has spurred federal
action. Recent safety objectives have targeted significant reductions in hazmat incidents (e.g. a 20% cut from 2000
baselines by 2010), reflecting the importance of predictive safety measures. In this context, artificial intelligence holds
promise to augment traditional methods by analyzing vast data and adapting to dynamic conditions [1].

Hazmat road transport risk is driven by factors in four broad categories: Material properties, exposure, operational
conditions, and vehicle/driver factors. Material-level factors include the hazard class of the cargo (e.g. flammability,
explosivity, toxicity) which determines the severity of a release. Liquid flammables and gases are commonly cited; for
example, U.S. crash statistics show flammable liquids (Classes 3) and corrosives (Class 8) dominate hazmat accidents.
Exposure factors reflect the potential impact on the public: densely populated areas, proximity of sensitive sites (schools,
hospitals), and route segment lengths near communities all raise risk. Federal routing guidelines explicitly use population
density as a proxy for consequence. In a recent rail-hazmat risk model, critical risk factors were population near the route,
distance of transport from residential zones, and presence of “sensitive third parties” (e.g. vulnerable populations). Similar
spatial factors apply on highways, where routes through urban areas or bridges/tunnels can amplify risk [2].

Operational conditions include road geometry (curves, grades, narrow lanes), traffic volume, weather, and time-of-day.
For example, poor weather and night driving both increase accident likelihood, and heavy congestion can both elevate
collision risk and complicate response. From the vehicle perspective, risk rises with improper loading or maintenance
issues; Al based on telematics can flag unsafe vehicle states.
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Table 1. Key risk factors in highway hazardous cargo transport (summarized from industry and DOT sources).

fog, ice, wind)

Factor Category Examples Impact on Risk

Cargo Hazard | Flammable liquids/gases; | Determines severity of release if crash occurs; higher-
Class explosives; toxic chemicals hazard materials carry greater consequences.

Population Nearby residential/urban areas; | Populations near routes increase potential impact;
Exposure schools, hospitals; traffic density

Route Road curvature, grade, intersections, | Complex road geometry and regulatory constraints can
Characteristics tunnel/bridge restrictions increase accident likelihood or require detours.

Traffic & Weather | Congestion levels; weather (rain, | Adverse weather and heavy traffic elevate crash

probability and reduce margin for error.

Vehicle Condition

Maintenance  history;
integrity; telematics alerts

loading

Poor maintenance or overloading raises breakdown/crash
risk; real-time diagnostics can predict issues.

Driver Behavior

Hours of service, fatigue, distraction,
skill level

Fatigued or unsafe driving (speeding, harsh braking)
raises crash risk; monitoring can prompt corrections.

Emergency Availability of hazmat response | Limited response capacity increases consequence of
Response teams; communication systems incidents; better planning/coordination lowers impact.
Regulatory Licensing, routing restrictions, escort | Non-compliance can raise risk (e.g. unauthorized roads);
Compliance requirements adherence to safety rules mitigates risk.

Thus, routes with longer travel distance through populous regions incur higher risk scores. Safety planners typically
balance this risk metric against efficiency: a longer but safer route may be preferable to the shortest path. These factors
underline why simple shortest-path shipping is insufficient for hazmat; instead, risk-aware analytics is needed.

Artificial intelligence offers tools to predict and prevent accidents involving hazardous cargo by analyzing complex, high-
volume data streams. Key approaches include machine-learning models trained on historical crash data, real-time sensor
integration (vehicle telematics and infrastructure IoT), and predictive maintenance systems. Collectively, these methods
aim to anticipate incidents before they occur or escalate [3].

Machine-learning models can be trained on large crash datasets to identify patterns and contributing factors unique to
hazmat incidents. Although U.S. datasets like FMCSA’s Motor Carrier Management Information System (MCMIS) and
NHTSA’s crash databases are not always broken out by cargo type, emerging studies separate hazmat crashes. For
example, Bayesian networks and ensemble methods have been applied to highway hazmat crash data to quantify severity
outcomes and key predictors. These models typically use features such as vehicle type, hazard class, road type, weather,
and driver records. One study using Bayesian networks on hazardous cargo accident records found strong correlations
between crash severity and factors like roadway type, collision type, and speed.

Supervised learning (e.g. random forests, support vector machines) can predict accident likelihood given certain
conditions, enabling hotspot identification. Recent traffic safety research shows that models combining spatial analysis
and machine learning can predict accident rates and propose safer detours. In the hazmat context, accident-prediction
models are extended to consider material-specific risk: for instance, a crash involving a toxic tank is inherently more
dangerous than one with non-hazard cargo. Such models can assign risk scores to road segments or origin-destination
pairs for hazmat shipments. By continuously updating with new data, ML models can capture trends (e.g. seasonal weather
patterns) to provide timely risk forecasts [4].

Real-time data streams are crucial for dynamic risk assessment. Modern trucks and trailers carry an array of loT sensors
(GPS, accelerometers, engine diagnostics, temperature/humidity gauges for temperature-sensitive loads). By 2024, a
significant share of U.S. hazmat carriers equip vehicles with electronic logging devices (ELDs) and telematics. Projects
like Project44’s integration with KeepTruckin collect high-fidelity GPS location and driver-behavior data, aiming to offer
“visibility beyond tracking”.

Sensor data feeds into Al algorithms to detect anomalies and triggering events. For example, sudden deceleration or lane
departure alerts can be flagged in real time to warn drivers or dispatchers. Predictive maintenance is an early application:
machine learning models analyze engine metrics and past failure data to forecast when a brake component might fail.
Ensuring vehicle reliability is especially critical for hazmat loads; failures that might be tolerable for ordinary freight
could have catastrophic consequences under hazmat [5].
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Infrastructure sensors also play a role. Traffic cameras, weather sensors, and intelligent transportation systems can feed a
central Al system. The Internet of Things (IoT) in road safety has become a “game-changer,” collecting large volumes of
data on vehicle dynamics, driver behavior, and road conditions. For instance, connected roadway sensors (incorporating
radar, cameras, or embedded road-surface monitors) can detect hazards like ice patches or heavy fog. Al algorithms fuse
these inputs: real-time weather data, congestion levels, and hazmat convoy positions to estimate evolving risk. One
architecture might use stream-processing of incoming telemetry to continuously update probabilistic risk maps along the
planned route.

Such systems enable early alerts: an Al model may predict a high accident probability if a convoy enters a congested
interchange during peak hours in rain, prompting rerouting or speed advisories. By maintaining a “situational awareness”
frame of highway hazards, Al supports proactive avoidance. For example, freight TMS platforms are beginning to include
risk-prediction modules that warn carriers of incident risk spots [5].

Beyond predicting crashes, Al can model the consequences of a hazmat release. In the event of a breach, simulation tools
(sometimes Al-augmented) can quickly estimate plume spread or fire propagation based on chemical properties and
meteorology. For instance, if a chlorine tank is breached on a bridge, a trained neural network could estimate evacuation
zones faster than traditional calculators. Al can also analyze historical spill response data to recommend optimal
emergency actions. Integrating such “post-crash™ Al into a risk prediction system ensures that transportation planners
account for worst-case scenarios. For example, an Al might score routes not only by crash probability but by potential
plume impact area, combining accident likelihood with spill modeling. This holistic risk assessment — from prevention
through response — is an emerging focus in hazmat safety planning [6].

Route optimization for hazardous cargo must reconcile safety, regulatory, and efficiency objectives. Al methods here
include both classic optimization techniques and learning-based approaches. In practice, optimization frameworks often
encode multiple criteria (risk, time, cost) and constraints (road bans, loading limits) to generate optimal routes. Recent
advances explore reinforcement learning (RL) and predictive analytics to handle the dynamic, uncertain environment of
highway transportation.

Early optimization models for hazmat routing used mixed-integer programming (MIP) with risk-adjusted costs. For
example, FMCSA’s federally guided planning tool scores routes by a weighted sum of accident probability and travel
deviation. Road segments through more populated areas incur a “risk cost” (often using CVaR or population-weighted
distance) while drivers penalize longer travel. Researchers have extended these bilevel and mixed-integer models to
include uncertainties in accident probabilities and multi-modal links. Such models yield routes that balance a “safety
objective” (minimize risk metrics) against efficiency [6].

Al augments these by enabling flexible, data-driven search. Heuristic and metaheuristic solvers (genetic algorithms, ant
colony, particle swarm) can incorporate Al-learned risk functions. They can quickly explore route alternatives under
complex constraints (e.g. mandatory rest stops, hazardous cargo restrictions on tunnels). Some modern logistic platforms
offer APIs (e.g. Google Maps and specialized routing) that factor in weight limits and hazmat restrictions. For instance,
NextBillion.ai provides a hazmat-aware routing API that considers traffic and custom hazard zones in real time. This
illustrates how commercial Al tools now integrate dynamic data for hazmat routing: if a highway incident occurs, the API
can re-compute a safe detour automatically [6].

Reinforcement learning is an emerging approach for adaptive routing in uncertain environments. In RL, an agent (e.g. a
routing system) interacts with a traffic network modeled as a Markov decision process (MDP), receiving rewards for
timely, safe deliveries. The agent learns a policy mapping states (current location, traffic conditions, cargo type) to actions
(next road segment). Critically, RL can learn from experience to avoid high-risk states. For example, a deep Q-network
could be trained in simulation to steer trucks away from incident-prone interchanges during peak hours.

In practice, full RL deployment requires a digital simulation of the highway network and streaming data inputs. However,
even simpler “predictive logistics” uses machine learning: a system may predict travel times and safety levels on candidate
routes using predictive models (e.g. time-series forecasting of traffic). Combined with optimization solvers, this yields
“predictive routing” where the planner anticipates traffic jams or peak risks and preemptively adjusts routes. Many
trucking TMS now incorporate such features, using machine learning forecasts of ETA and risk.

An ideal Al routing system is dynamic: it continually updates route plans based on live data. Using reinforcement learning
or decision-tree logic, the system monitors sensors (traffic flow, weather, incident reports) and adjusts the route if the
predicted risk along the original path exceeds thresholds. For example, if a spill or heavy congestion appears ahead, the
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Al can flag the next-best route that maintains hazmat criteria. This requires integration of geospatial information and fast
network updates.

Today’s Al-driven platforms indeed offer real-time rerouting. Convoy’s freight platform, for instance, uses machine
learning to match loads and optimize transport on the fly. In effect, load-matching ML can reduce empty miles, and by
extension it can assign hazmat loads to carriers with optimal routes. Similarly, a Project44/KeepTruckin integration
enables dispatchers to see carrier-collected data in real time; such visibility is key to enabling automated rerouting
decisions. In other words, when sensors detect increased risk, modern systems can "plan B" a new safe itinerary and notify
the driver or logistics coordinator immediately. This real-time Al integration significantly reduces the operator burden of
manual route monitoring, and is a frontier of present-day practice [7].

FMCSA Hazardous Materials Program: FMCSA has long targeted hazmat safety. Its 2009 Routing Plan Guidance to
Congress mandated GIS-based analysis of routes. That report highlighted the need for decision support tools for state
officials to model routes and risks, encouraging GIS integration. Building on this foundation, FMCSA’s goals included a
20% reduction in hazmat incidents (from 574 in 2000) by 2010, reflecting agency commitment. More recently, FMCSA’s
research arm has adopted Al for crash analysis: a 2024 project is exploring AI/DSS tools to process crash reports in its
Crash Preventability program. That work uses Al to accelerate review of crash police reports and reduce human labor.
Although not specific to hazmat, it shows FMCSA applying Al to truck safety data.

DOT AI Strategy: At a higher level, the U.S. Department of Transportation’s technology strategy calls for predictive
safety using Al. A 2023 DOT whitepaper states that Al can identify leading indicators of risk from complex data. In
practical terms, this means using Al to forecast safety issues rather than reacting to them, aligning with the predictive
approach described earlier. DOT initiatives encourage pilot projects on Al in logistics and safety through programs like
TechCelerate and others.

A practical Al system for hazardous cargo routing would integrate multiple data sources and decision modules (Figure 1).
Key components include: - Data Ingestion: Telemetry from vehicles (GPS, ELD, environmental sensors), traffic and
weather feeds, static road network (GIS with restrictions), and historical crash records. loT devices on highways and
satellite/Aerial imagery may also feed into the system. - Data Warehouse/Stream Processing: A centralized platform (often
cloud-based) stores historical data and ingests real-time streams. Big data tools or streaming frameworks preprocess and
align the diverse data (e.g. synchronizing time stamps). - Risk Prediction Module: Machine learning models consume
current and historical data to output risk metrics. This can include classification (predict crash/no-crash on a segment) or
regression (expected severity), as well as anomaly detection (sudden hazard event alerts). - Optimization Engine: Given
risk maps and cost functions, an optimization solver or RL agent computes optimal or improved routes. This module can
operate in two modes: (a) Planned routing for scheduling shipments in advance, using predictive traffic; and (b) Dynamic
rerouting that responds to new information (accident reports, weather changes). It accounts for constraints (hazmat
restrictions, vehicle limits). - Decision Support Interface: The output routes and risk assessments are presented to
dispatchers or drivers via dashboards or in-cab guidance. Alerts (e.g. “Route ahead has high risk, consider alternate
highway”) should be clear and actionable. Visualization of the route with risk hotspots helps human oversight. - Feedback
Loop: After execution, data on actual performance (arrival times, incidents avoided) is fed back to retrain models,
improving future predictions. This closes the loop for continuous learning.

© 2025, IJSREM | https://ijsrem.com DOI: 10.55041/IJ]SREM54226 | Page 4


https://ijsrem.com/

<Journal

i
K : s . . .
@REM§ International Journal of Scientific Research in Engineering and Management (I[JSREM)
w Volume: 09 Issue: 11 | Nov - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

Sensor data Al risk models

Traffic data l \

Optimization engine )
' —
\

4=~

) T — | YR —— >
Iterates vupdates

&

Fig 1. Conceptual Al-driven hazard cargo routing system (illustrative). Sensor and traffic data feed Al risk models, which
inform an optimization engine that plans safe routes. The system iterates with real-time updates.

Data-driven risk models can uncover subtle patterns beyond human intuition, while optimization algorithms handle
complex trade-offs. Real-world examples (e.g. Convoy, NextBillion.ai) demonstrate ROI: reduced delivery times, fewer
incidents, and regulatory compliance.

However, challenges remain. One key issue is data quality and availability: many useful signals (e.g. cargo schedules,
driver logs) are proprietary, and crash databases may underreport hazmat details. Integration of disparate data (especially
from smaller carriers) is needed for holistic models. Moreover, Al models must be interpretable for regulators; a
completely opaque neural net route recommendation may not satisfy safety auditors. Thus, many developers blend Al
with known risk formulas (like population-weighted risk) to ensure transparency.

Another challenge is standardization: there is no single “hazmat AI” standard in industry. Firms and agencies are
experimenting with different architectures. Interoperability (for example, Project44 integrating KeepTruckin data) is a
promising trend. Cybersecurity is also vital since hacking any part of the system (e.g. spoofing GPS) could create hazards.
Finally, human factors and policy must adapt. Drivers and dispatchers need training to trust and correctly use Al
recommendations. At the policy level, authorities may begin to require or incentivize Al risk analysis in routing plans.
For instance, FEMA and PHMSA encourage better emergency response planning, which Al can support. In the future,
one might imagine a DOT-certified routing tool that carriers are mandated to use for certain high-risk shipments [7].
Artificial intelligence is transforming hazardous cargo transportation on U.S. highways by enabling proactive risk
management and smarter routing. Al-based risk prediction models (trained on historical crash data and fed by real-time
sensor streams) can identify high-risk situations and alert carriers in advance. Similarly, Al-driven optimization
techniques, including reinforcement learning and predictive scheduling, generate routes that balance safety and efficiency
under regulatory constraints. Real-world deployments—whether DOT research projects or commercial platforms like
Convoy and Project44—illustrate significant benefits [7].

This integration of Al into hazmat logistics aligns with federal goals to reduce incidents and mitigate impacts. While data
integration and validation remain challenges, the trajectory is clear: leveraging big data and machine learning will become
standard practice in hazmat transport. Future research should focus on rigorous validation of Al models in field trials,
improvement of explainability (so that Al-based decisions can be audited), and enhanced public-private data sharing. As
the volume of U.S. hazmat highway transport grows, Al-enabled systems will be essential tools for safeguarding
communities and the environment.
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