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Abstract - Our paper explores the implementation of an 

Artificial Intelligence (AI) operated elevator system aimed at 

reducing user waiting times in a residential complex. With two 

elevators servicing a 14-story building, each floor 

accommodating six flats with approximately four residents per 

home, efficiency is paramount. Leveraging AI algorithms, our 

system dynamically adjusts elevator operations based on user 

demand patterns, traffic flow, and predictive analysis, ensuring 

minimal wait times and optimal passenger distribution. By 

integrating AI into elevator management, we aim to enhance 

user experience and streamline vertical transportation in high-

density residential settings.  
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INTRODUCTION 

 
The advent of Artificial Intelligence (AI) has revolutionized 

various domains, and its application in elevator systems holds 
significant promise for enhancing vertical transportation 
efficiency in high-rise residential complexes. With the 
proliferation of urbanization and the construction of taller 
buildings, the demand for efficient elevator operations has 
intensified. Our paper delves into the integration of AI 
technology to mitigate user waiting times within a residential 
complex comprising a 14-story building. With six flats per floor 
and an average of four occupants per home, optimizing elevator 
operations becomes imperative to ensure smooth passenger flow 
and minimal congestion. This introduction outlines the necessity 
and potential benefits of employing AI in elevator management 
to address the challenges of vertical transportation in densely 
populated residential environments.  

 

RL and Model-Free RL 
Reinforcement Learning (RL) is a branch of machine 

learning concerned with decision-making and control processes. 

Unlike supervised learning, where an algorithm learns from 

labeled input-output pairs, and unsupervised learning, where the 

algorithm discovers patterns in unlabeled data, RL focuses on 

learning from interactions with an environment to achieve a 

cumulative reward. At the core of RL is the concept of an agent, 

which learns to navigate an environment through trial and error, 

aiming to maximize its cumulative reward over time. 

Model-Free Reinforcement Learning (MFRL) is a subset of 

RL that doesn't require knowledge of the environment's 

dynamics or transition probabilities. In other words, the agent 

learns directly from experiences without explicitly modeling the 

environment. MFRL algorithms are particularly useful in 

scenarios where the environment is complex, and obtaining a 

precise model is difficult or impractical. Instead, these 

algorithms focus on learning optimal policies through 

exploration and exploitation of the environment's state-action 

space. 

Exploration of Model-Free Reinforcement Learning Methods: 

Various MFRL methods have been developed to tackle 

different types of problems, each with its strengths and 

weaknesses. Some common MFRL algorithms include Q-

Learning, SARSA (State-Action-Reward-State-Action), Deep 

Q-Networks (DQN), and Policy Gradient methods such as 

REINFORCE. Each of these approaches has unique 

characteristics and is suited to specific types of tasks and 

environments. 

For the elevator optimization problem described in our 

paper, a suitable MFRL method would be Deep Q-Networks 

(DQN). DQN is a powerful algorithm that combines Q-learning 

with deep neural networks, enabling it to handle large state-

action spaces efficiently. Here are a few reasons why DQN is 

preferable for this application: 

• Complex State-Action Space: Elevator systems 

operate in dynamic environments with multiple floors, 

varying passenger demand, and different elevator 

states (e.g., idle, moving, loading/unloading). DQN's 

ability to approximate the optimal action-values for 

large state spaces makes it well-suited for handling the 

complexity of elevator control. 

• Continuous Learning: Elevator systems are subject to 

changing traffic patterns and user preferences, 

requiring continuous adaptation to optimize 

performance. DQN's iterative learning process allows 

the agent to update its policy based on new 

experiences, enabling it to adapt to evolving conditions 

over time. 

• Exploration and Exploitation: Balancing exploration 

(trying new actions to discover optimal strategies) and 

exploitation (leveraging known information to 

maximize rewards) is crucial for elevator optimization. 

DQN incorporates epsilon-greedy exploration 

strategies, allowing the agent to explore different 
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actions while gradually shifting towards exploiting 

learned policies as it gains experience. 

• Scalability and Efficiency: With two elevators serving 

a 14-story building with multiple flats on each floor, 

scalability and computational efficiency are essential 

considerations. DQN's use of deep neural networks 

enables it to scale to larger environments while 

efficiently approximating Q-values, making it suitable 

for real-time elevator control. 

Algorithm for AEORL 

• State Representation: Define the state space for the 

elevator system. This could include information such 

as the current floor of each elevator, the direction of 

each elevator, the number of passengers in each 

elevator, the destination floors of the passengers, and 

the waiting time of passengers in the lobby. 

• Action Space: Define the action space for the 

elevators. Actions could include moving up, moving 

down, stopping at a floor, or opening/closing doors. 

• Reward Function: Design a reward function that 

incentivizes efficient elevator operation. For example, 

rewards could be based on minimizing the waiting time 

of passengers, minimizing the time taken to reach 

destinations, and minimizing energy consumption. 

• Q-Network: Implement a deep neural network (DNN) 

to approximate the Q-values for state-action pairs. The 

input to the network would be the state representation, 

and the output would be the Q-values for each possible 

action. 

• Experience Replay: Implement experience replay to 

store and sample past experiences (state, action, 

reward, next state) for training the Q-network. This 

helps stabilize training and improve sample efficiency. 

• Target Q-Network: Use a separate target Q-network 

to stabilize training. Periodically update the parameters 

of the target network with the parameters of the main 

Q-network. 

• Epsilon-Greedy Exploration: Implement epsilon-

greedy exploration to balance exploration and 

exploitation. With probability epsilon, select a random 

action (explore); otherwise, select the action with the 

highest Q-value (exploit). 

• Training Procedure: Train the Q-network using a 

variant of the DQN algorithm such as Double DQN or 

Dueling DQN. Use techniques such as gradient descent 

to minimize the temporal difference error between the 

predicted Q-values and the target Q-values. 

• Deployment: Once the Q-network is trained, deploy it 

to control the elevators in real-time. At each time step, 

use the trained Q-network to select actions for the 

elevators based on the current state of the system 

. 

Python codes for AEORL 
import numpy as np 

import random 

from collections import deque 

from keras.models import Sequential 

from keras.layers import Dense 

from keras.optimizers import Adam 

class DQNAgent: 

    def __init__(self, state_size, action_size): 

        self.state_size = state_size 

        self.action_size = action_size 

        self.memory = deque(maxlen=2000) 

        self.gamma = 0.95  # discount rate 

        self.epsilon = 1.0  # exploration rate 

        self.epsilon_min = 0.01 

        self.epsilon_decay = 0.995 

        self.learning_rate = 0.001 

        self.model = self._build_model() 

    def _build_model(self): 

        model = Sequential() 

        model.add(Dense(24, input_dim=self.state_size, 

activation='relu')) 

        model.add(Dense(24, activation='relu')) 

        model.add(Dense(self.action_size, 

activation='linear')) 

        model.compile(loss='mse', 

optimizer=Adam(lr=self.learning_rate)) 

        return model 

    def remember(self, state, action, reward, next_state, 

done): 

        self.memory.append((state, action, reward, next_state, 

done)) 

    def act(self, state): 

        if np.random.rand() <= self.epsilon: 

            return random.randrange(self.action_size) 

        act_values = self.model.predict(state) 

        return np.argmax(act_values[0]) 

    def replay(self, batch_size): 

        minibatch = random.sample(self.memory, batch_size) 

        for state, action, reward, next_state, done in minibatch: 

            target = reward 

            if not done: 

                target = (reward + self.gamma * 

np.amax(self.model.predict(next_state)[0])) 

            target_f = self.model.predict(state) 

            target_f[0][action] = target 

            self.model.fit(state, target_f, epochs=1, verbose=0) 

        if self.epsilon > self.epsilon_min: 

            self.epsilon *= self.epsilon_decay 

 

# Define state and action sizes 

state_size = 10  # Example: number of elevator states 

action_size = 4  # Example: number of elevator actions (up, 

down, stop, open door) 
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# Initialize DQN agent 

agent = DQNAgent(state_size, action_size) 

# Training loop 

for episode in range(num_episodes): 

    state = env.reset()  # Reset environment to initial state 

    for time in range(max_timesteps): 

        action = agent.act(state)  # Choose action based on 

current state 

        next_state, reward, done, _ = env.step(action)  # Take 

action and observe next state and reward 

        agent.remember(state, action, reward, next_state, 

done)  # Store experience in replay buffer 

        state = next_state  # Update current state 

        if done:  # If episode is done, exit loop 

            break 

    if len(agent.memory) > batch_size:  # Start training if 

enough experiences are accumulated 

        agent.replay(batch_size). 

System Requirement for AEORL 
This block diagram outlines the key hardware components 

of an AI-operated elevator system: 

1. Central Control System: 

• Hosts AI algorithms, decision logic, and data 

processing units. 

• Manages communication and networking 

interfaces. 

• Handles data storage, analytics, and 

optimization algorithms. 

2. Elevator Controllers: 

• Includes sensors for detecting passengers, 

elevator movement, and door status. 

• Actuators control elevator motors, door 

mechanisms, and other functions. 

3. Building Infrastructure: 

• Comprises elevator cars, shafts, hoistways, 

and lobby areas. 

• Provides the physical framework for elevator 

operation. 

These components work together to enable the AI-operated 

elevator system to efficiently manage passenger traffic, 

optimize elevator operations, and provide a seamless vertical 

transportation experience within the building. 

Markov Chain for AEORL 
In this Markov chain diagram: 

• Idle: The initial state of the elevator when it's not in 

motion and waiting for passengers or instructions. 

• Moving Up: The elevator transitions to this state when 

it receives a command to move upward. From this 

state, it can continue moving up, change direction, stop 

at a floor to load passengers, or reach the top floor. 

• Loading: The elevator transitions to this state when it 

stops at a floor to load passengers. After loading 

passengers, it can either remain stationary or start 

moving again. 

• Unloading: The elevator transitions to this state when 

it stops at a floor to unload passengers. After unloading 

passengers, it can either remain stationary or start 

moving again. 

Each state represents a particular condition or action of the 

elevator system, and the arrows indicate the possible transitions 

between states. The probabilities of transitioning from one state 

to another would depend on factors such as passenger demand, 

elevator capacity, and system constraints. 

 

Conclusion for AEORL 
In conclusion, the implementation of an Artificial 

Intelligence (AI) operated elevator system presents a promising 

solution to optimize vertical transportation in high-rise 

residential complexes. Through the integration of Model-Free 

Reinforcement Learning (MFRL), particularly the Deep Q-

Networks (DQN) algorithm, we have demonstrated the potential 

to reduce user waiting times and enhance overall efficiency. 

Our analysis has highlighted the importance of considering 

factors such as passenger demand patterns, traffic flow 

dynamics, and elevator states in designing an effective AI-

driven elevator control system. By leveraging the capabilities of 

DQN, our proposed solution adapts dynamically to changing 

environmental conditions, continuously learning and improving 

its decision-making capabilities. 

The experimental results, although not presented in this 

paper, are expected to show improvements in elevator 

performance, reflected in reduced waiting times, smoother 

passenger flow, and optimized energy consumption. These 

enhancements translate into enhanced user satisfaction and 

operational efficiency for residential complexes with high-

density populations. 

Looking ahead, further research and development efforts 

can focus on refining the DQN-based elevator optimization 

system, incorporating additional features such as predictive 

maintenance, destination dispatching, and energy-efficient 

operation. Additionally, real-world deployment and validation 

of the proposed solution will be essential to assess its scalability, 

robustness, and practicality in diverse residential settings. 

In conclusion, the application of AI in elevator operations 

holds immense potential to revolutionize vertical transportation, 

offering tangible benefits in terms of user experience, energy 

efficiency, and operational effectiveness in residential 

complexes and beyond. 
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Figure 1:- System Requirements 

  
Figure 2 :- Markov Chain 

 

REFERENCES 

 
1. Reinforcement Learning: An Introduction (Adaptive Computation 

and Machine Learning series) by Richard S.Sutton (Author), 

Andrew G. Barto (Author) 

2. Foundations of Deep Reinforcement Learning: Theory and Practice 

in Python by Laura Graesser (Author), Wah Loon Keng (Author) 

3. Practical Deep Reinforcement Learning with Python: Concise 

Implementation of Algorithms, Simplified Maths, and Effective 

Use of TensorFlow and PyTorch by Ivan Gridin 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

BIOGRAPHIES  

 

 

 

Mr. Vinod Yadav graduated from 

Amravati University with a degree 

in Electronics and Telecom 

Engineering. Mr. Yadav has done 

Masters in Engineering with 

specialization in Digital 

Electronoics from Sant Gadage 

Baba Amravati University  

With 3 years industrial application. 

Since past 22 years Mr. Yadav is 

associated with SNDT Women’s 

University as a faculty in department 

of Electronics at P V Polytech nic 

his focusing key area are VLSI 

Design, Artificial Intelligence, 

power electronics and electronic 

communication.  

 

 

 

Mr. Bharat Kathe graduated from 

Pune University with a degree in 

Electronics Engineering is pursuing 

Masters in Electronics and 

Telecommunication Engineering 

from Mumbai University. 

Mr. Kathe has experience in the 

Manufacturing Industry as an R and 

D Engineer and as a Field 

Application Engineer. 

For the past 9 years Mr. Kathe is  

teaching various electronics subjects 

including Control System and PLC, 

and Robotics and Automation at a 

prestigious SNDT Women's 

University Mumbai 

Maharashtra India 

 

 

 

Mr. Arvindkumar Mishra have 

completed Master's of Engineering 

in Electronics and 

Telecommunication Engineering 

from University of Mumbai. He has 

a teaching experience of 15 years 

and is presently working as a 

Faculty in Electronics at P V 

Polytechnic. Mr. Mishra is 

instrumental in implementing 

project based learning at P V 

Polytechnic by promoting major and 

minor project implementation of 

diploma students 
 

 

 

 

 

http://www.ijsrem.com/

