
 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 08 Issue: 03 | March - 2024 SJIF Rating: 8.176 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM29598 | Page 1

Artificial Intelligence Operated Elevator using RL (AIOERL)

Vinod H. Yadav1, Bharat L. Kathe2, Arvindkumar R. Mishra3

1Vinod H Yadav P V Polytechnic SNDT Women’s University Mumbai Maharashtra India
2 Bharat L Kathe P V Polytechnic SNDT Women’s University Mumbai Maharashtra India

3 Arvindkumar R Mishra P V Polytechnic SNDT Women’s University Mumbai Maharashtra India

---***---
Abstract - Our paper explores the implementation of an

Artificial Intelligence (AI) operated elevator system aimed at

reducing user waiting times in a residential complex. With two

elevators servicing a 14-story building, each floor

accommodating six flats with approximately four residents per

home, efficiency is paramount. Leveraging AI algorithms, our

system dynamically adjusts elevator operations based on user

demand patterns, traffic flow, and predictive analysis, ensuring

minimal wait times and optimal passenger distribution. By

integrating AI into elevator management, we aim to enhance

user experience and streamline vertical transportation in high-

density residential settings.

Key Words: Artificial Intelligence, elevator optimization,

residential complexes, waiting time reduction, predictive

analysis, passenger distribution, efficiency improvement,

traffic flow management.

INTRODUCTION

The advent of Artificial Intelligence (AI) has revolutionized

various domains, and its application in elevator systems holds
significant promise for enhancing vertical transportation
efficiency in high-rise residential complexes. With the
proliferation of urbanization and the construction of taller
buildings, the demand for efficient elevator operations has
intensified. Our paper delves into the integration of AI
technology to mitigate user waiting times within a residential
complex comprising a 14-story building. With six flats per floor
and an average of four occupants per home, optimizing elevator
operations becomes imperative to ensure smooth passenger flow
and minimal congestion. This introduction outlines the necessity
and potential benefits of employing AI in elevator management
to address the challenges of vertical transportation in densely
populated residential environments.

RL and Model-Free RL
Reinforcement Learning (RL) is a branch of machine

learning concerned with decision-making and control processes.

Unlike supervised learning, where an algorithm learns from

labeled input-output pairs, and unsupervised learning, where the

algorithm discovers patterns in unlabeled data, RL focuses on

learning from interactions with an environment to achieve a

cumulative reward. At the core of RL is the concept of an agent,

which learns to navigate an environment through trial and error,

aiming to maximize its cumulative reward over time.

Model-Free Reinforcement Learning (MFRL) is a subset of

RL that doesn't require knowledge of the environment's

dynamics or transition probabilities. In other words, the agent

learns directly from experiences without explicitly modeling the

environment. MFRL algorithms are particularly useful in

scenarios where the environment is complex, and obtaining a

precise model is difficult or impractical. Instead, these

algorithms focus on learning optimal policies through

exploration and exploitation of the environment's state-action

space.

Exploration of Model-Free Reinforcement Learning Methods:

Various MFRL methods have been developed to tackle

different types of problems, each with its strengths and

weaknesses. Some common MFRL algorithms include Q-

Learning, SARSA (State-Action-Reward-State-Action), Deep

Q-Networks (DQN), and Policy Gradient methods such as

REINFORCE. Each of these approaches has unique

characteristics and is suited to specific types of tasks and

environments.

For the elevator optimization problem described in our

paper, a suitable MFRL method would be Deep Q-Networks

(DQN). DQN is a powerful algorithm that combines Q-learning

with deep neural networks, enabling it to handle large state-

action spaces efficiently. Here are a few reasons why DQN is

preferable for this application:

• Complex State-Action Space: Elevator systems

operate in dynamic environments with multiple floors,

varying passenger demand, and different elevator

states (e.g., idle, moving, loading/unloading). DQN's

ability to approximate the optimal action-values for

large state spaces makes it well-suited for handling the

complexity of elevator control.

• Continuous Learning: Elevator systems are subject to

changing traffic patterns and user preferences,

requiring continuous adaptation to optimize

performance. DQN's iterative learning process allows

the agent to update its policy based on new

experiences, enabling it to adapt to evolving conditions

over time.

• Exploration and Exploitation: Balancing exploration

(trying new actions to discover optimal strategies) and

exploitation (leveraging known information to

maximize rewards) is crucial for elevator optimization.

DQN incorporates epsilon-greedy exploration

strategies, allowing the agent to explore different

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 08 Issue: 03 | March - 2024 SJIF Rating: 8.176 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM29598 | Page 2

actions while gradually shifting towards exploiting

learned policies as it gains experience.

• Scalability and Efficiency: With two elevators serving

a 14-story building with multiple flats on each floor,

scalability and computational efficiency are essential

considerations. DQN's use of deep neural networks

enables it to scale to larger environments while

efficiently approximating Q-values, making it suitable

for real-time elevator control.

Algorithm for AEORL

• State Representation: Define the state space for the

elevator system. This could include information such

as the current floor of each elevator, the direction of

each elevator, the number of passengers in each

elevator, the destination floors of the passengers, and

the waiting time of passengers in the lobby.

• Action Space: Define the action space for the

elevators. Actions could include moving up, moving

down, stopping at a floor, or opening/closing doors.

• Reward Function: Design a reward function that

incentivizes efficient elevator operation. For example,

rewards could be based on minimizing the waiting time

of passengers, minimizing the time taken to reach

destinations, and minimizing energy consumption.

• Q-Network: Implement a deep neural network (DNN)

to approximate the Q-values for state-action pairs. The

input to the network would be the state representation,

and the output would be the Q-values for each possible

action.

• Experience Replay: Implement experience replay to

store and sample past experiences (state, action,

reward, next state) for training the Q-network. This

helps stabilize training and improve sample efficiency.

• Target Q-Network: Use a separate target Q-network

to stabilize training. Periodically update the parameters

of the target network with the parameters of the main

Q-network.

• Epsilon-Greedy Exploration: Implement epsilon-

greedy exploration to balance exploration and

exploitation. With probability epsilon, select a random

action (explore); otherwise, select the action with the

highest Q-value (exploit).

• Training Procedure: Train the Q-network using a

variant of the DQN algorithm such as Double DQN or

Dueling DQN. Use techniques such as gradient descent

to minimize the temporal difference error between the

predicted Q-values and the target Q-values.

• Deployment: Once the Q-network is trained, deploy it

to control the elevators in real-time. At each time step,

use the trained Q-network to select actions for the

elevators based on the current state of the system

.

Python codes for AEORL
import numpy as np

import random

from collections import deque

from keras.models import Sequential

from keras.layers import Dense

from keras.optimizers import Adam

class DQNAgent:

 def __init__(self, state_size, action_size):

 self.state_size = state_size

 self.action_size = action_size

 self.memory = deque(maxlen=2000)

 self.gamma = 0.95 # discount rate

 self.epsilon = 1.0 # exploration rate

 self.epsilon_min = 0.01

 self.epsilon_decay = 0.995

 self.learning_rate = 0.001

 self.model = self._build_model()

 def _build_model(self):

 model = Sequential()

 model.add(Dense(24, input_dim=self.state_size,

activation='relu'))

 model.add(Dense(24, activation='relu'))

 model.add(Dense(self.action_size,

activation='linear'))

 model.compile(loss='mse',

optimizer=Adam(lr=self.learning_rate))

 return model

 def remember(self, state, action, reward, next_state,

done):

 self.memory.append((state, action, reward, next_state,

done))

 def act(self, state):

 if np.random.rand() <= self.epsilon:

 return random.randrange(self.action_size)

 act_values = self.model.predict(state)

 return np.argmax(act_values[0])

 def replay(self, batch_size):

 minibatch = random.sample(self.memory, batch_size)

 for state, action, reward, next_state, done in minibatch:

 target = reward

 if not done:

 target = (reward + self.gamma *

np.amax(self.model.predict(next_state)[0]))

 target_f = self.model.predict(state)

 target_f[0][action] = target

 self.model.fit(state, target_f, epochs=1, verbose=0)

 if self.epsilon > self.epsilon_min:

 self.epsilon *= self.epsilon_decay

Define state and action sizes

state_size = 10 # Example: number of elevator states

action_size = 4 # Example: number of elevator actions (up,

down, stop, open door)

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 08 Issue: 03 | March - 2024 SJIF Rating: 8.176 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM29598 | Page 3

Initialize DQN agent

agent = DQNAgent(state_size, action_size)

Training loop

for episode in range(num_episodes):

 state = env.reset() # Reset environment to initial state

 for time in range(max_timesteps):

 action = agent.act(state) # Choose action based on

current state

 next_state, reward, done, _ = env.step(action) # Take

action and observe next state and reward

 agent.remember(state, action, reward, next_state,

done) # Store experience in replay buffer

 state = next_state # Update current state

 if done: # If episode is done, exit loop

 break

 if len(agent.memory) > batch_size: # Start training if

enough experiences are accumulated

 agent.replay(batch_size).

System Requirement for AEORL
This block diagram outlines the key hardware components

of an AI-operated elevator system:

1. Central Control System:

• Hosts AI algorithms, decision logic, and data

processing units.

• Manages communication and networking

interfaces.

• Handles data storage, analytics, and

optimization algorithms.

2. Elevator Controllers:

• Includes sensors for detecting passengers,

elevator movement, and door status.

• Actuators control elevator motors, door

mechanisms, and other functions.

3. Building Infrastructure:

• Comprises elevator cars, shafts, hoistways,

and lobby areas.

• Provides the physical framework for elevator

operation.

These components work together to enable the AI-operated

elevator system to efficiently manage passenger traffic,

optimize elevator operations, and provide a seamless vertical

transportation experience within the building.

Markov Chain for AEORL
In this Markov chain diagram:

• Idle: The initial state of the elevator when it's not in

motion and waiting for passengers or instructions.

• Moving Up: The elevator transitions to this state when

it receives a command to move upward. From this

state, it can continue moving up, change direction, stop

at a floor to load passengers, or reach the top floor.

• Loading: The elevator transitions to this state when it

stops at a floor to load passengers. After loading

passengers, it can either remain stationary or start

moving again.

• Unloading: The elevator transitions to this state when

it stops at a floor to unload passengers. After unloading

passengers, it can either remain stationary or start

moving again.

Each state represents a particular condition or action of the

elevator system, and the arrows indicate the possible transitions

between states. The probabilities of transitioning from one state

to another would depend on factors such as passenger demand,

elevator capacity, and system constraints.

Conclusion for AEORL
In conclusion, the implementation of an Artificial

Intelligence (AI) operated elevator system presents a promising

solution to optimize vertical transportation in high-rise

residential complexes. Through the integration of Model-Free

Reinforcement Learning (MFRL), particularly the Deep Q-

Networks (DQN) algorithm, we have demonstrated the potential

to reduce user waiting times and enhance overall efficiency.

Our analysis has highlighted the importance of considering

factors such as passenger demand patterns, traffic flow

dynamics, and elevator states in designing an effective AI-

driven elevator control system. By leveraging the capabilities of

DQN, our proposed solution adapts dynamically to changing

environmental conditions, continuously learning and improving

its decision-making capabilities.

The experimental results, although not presented in this

paper, are expected to show improvements in elevator

performance, reflected in reduced waiting times, smoother

passenger flow, and optimized energy consumption. These

enhancements translate into enhanced user satisfaction and

operational efficiency for residential complexes with high-

density populations.

Looking ahead, further research and development efforts

can focus on refining the DQN-based elevator optimization

system, incorporating additional features such as predictive

maintenance, destination dispatching, and energy-efficient

operation. Additionally, real-world deployment and validation

of the proposed solution will be essential to assess its scalability,

robustness, and practicality in diverse residential settings.

In conclusion, the application of AI in elevator operations

holds immense potential to revolutionize vertical transportation,

offering tangible benefits in terms of user experience, energy

efficiency, and operational effectiveness in residential

complexes and beyond.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 08 Issue: 03 | March - 2024 SJIF Rating: 8.176 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM29598 | Page 4

.

Figure 1:- System Requirements

Figure 2 :- Markov Chain

REFERENCES

1. Reinforcement Learning: An Introduction (Adaptive Computation

and Machine Learning series) by Richard S.Sutton (Author),

Andrew G. Barto (Author)

2. Foundations of Deep Reinforcement Learning: Theory and Practice

in Python by Laura Graesser (Author), Wah Loon Keng (Author)

3. Practical Deep Reinforcement Learning with Python: Concise

Implementation of Algorithms, Simplified Maths, and Effective

Use of TensorFlow and PyTorch by Ivan Gridin

BIOGRAPHIES

Mr. Vinod Yadav graduated from

Amravati University with a degree

in Electronics and Telecom

Engineering. Mr. Yadav has done

Masters in Engineering with

specialization in Digital

Electronoics from Sant Gadage

Baba Amravati University

With 3 years industrial application.

Since past 22 years Mr. Yadav is

associated with SNDT Women’s

University as a faculty in department

of Electronics at P V Polytech nic

his focusing key area are VLSI

Design, Artificial Intelligence,

power electronics and electronic

communication.

Mr. Bharat Kathe graduated from

Pune University with a degree in

Electronics Engineering is pursuing

Masters in Electronics and

Telecommunication Engineering

from Mumbai University.

Mr. Kathe has experience in the

Manufacturing Industry as an R and

D Engineer and as a Field

Application Engineer.

For the past 9 years Mr. Kathe is

teaching various electronics subjects

including Control System and PLC,

and Robotics and Automation at a

prestigious SNDT Women's

University Mumbai

Maharashtra India

Mr. Arvindkumar Mishra have

completed Master's of Engineering

in Electronics and

Telecommunication Engineering

from University of Mumbai. He has

a teaching experience of 15 years

and is presently working as a

Faculty in Electronics at P V

Polytechnic. Mr. Mishra is

instrumental in implementing

project based learning at P V

Polytechnic by promoting major and

minor project implementation of

diploma students

http://www.ijsrem.com/

