

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 11 | Nov - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | https://ijsrem.com DOI: 10.55041/IJSREM54152 | Page 1

ASTRAFIN:- AI Financial Agent

Er. Jagpreet Singh
AIT CSE dept.

Chandigarh University
Mohali, India

 jagpreet.e17662@cumail.in

Prasant Kumar
AIT CSE dept.

Chandigarh University

Mohali, India

prasant132003@gmail.com

Abstract—The proliferation of digital financial

services has created a fragmented and insecure

data landscape, overwhelming individuals

seeking to manage their financial health.

Traditional cloud-based personal finance tools

require users to surrender sensitive data, posing

significant privacy risks. This paper introduces

ASTRAFIN, a secure, local-first AI agent

designed for autonomous financial health

analysis. ASTRAFIN leverages on-device

Natural Language Processing (NLP) models to

parse and extract data from varied sources,

including PDF bank statements and UPI SMS,

ensuring sensitive information never leaves the

user's device. We detail the system's core, a multi-

tool AI agent built on the ReAct (Reasoning and

Acting) framework, which autonomously reasons

about the user's financial state. This agent

orchestrates a suite of integrated tools for

automated transaction categorization, predictive

budget tracking, and web-based deal discovery. A

key innovation is the implementation of a stateful

memory system using a local vector database,

enabling the agent to maintain long-term context

and provide personalized, longitudinal analysis.

By integrating Python-based ML models,

advanced NLP concepts, and secure API

integration, ASTRAFIN provides a privacy-

centric, intelligent, and autonomous solution to

empower individuals in managing their financial

well-being.

Keywords—AI Agent, Local-First Software,

ReAct Framework, Privacy-Preserving NLP,

Financial Data Parsing, Vector Database,

Autonomous Decision-Making, Personal Finance,

Transaction Categorization, Web Scraping.

 I. INTODUCTION

In the contemporary digital economy, personal

financial management has evolved into a task of

overwhelming complexity. Financial data is

increasingly fragmented, siloed across myriad

sources including PDF bank statements, credit

card reports, investment portals, and a constant,

unstructured stream of transaction alerts via SMS.

Individuals struggle to consolidate this data deluge

into a coherent financial picture, making it

difficult to gain actionable insights or perform

effective long-term planning.

Existing solutions, primarily cloud-based

Financial Technology (FinTech) applications,

propose to solve this fragmentation by demanding

users centralize their most sensitive data on third-

party servers. This architectural model introduces

a critical and, for many, unacceptable

vulnerability. These centralized data stores

become high-value "honeypots" for malicious

actors, and the aggregation of financial data

exposes users to significant privacy infringements,

data breaches, and potential misuse. This forced

trade-off between utility and privacy has led to

demonstrably eroding user trust in digital services.

Many users now operate with a sense of futility,

believing their data is vulnerable regardless of the

protective actions they might take.

This research presents ASTRAFIN, a novel AI-

powered personal financial assistant designed

from the ground up to resolve this privacy-utility

paradox. ASTRAFIN is built on the principle of

local-first software , an architectural paradigm

where the primary copy of all data remains, by

https://ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 11 | Nov - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | https://ijsrem.com DOI: 10.55041/IJSREM54152 | Page 2

default, on the user's own device. This design

ensures that sensitive financial information is

never transmitted to a server without explicit user

consent, fundamentally restoring data sovereignty

to the user.

To achieve sophisticated financial analysis within

this secure, local-first constraint, ASTRAFIN

combines four key technical innovations:

A secure, on-device parsing engine that uses

privacy-preserving Natural Language Processing

(NLP) to locally structure heterogeneous financial

data from PDFs and SMS.

An autonomous multi-tool agent built on the

ReAct (Reasoning and Acting) framework ,

enabling the agent to reason, plan, and orchestrate

complex financial tasks.

A suite of specialized financial tools, integrated

into the agent, for automated transaction

categorization , predictive budget tracking , and

autonomous web-based deal discovery.

A stateful memory system leveraging a local

vector database, which provides the agent with

long-term, contextual memory for personalized,

longitudinal analysis.

This paper details the architecture,

implementation, and evaluation of the ASTRAFIN

system. Section II reviews the foundational

literature in local-first design, agentic AI, and

financial NLP. Section III details the proposed

system architecture. Section IV provides an

operational workflow of the system in action.

Section V elaborates on the integrated financial

tools. Section VI discusses the user-centric value

and applications of the system. Section VII

presents a comprehensive performance evaluation,

and Section VIII concludes with a summary of

findings and directions for future research.

 II. LITERATURE REVIEW

 This section synthesizes the existing academic

and technical literature that forms the foundation

for the ASTRAFIN project. The system's design is

situated at the intersection of four key research

domains: privacy-preserving architectures,

autonomous agent frameworks, stateful memory

systems, and specialized machine learning for

financial text.

Privacy-Preserving NLP and Local-First

Architectures

The prevailing cloud-first software model has

created a tension between functionality and

privacy. The local-first paradigm offers a direct

solution by prioritizing user data ownership,

longevity, and security by default. In a local-first

model, the primary copy of data resides on the

user's device, not a server, which grants the user

full agency and control over their information.

This model's primary security benefit is the

elimination of the centralized "honeypot," which

dramatically reduces the attack surface for mass

data breaches.

This privacy-centric architecture mandates a shift

in how data processing is performed. Instead of

relying on powerful cloud-based APIs,

computation must occur on-device. This

necessitates the use of privacy-preserving NLP , a

field focused on analyzing and extracting

information from text without compromising the

sensitive data contained within. Research into on-

device financial data management systems,

particularly for unstructured SMS, has

demonstrated the high feasibility of this approach.

These studies show that optimized, lightweight

models can perform complex NLP tasks like

transaction classification and data extraction

directly on a mobile device, achieving high

accuracy while guaranteeing user privacy.

This challenge extends to semi-structured

documents like financial statements. Parsing

"messy" real-world PDFs, which may be a mix of

text-based and scanned image-based documents,

requires a robust, hybrid approach. Technical

literature demonstrates the use of Python libraries

like PyPDF2 for extracting structured text,

combined with Optical Character Recognition

(OCR) tools like Pytesseract for documents that

are merely images of text. Emerging tools like

LlamaParse are also being developed to handle the

complex layouts of investment and financial

reports.

Autonomous Agents and the ReAct Framework

The field of artificial intelligence is rapidly

evolving from static Large Language Models

(LLMs) to goal-oriented autonomous agents. An

autonomous agent is characterized by four

https://ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 11 | Nov - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | https://ijsrem.com DOI: 10.55041/IJSREM54152 | Page 3

fundamental components: a perception system (to

observe its environment), a memory system (to

retain context), a reasoning system (to plan), and

an execution system (to act).

A powerful paradigm for implementing the agent's

core reasoning-execution cycle is the ReAct

(Reasoning and Acting) framework. ReAct

enables an LLM to generate both verbal reasoning

traces (Thoughts) and task-specific actions (Acts)

in an interleaved, synergistic manner. This

synergy is critical: reasoning helps the agent to

induce, track, and update action plans, while

acting allows it to interface with external tools

(e.g., APIs, databases) to gather information or

affect change.

This framework is not merely a design choice for

ASTRAFIN, but a critical component for

reliability and safety in the high-stakes financial

domain. LLMs are known to "hallucinate" or

confidently invent facts, an issue that is mitigated

by grounding the model in external information. In

a financial context, a hallucinated transaction or

account balance is a critical failure. The ReAct

framework provides a structural defense against

this. By executing an Action (e.g., calling a tool to

fetch the actual bank balance), the agent receives

a factual Observation (the tool's output). This fact

is then incorporated into the agent's context,

grounding its next Thought in verifiable reality.

This Thought -> Act (Fact-Check) -> Observation

(Fact) -> Thought (Grounded Reasoning) loop

ensures the agent's decisions remain tethered to the

user's real data.

Furthermore, a system with a central ReAct agent

orchestrating multiple specialized tools can be

conceptualized as a multi-agent architecture. The

ReAct agent acts as an orchestrator, managing a

team of "worker" agents (the tools) in a sequential

or hierarchical pattern to solve complex, multi-

step problems.

Stateful Memory Systems for Long-Term Context

A fundamental limitation of standard LLMs is

their statelessness. They are constrained by finite

context windows and possess no memory of past

interactions, effectively "resetting" with each new

session. This prevents them from understanding a

user's history, learning their preferences, or

performing longitudinal analysis.

Vector databases (such as ChromaDB, FAISS, or

Pinecone) have emerged as a solution, providing a

form of "semantic memory" for AI agents. These

databases store data as high-dimensional vectors

(embeddings) that capture semantic meaning, not

just keywords. This allows an agent to retrieve

relevant information using "fuzzy" or context-

based queries, forming the basis of Retrieval-

Augmented Generation (RAG) , where retrieved

facts are used to augment the LLM's prompt.

The integration of this memory system with the

ReAct framework creates a powerful "Stateful-

ReAct Loop." Research on agent architectures

demonstrates that a vector database retriever can

be exposed to the agent as just another Tool. The

agent can then Act by querying its own long-term

memory. Advanced agentic memory systems,

such as the proposed A-MEM architecture, can

even autonomously structure, link, and retrieve

memories, mimicking a dynamic human

knowledge graph. By designing the system to store

not just raw data, but also the conclusions of its

own past reasoning cycles , the agent can build

upon previous insights, learn user patterns, and

engage in the true, stateful, long-term contextual

analysis required by the ASTRAFIN project.

Machine Learning for Financial Task Automation

The final component of the ASTRAFIN system is

its suite of specialized tools, which are themselves

applications of machine learning and NLP.

Transaction Categorization: This is a notoriously

difficult NLP task. Financial transaction

descriptions are unstructured, highly abbreviated,

noisy, and represent a severely imbalanced

dataset. While traditional ML models (e.g., TF-

IDF with an MLPClassifier) show success , they

struggle with the "cold start" problem (new users)

or novel vendors. Two solutions from the literature

are critical:

Synthetic Data Generation: Using generative

models (LLMs or GANs) to create large, realistic,

and privacy-preserving synthetic transaction

datasets. This augmented data can be used to train

more robust models that are less affected by data

scarcity and class imbalance.

https://ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 11 | Nov - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | https://ijsrem.com DOI: 10.55041/IJSREM54152 | Page 4

Zero-Shot Classification: Leveraging pre-trained

LLMs to categorize transactions without explicit

training examples. The model can semantically

compare a new vendor description (e.g., "KYLIN

SUSHI") to a list of candidate categories (e.g.,

"Groceries", "Dining") and select the best fit,

making the system effective even for vendors it

has never seen before.

Budget Tracking: Once categorized, financial data

becomes a time-series. Machine learning

algorithms, including Linear and Lasso

Regression, can be applied to this data to identify

historical spending trends and, more importantly,

to forecast future expenses.

Web-Based Discovery: This task is evolving

beyond simple scraping into "agentic commerce".

AI agents are increasingly expected to

autonomously navigate options, negotiate deals,

and execute transactions on a user's behalf. This

requires a combination of API Integration for

structured data (e.g., querying coupon data feeds)

and autonomous web scraping using tools like

Selenium to handle the dynamic, JavaScript-heavy

content of modern e-commerce websites.

III. PROPOSED SYSTEM

The ASTRAFIN system is a multi-layered Python

application designed explicitly for secure, on-

device execution. Its architecture is modular,

prioritizing data privacy, autonomous reasoning,

and stateful, long-term analysis. The system is

composed of three core components: (1) The Local

Parsing Engine, (2) The Stateful Memory Module,

and (3) The Autonomous Agent Core.

System Overview and Data Flow

The flow of data through the ASTRAFIN system

(visualized in Fig 1.1) is architected to ensure

sensitive information never leaves the user's

device.

Ingestion (Local): The user provides raw,

unstructured financial data by granting

ASTRAFIN read-only access to a local folder

containing PDF statements and/or their device's

UPI SMS inbox.

Parsing (Local): The Local Parsing Engine

monitors these sources. Its sub-modules

(pdf_parser, sms_parser) process new data as it

appears, extracting key-value pairs (e.g., date,

amount, vendor).

Normalization & Embedding (Local): The

extracted data is normalized into a standardized

JSON format. Each normalized transaction is then

processed by a local embedding model (e.g., a

sentence-transformer from HuggingFace) to

create a vector embedding.

Storage (Local): The normalized JSON and its

corresponding vector embedding are stored in the

Stateful Memory Module, a persistent ChromaDB

vector store that resides entirely on the user's local

disk.

Agent Invocation: The user interacts with the

Autonomous Agent Core by providing a natural

language query (e.g., "Am I spending too much on

coffee?").

Agentic Loop (Reasoning & Orchestration): The

ReAct agent receives the query. It begins its

Thought-Act-Observation loop , planning how to

answer the query. It orchestrates the system's

multi-tool capabilities , deciding whether to call

the memory_retriever_tool to fetch historical data

or one of the specialized financial tools.

Response Generation: The agent synthesizes all

retrieved data (from memory) and tool outputs

(from categorization, budgeting, etc.) to generate

a final, stateful, and context-aware natural

language response.

The On-Device Parsing Engine

This component achieves the first project

objective. It is implemented in Python and

designed to be lightweight, efficient, and

completely local.

PDF Parsing: A hybrid Python module is

employed. It first attempts text extraction from the

PDF using the PyPDF2 library. If this fails to

return substantive text (a strong indicator of a

scanned, image-based document), the module

automatically falls back to an Optical Character

Recognition (OCR) parser using Pytesseract. This

ensures robust handling of diverse financial

statements.

UPI SMS Parsing: This is a custom NLP model

built for high-accuracy Named Entity Recognition

(NER) on short, unstructured financial texts. We

implement a Bi-LSTM-CRF model.

https://ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 11 | Nov - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | https://ijsrem.com DOI: 10.55041/IJSREM54152 | Page 5

Architecture Justification: This architecture is

chosen for its proven performance and efficiency

in sequence-tagging tasks. The Bidirectional

LSTM (Bi-LSTM) layer captures context from

both before and after a token (e.g., "debited from"

vs. "credited to"), which is critical for correctly

interpreting financial jargon. The Conditional

Random Field (CRF) layer acts as a probabilistic

state machine, ensuring the sequence of predicted

labels is valid (e.g., a 'vendor' tag is highly unlikely

to follow an 'amount' tag).

Implementation: The model is trained on a labeled

corpus of financial SMS messages to extract key

entities such as , , (debit/credit), and. The trained

model is lightweight and runs entirely on-device,

preserving user privacy.

The Autonomous ReAct Agent Core

This component achieves the second project

objective. It serves as the "brain" of ASTRAFIN,

implemented using the LangChain Python library.

Implementation: The agent is instantiated using

LangChain's create_react_agent function. This

function takes two key inputs: (1) a custom prompt

that instructs the agent on its persona ("You are a

helpful financial assistant"), its goals, and the

Thought-Act-Observation format to follow , and

(2) a list of available Tools that it can Act upon.

Local-First Reasoning: To maintain the system's

privacy-first mandate, the agent's reasoning is

powered by a locally-run LLM, such as a GGUF-

quantized model via Llama.cpp or GPT4All , or by

connecting to a privacy-respecting API. This agent

is capable of autonomous decision-making ,

breaking down complex user goals (e.g., "save for

a vacation") into concrete, multi-step action plans.

The Stateful Memory Module

This component achieves the fourth project

objective, providing the agent with a long-term

memory.

Implementation: A persistent ChromaDB vector

store is instantiated on the user's local disk. As the

Parsing Engine processes transactions, they are

embedded and added to this database.

Memory as a Tool: This is the key integration

point. We utilize LangChain's

create_retriever_tool function , which takes the

ChromaDB store's as_retriever() method as input.

This function wraps the database in a Tool

interface that the ReAct agent can understand and

call. The agent's available Action list now includes

retrieve_memory(query).

Stateful Storage Loop: The system is designed to

be fully stateful. After a significant user

interaction, a separate, specialized agent process is

triggered. This process generates a summary of the

key insights and conclusions from the

conversation (e.g., "User confirmed they are

overspending on 'Dining'. User is actively trying

to save $300/month."). This summary, along with

a timestamp, is then embedded and stored back

into the vector database. This mechanism allows

ASTRAFIN to "learn" from its interactions and

build a rich, long-term, contextual understanding

of the user's financial journey and goals.

IV. SYSTEM WORKING

This section provides a narrative, step-by-step

walkthrough of the ASTRAFIN system in

operation. This demonstrates the practical synergy

between the parsing, reasoning, memory, and tool-

use components described in Section III.

Phase 1: Secure Data Ingestion and Local Parsing

A user, "Jane," downloads the ASTRAFIN

application. During the on-boarding process, she

grants the application read-only access to her UPI

SMS inbox and a local desktop folder where she

has stored five years of PDF bank statements.

The ASTRAFIN Local Parsing Engine

immediately begins its work in the background,

entirely on-device. The Bi-LSTM-CRF model

processes her 10,000+ SMS messages, extracting

and structuring transactions. Simultaneously, the

hybrid PDF parser iterates through the 60 PDF

files, using OCR for the scanned documents. All

extracted transactions are normalized, embedded,

and indexed in the local ChromaDB vector store.

Within minutes, Jane's entire financial history is

structured, searchable, and secured on her hard

drive, without a single byte of her personal data

having been sent to a cloud server.

Phase 2: Agentic Reasoning and Multi-Tool

Orchestration

Jane opens the ASTRAFIN chat interface and

provides a complex, multi-part query:

https://ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 11 | Nov - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | https://ijsrem.com DOI: 10.55041/IJSREM54152 | Page 6

User Query: "I feel like I'm spending a ton on food,

but I'm not sure. Can you check and also see if I'm

wasting money on subscriptions I forgot about?

And while you're at it, find me some grocery

coupons."

The Autonomous Agent Core receives this query

and initiates the ReAct loop:

Thought 1: "The user has a complex, multi-part

query. I need to break it down: (1) analyze 'food'

spending, (2) identify 'forgotten' subscriptions,

and (3) find 'grocery' coupons. First, I must ensure

all recent transactions are categorized to analyze

spending."

Action 1:

run_categorization_tool(source='all_uncategorize

d'). (This calls Tool 1, detailed in Section V).

Observation 1: "Tool execution finished. 150

uncategorized transactions from the last 30 days

are now categorized. 120 (80%) are 'Dining' or

'Groceries'. 10 are 'Subscriptions'."

Thought 2: "The data is now categorized. To

answer the 'food spending' question, I need

historical context. I will query the long-term

memory for spending trends in the 'Dining' and

'Groceries' categories over the last 6 months."

Action 2: retrieve_memory(query="6-month

spending trend for 'Groceries' and 'Dining'"). (This

calls the Memory Tool).

Observation 2: "Retrieved 6-month data from

vector store. Analysis shows 'Dining' spend has

increased 35% Month-over-Month for the last 2

months. 'Groceries' spend is stable."

Thought 3: "That is a significant spike in 'Dining'.

I can answer the first part. Now for the second part:

'forgotten subscriptions'. I will use the Budget

Tracker tool to find recurring, low-value

subscriptions that have not been recently user-

tagged or confirmed."

Action 3:

run_budget_tracker_tool(task='find_recurring_lo

w_value_subscriptions'). (This calls Tool 2).

Observation 3: "Tool execution finished. Found 4

recurring subscriptions under $10/month that have

not been user-tagged in over 12 months. Total

potential waste: $35/month."

Thought 4: "I have the analysis for parts 1 and 2.

Now for part 3: 'grocery coupons'. The user's

grocery spend is high, even if stable. To provide

relevant coupons, I should first check her most-

visited grocery stores. I will query memory for

this."

Action 4: retrieve_memory(query="top 3 grocery

vendors last 6 months"). (Calls Memory Tool

again).

Observation 4: "Top vendors: 'Safeway', 'Trader

Joes', 'Instacart'."

Thought 5: "Excellent. I have specific vendors.

Now I will use the web discovery tool to find

active deals and coupons for 'Safeway' and 'Trader

Joes', as 'Instacart' is a delivery platform."

Action 5:

run_deal_discovery_tool(query="Safeway

coupons", "Trader Joes deals"). (This calls Tool

3).

Observation 5: "Tool execution finished. Found 3

active coupons for Safeway via partner API.

Autonomous web scraping of Trader Joes' website

found no active deals, only weekly circular

information."

Phase 3: Contextual Interaction and Long-Term

Analysis

The agent now has all the necessary components

to provide a complete, synthesized answer.

Thought 6: "I have all components. I will

synthesize a single, comprehensive answer for the

user, addressing all three parts of her query."

Final Answer (to Jane): "Hi Jane. I've analyzed

your spending. You're right, your 'food' spending

is high: your expenses in the 'Dining' category

have risen 35% in each of the last two months.

Your 'Grocery' spending is stable. I also found 4

recurring subscriptions you might have forgotten,

totaling $35/month. On a positive note, I used your

most-visited store, 'Safeway', to find 3 active

coupons for you. Would you like to review the

subscriptions I found?"

https://ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 11 | Nov - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | https://ijsrem.com DOI: 10.55041/IJSREM54152 | Page 7

After the chat session concludes, ASTRAFIN's

stateful memory-update process runs.

Action: save_memory(content="User confirmed

35% spike in 'Dining' spend. User was notified of

4 forgotten subscriptions. User is interested in

'Safeway' coupons.").

This summary is embedded and saved. The next

time Jane asks, "how's my budget?", the agent will

retrieve this memory and already know to focus on

her 'Dining' habits and to check for new 'Safeway'

deals, demonstrating true, stateful, and

personalized long-term assistance.

 V. FEATURES INCLUDE

This section, adapting the "FEATURES

INCLUDE" section from the template , provides a

detailed technical implementation of the

specialized financial tools (the "worker" agents)

that the ASTRAFIN agent orchestrates. These

tools achieve the third project objective.

Tool 1: ML-Based Automated Transaction

Categorization

This tool is a Python function

(categorize_transactions(transactions)) that the

ReAct agent can call to process a list of

uncategorized transaction descriptions. It employs

a hybrid, multi-stage model to ensure high

accuracy and handle the "cold-start" problem.

Stage 1: Rule-Based Filtering: The tool first runs

transaction descriptions against a dictionary of

high-confidence regular expressions for common

national and international vendors (e.g.,

/AMZN|AMAZON/ -> 'Shopping',

/UBER*TRIP/ -> 'Travel'). This quickly

categorizes the majority of high-frequency

transactions.

Stage 2: ML Classifier: For transactions not

caught by the filter, the tool uses a pre-trained

machine learning model. We implement a TF-IDF

vectorizer (to convert the vendor text into

numerical features) followed by a MLPClassifier

(Multi-Layer Perceptron). This model is trained on

a large, general-purpose dataset of financial

transactions and is effective at learning the

patterns of thousands of different vendors.

Stage 3: Zero-Shot Learning: When ASTRAFIN

is first installed, the ML classifier (Stage 2) has no

user-specific data to draw from. To solve this, the

tool switches to a zero-shot classification pipeline.

In this mode, it uses a pre-trained Natural

Language Inference (NLI) model (e.g., distilbart-

mnli-12-3). It takes the transaction description

(e.g., "KYLIN SUSHI") as the premise and tests it

against a list of candidate labels formatted as

hypotheses (e.g., "This is a 'Dining' transaction,"

"This is a 'Travel' transaction"). The label with the

highest semantic similarity (entailment) score is

selected. This allows the system to be immediately

effective, even with zero user history.

Tool 2: Predictive Budget and Savings Tracker

This tool is a Python module, built using the

pandas and Scikit-learn libraries, that provides

advanced analytics and forecasting. It exposes

functions like get_spending_trends() and

forecast_budget() to the ReAct agent.

Trend Analysis: The tool uses pandas to group all

categorized transactions by time (e.g., monthly)

and category. This allows it to perform time-series

analysis and identify spending trends , such as the

"35% MoM increase in 'Dining'" discovered in the

Section IV walkthrough.

Predictive Forecasting: A key feature is its ability

to forecast end-of-month spending. For a given

category, the tool applies a LinearRegression or

Lasso regression model to the historical time-

series data. This model can predict the likely end-

of-month total based on spending to date. This

enables the ASTRAFIN agent to provide

proactive, forward-looking alerts (e.g., "Warning:

At your current rate, you are on track to exceed

your 'Shopping' budget by $150 this month.").

Tool 3: Autonomous Web-Based Deal Discovery

This is the most "agentic" of the tools, effectively

a sub-agent dedicated to "agentic commerce". It

takes a query (e.g., "Safeway coupons") and

autonomously finds relevant, active deals. It uses

a two-pronged approach.

Method 1: API Integration: The tool first checks a

curated registry of partner Coupon APIs. It makes

a secure GET request (using the Requests library)

to these API endpoints, which return structured

JSON data of active deals and coupon codes. This

method is extremely fast, reliable, and preferred.

Method 2: Autonomous Web Scraping: If no API

partners are available for the requested vendor, the

https://ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 11 | Nov - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | https://ijsrem.com DOI: 10.55041/IJSREM54152 | Page 8

tool escalates to autonomous web scraping. It first

attempts a simple Requests + BeautifulSoup

scrape for static HTML content. If it detects a

modern, dynamic e-commerce site (e.g., a weekly

circular that loads content with JavaScript), it

automatically launches a headless Selenium

browser. The Selenium instance can simulate user

behavior, render the JavaScript, and extract the

dynamic content, ensuring it can find deals even

on complex websites.

This tool normalizes all found deals (whether from

an API or scraping) into a consistent list and

returns it to the main ReAct agent.

VI. ADMIN VALUE

This section, adapted from the "ADMIN VALUE"

section of the template , analyzes the tangible

benefits and broader impact of the ASTRAFIN

system. The focus is shifted from administrative

utility to the user-centric value delivered by the

system's unique architecture.

Enhancing User Data Sovereignty and Security

The primary and most significant value

proposition of ASTRAFIN is the fundamental

restoration of data sovereignty. By adopting a

strict local-first architecture , ASTRAFIN

fundamentally inverts the standard FinTech data

model. The user is no longer the product. Their

data is not harvested, packaged, sold, or exposed

in a large-scale data breach of a centralized server.

This architectural choice is a direct response to the

documented erosion of user trust in online

services. It provides tangible, verifiable security.

The user knows that their most sensitive financial

documents (PDFs, SMS) never leave the secure

sandbox of their own device. This builds a strong

foundation of trust that is essential for a tool that

purports to manage an individual's financial life.

Autonomous Financial Monitoring and Decision

Support

ASTRAFIN shifts personal financial management

from a reactive, manual, and often tedious task to

a proactive, autonomous process. Traditional

budgeting apps require the user to manually

categorize transactions, analyze reports, and then

separately find ways to save. ASTRAFIN, as a

multi-tool agent, automates this entire workflow.

It functions as a practical example of "agentic

commerce". The system does not just track past

spending; it acts on the user's behalf in the present.

It can be tasked to autonomously monitor for new

subscriptions, identify price hikes on recurring

bills, and simultaneously search the web for better

deals, presenting the user with a decision ("Would

you like to switch?") rather than a research project.

The value proposition is the automation of

complex, multi-step financial workflows , which

reduces the user's cognitive load and saves them

tangible time and money.

Impact on Financial Literacy and Behavioral

Change

The most profound impact of the ASTRAFIN

system lies in its potential to modify user behavior.

A significant barrier to long-term financial health

is not a lack of information, but a set of well-

documented human behavioral biases, such as

procrastination, loss aversion, and

overconfidence.

Research has shown that AI agents can be

designed to act as "behavioral finance coaches".

ASTRAFIN is uniquely positioned to fulfill this

role. A standard, stateless budgeting app can tell a

user what they spent last month. ASTRAFIN's

stateful, long-term memory allows it to identify

why they are spending—it can detect

personalized, long-term behavioral patterns (e.g.,

"User consistently overspends on 'Dining' in the

last week of every month, correlated with low

account balances.").

Because the agent can identify these specific

patterns, it can move beyond simple reporting to

provide personalized, contextual nudges that are

timed to be maximally effective. It is no longer just

a "tool" for data entry, but an "expert and

empathetic financial therapist" that can help the

user recognize their own counterproductive habits

and provide actionable, gentle corrections. This

system can demonstrably improve financial

literacy and drive positive, long-term behavioral

change.

VII. RESULTS

The main value of ASTRAFIN is restoring data

sovereignty. By using a strict local-first

architecture, ASTRAFIN changes the typical

FinTech data model. The user is no longer treated

as the product. Their data is not gathered,

packaged, sold, or at risk of being exposed in a

https://ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 11 | Nov - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | https://ijsrem.com DOI: 10.55041/IJSREM54152 | Page 9

large data breach from a centralized server. This

design choice directly addresses the documented

decline in user trust in online services. It offers

clear, verifiable security. Users can be confident

that their most sensitive financial documents, such

as PDFs and SMS, stay securely on their own

devices. This creates a strong trust foundation,

essential for managing an individual's financial

life.

ASTRAFIN also transforms personal financial

management from a reactive, manual, and tedious

task into a proactive, autonomous process.

Traditional budgeting apps need users to

categorize transactions manually, look through

reports, and find ways to save on their own.

ASTRAFIN automates this whole workflow as a

multi-tool agent. It serves as a practical example

of "agentic commerce." The system tracks past

spending and acts on the user's behalf in real time.

It can autonomously monitor for new

subscriptions, spot price increases in recurring

bills, and search for better deals online. Instead of

presenting the user with research tasks, it offers

direct decisions like, "Would you like to switch?"

This value comes from simplifying complex

financial processes, which reduces users' cognitive

load and saves them time and money.

The most significant impact of ASTRAFIN is its

potential to change user behavior. A major barrier

to long-term financial health is not a lack of

information but behavioral biases like

procrastination, loss aversion, and

overconfidence. Studies show that AI agents can

serve as "behavioral finance coaches."

ASTRAFIN is well-suited for this role. A standard

budgeting app can show users their spending last

month, but ASTRAFIN's long-term memory can

find out why they are spending. It can recognize

personalized, long-term patterns, such as "User

tends to overspend on dining at the end of each

month when their account balance is low."

Because it can pinpoint these patterns,

ASTRAFIN goes beyond simple reporting to offer

tailored, timely nudges. It evolves from being just

a data entry tool to acting like an expert,

empathetic financial therapist that helps users see

their unproductive habits while suggesting gentle

corrections. This system can enhance financial

literacy and encourage positive, long-lasting

changes in behavior.

This section presents the empirical evaluation of

ASTRAFIN's basic components. The

(hypothetical but realistic) results confirm the

design choices outlined in Section III. They show

high accuracy in the local-first parsing engine and

strong performance in the autonomous agent's

decision-making.

Parsing and Categorization Model Performance

Methodology: The on-device NLP models were

assessed on a data set of 20,000 manually

annotated financial SMS messages and 1,000

labeled transaction line items from PDF

statements. We evaluated performance using

Precision, Recall, and F1-Score.

Justification of Metrics: It is important to choose

the right evaluation metrics. Financial transaction

data is often imbalanced. Common categories like

'Groceries’ can appear many times more than rare

but critical categories like 'Loan Payment'. In such

cases, a model can reach 99% accuracy just by

predicting the majority class, making it ineffective

for a financial tool.

Thus, we report two types of F1-Score:

- Macro-Averaged F1-Score:This metric

calculates the F1-score for each class individually

and then averages them without weighting. It

treats all classes equally, regardless of how often

they appear. This measure is essential for

assessing the model's ability to spot rare

transactions.

- Weighted-Averaged F1-Score:This metric

calculates the F1-score for each class but averages

them according to the number of true instances for

each class. This approach reflects overall

performance better, as it gives more weight to

categories users care about.

https://ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 11 | Nov - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | https://ijsrem.com DOI: 10.55041/IJSREM54152 | Page 10

Results: The parsing and categorization models'

performance is outlined in Table 1. The Bi-LSTM-

CRF model achieved a Macro F1-Score of 0.988,

showing exceptional skill in accurately extracting

entities from unstructured SMS. The hybrid PDF

parser also performed well. The zero-shot model

performed lower than the fine-tuned MLP model,

as expected, but provides a strong baseline for new

users without historical data. These results support

that the ASTRAFIN agent's perception system is

based on clear, reliable, and accurately parsed

data.

| Model / Task | Precision | Recall |

F1-Score (Macro) | F1-Score (Weighted) |

|--------------------------------------|-----------|--------

|------------------|---------------------|

| SMS Parsing (Bi-LSTM-CRF) | 0.991 |

0.989 | 0.988 | 0.990 |

| PDF Parsing (Hybrid OCR) | 0.976 |

0.972 | 0.970 | 0.974 |

| Categorization (MLP) | 0.945 | 0.920

| 0.915 | 0.942 |

| Categorization (Zero-Shot) | 0.880 |

0.850 | 0.840 | 0.875 |

Agent Task Completion and Reasoning

Evaluation

Methodology:Evaluating the performance of an

autonomous, multi-step agent is complex. We

developed a custom benchmark of 50 financial

tasks inspired by recent research into financial-

agent evaluation, such as FinGAIA (for its real-

world financial tasks and varying difficulty) and τ-

bench (for reliability and tool use in changing

environments).

To isolate the influence of the stateful memory

system, we compared two versions of the agent:

- Baseline (Stateless ReAct): The ReAct agent

with all financial tools but without the stateful

memory loop.

- ASTRAFIN (Stateful ReAct): The full system as

proposed, with the ability to read from and write

to its long-term memory.

Metrics:

- Task Completion Rate (Success Rate): A binary

metric of success or failure for a task. For example,

"Did the agent provide the correct 'Dining' spend

for May?"

- Tool Selection Accuracy: The percentage of

times the agent chose the correct tool for a given

thought.

- Reliability (pass^k): Taken from τ-bench, pass^8

measures the agent's ability to successfully

complete the same task eight times in a row with

minor variations in how the query is phrased. This

is a vital measure for readiness and sturdiness.

 Results: As shown in Table 2, the results are

striking. The Baseline (Stateless) agent performed

well on simple tasks but failed entirely on those

needing long-term context or memory of user

preferences. Its reliability was also very low

(15.0% on pass^8), indicating it is fragile and not

fit for use.

In contrast, the full ASTRAFIN (Stateful ReAct)

agent performed excellently. Its stateful memory

allowed it to succeed in 92.0% of tasks that

required long-term context and 88.0% of

autonomous discovery tasks. Most importantly, its

reliability (pass^8) was 85.0%, showing a robust,

reliable system ready for production. These results

affirm that the stateful memory is the key

innovation enabling the agent to perform genuine

autonomous and personalized financial analysis.

| Task | Metric |

Baseline (Stateless ReAct) | ASTRAFIN (Stateful

ReAct) |

|--|------------------

----------|-----------------------------|-------------------

--------|

https://ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 11 | Nov - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | https://ijsrem.com DOI: 10.55041/IJSREM54152 | Page 11

| 1. Factual Retrieval | Task

Completion Rate | 95.0% |

97.0% |

| 2. Long-Term Context | Task

Completion Rate | 5.0% (Fails) |

92.0% |

| 3. Autonomous Discovery | Task

Completion Rate | 10.0% (Fails) |

88.0% |

| 4. Overall System (Avg. of all tasks) | Tool

Selection Acc. | 82.0% | 94.0%

|

| 5. Overall System (Avg. of all tasks) |

Reliability (pass^8) | 15.0% (Brittle) |

85.0% (Robust) |

 VIII. CONCLUSION

The ASTRAFIN system represents a

transformative solution for individuals striving to

navigate the complexities of personal finance. By

integrating advanced AI, ML, and privacy-

preserving NLP concepts , the system provides a

comprehensive, intelligent, and user-friendly tool

that directly addresses the dual problems of data

fragmentation and data insecurity. The core

contribution of this research is the novel synthesis

of a local-first architecture with an autonomous

ReAct agent and a stateful vector memory. This

combination successfully resolves the privacy-

utility paradox that plagues the current FinTech

landscape. The on-device parsing engine

guarantees data security, while the stateful agent

provides a level of proactive, longitudinal

financial analysis that was previously impossible

in a consumer-grade, privacy-first application.

Users of ASTRAFIN benefit from enhanced data

sovereignty, optimized financial decision-making,

and autonomous monitoring. The system acts not

as a simple digital ledger, but as a personalized,

24/7 behavioral finance coach. By identifying

long-term behavioral patterns and providing

contextual, data-driven nudges, ASTRAFIN has

the demonstrated potential to improve financial

literacy and drive positive behavioral change.As

AI and agentic technologies continue to advance ,

the ASTRAFIN framework is well-positioned for

future enhancement. Future research will focus on

implementing fully autonomous "agentic

commerce" , empowering the agent to not only

find deals but to negotiate and execute transactions

on the user's behalf. By simplifying financial

management through secure automation, real-time

tracking, and proactive assistance, the ASTRAFIN

system empowers individuals and reinforces the

role of technology in building a more financially

secure and autonomous society.

 References

i. arXiv. (2025). "Machine learning

methods for parsing UPI transaction SMS."

ii. Ink & Switch. (2019). "Local-first

software: You own your data, in spite of the

cloud."

iii. arXiv. (2022). "ReAct: Synergizing

Reasoning and Acting in Language

Models."

iv. SiliconANGLE. (2025). "Memory

machine: How vector databases power next-

generation AI assistants."

v. arXiv. (2020). "Architecture to

organize and extract information from

SMS."

vi. McKinsey & Co. (2025). "The agentic

commerce opportunity."

vii. Digits.com. (2023). "Zero-shot

machine learning in accounting."

https://ijsrem.com/

