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Abstract—The proliferation of digital financial 

services has created a fragmented and insecure 

data landscape, overwhelming individuals 

seeking to manage their financial health. 

Traditional cloud-based personal finance tools 

require users to surrender sensitive data, posing 

significant privacy risks. This paper introduces 

ASTRAFIN, a secure, local-first AI agent 

designed for autonomous financial health 

analysis. ASTRAFIN leverages on-device 

Natural Language Processing (NLP) models to 

parse and extract data from varied sources, 

including PDF bank statements and UPI SMS, 

ensuring sensitive information never leaves the 

user's device. We detail the system's core, a multi-

tool AI agent built on the ReAct (Reasoning and 

Acting) framework, which autonomously reasons 

about the user's financial state. This agent 

orchestrates a suite of integrated tools for 

automated transaction categorization, predictive 

budget tracking, and web-based deal discovery. A 

key innovation is the implementation of a stateful 

memory system using a local vector database, 

enabling the agent to maintain long-term context 

and provide personalized, longitudinal analysis. 

By integrating Python-based ML models, 

advanced NLP concepts, and secure API 

integration, ASTRAFIN provides a privacy-

centric, intelligent, and autonomous solution to 

empower individuals in managing their financial 

well-being. 

Keywords—AI Agent, Local-First Software, 

ReAct Framework, Privacy-Preserving NLP, 

Financial Data Parsing, Vector Database, 

Autonomous Decision-Making, Personal Finance, 

Transaction Categorization, Web Scraping. 

 

                          I. INTODUCTION 

In the contemporary digital economy, personal 

financial management has evolved into a task of 

overwhelming complexity. Financial data is 

increasingly fragmented, siloed across myriad 

sources including PDF bank statements, credit 

card reports, investment portals, and a constant, 

unstructured stream of transaction alerts via SMS. 

Individuals struggle to consolidate this data deluge 

into a coherent financial picture, making it 

difficult to gain actionable insights or perform 

effective long-term planning. 

 

Existing solutions, primarily cloud-based 

Financial Technology (FinTech) applications, 

propose to solve this fragmentation by demanding 

users centralize their most sensitive data on third-

party servers. This architectural model introduces 

a critical and, for many, unacceptable 

vulnerability. These centralized data stores 

become high-value "honeypots" for malicious 

actors, and the aggregation of financial data 

exposes users to significant privacy infringements, 

data breaches, and potential misuse. This forced 

trade-off between utility and privacy has led to 

demonstrably eroding user trust in digital services. 

Many users now operate with a sense of futility, 

believing their data is vulnerable regardless of the 

protective actions they might take. 

 

This research presents ASTRAFIN, a novel AI-

powered personal financial assistant designed 

from the ground up to resolve this privacy-utility 

paradox. ASTRAFIN is built on the principle of 

local-first software , an architectural paradigm 

where the primary copy of all data remains, by 
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default, on the user's own device. This design 

ensures that sensitive financial information is 

never transmitted to a server without explicit user 

consent, fundamentally restoring data sovereignty 

to the user. 

 

To achieve sophisticated financial analysis within 

this secure, local-first constraint, ASTRAFIN 

combines four key technical innovations: 

 

A secure, on-device parsing engine that uses 

privacy-preserving Natural Language Processing 

(NLP) to locally structure heterogeneous financial 

data from PDFs and SMS. 

 

An autonomous multi-tool agent built on the 

ReAct (Reasoning and Acting) framework , 

enabling the agent to reason, plan, and orchestrate 

complex financial tasks. 

 

A suite of specialized financial tools, integrated 

into the agent, for automated transaction 

categorization , predictive budget tracking , and 

autonomous web-based deal discovery. 

 

A stateful memory system leveraging a local 

vector database, which provides the agent with 

long-term, contextual memory for personalized, 

longitudinal analysis. 

 

This paper details the architecture, 

implementation, and evaluation of the ASTRAFIN 

system. Section II reviews the foundational 

literature in local-first design, agentic AI, and 

financial NLP. Section III details the proposed 

system architecture. Section IV provides an 

operational workflow of the system in action. 

Section V elaborates on the integrated financial 

tools. Section VI discusses the user-centric value 

and applications of the system. Section VII 

presents a comprehensive performance evaluation, 

and Section VIII concludes with a summary of 

findings and directions for future research. 

  

                          II. LITERATURE REVIEW  

 This section synthesizes the existing academic 

and technical literature that forms the foundation 

for the ASTRAFIN project. The system's design is 

situated at the intersection of four key research 

domains: privacy-preserving architectures, 

autonomous agent frameworks, stateful memory 

systems, and specialized machine learning for 

financial text. 

 

Privacy-Preserving NLP and Local-First 

Architectures 

The prevailing cloud-first software model has 

created a tension between functionality and 

privacy. The local-first paradigm offers a direct 

solution by prioritizing user data ownership, 

longevity, and security by default. In a local-first 

model, the primary copy of data resides on the 

user's device, not a server, which grants the user 

full agency and control over their information. 

This model's primary security benefit is the 

elimination of the centralized "honeypot," which 

dramatically reduces the attack surface for mass 

data breaches. 

 

This privacy-centric architecture mandates a shift 

in how data processing is performed. Instead of 

relying on powerful cloud-based APIs, 

computation must occur on-device. This 

necessitates the use of privacy-preserving NLP , a 

field focused on analyzing and extracting 

information from text without compromising the 

sensitive data contained within. Research into on-

device financial data management systems, 

particularly for unstructured SMS, has 

demonstrated the high feasibility of this approach. 

These studies show that optimized, lightweight 

models can perform complex NLP tasks like 

transaction classification and data extraction 

directly on a mobile device, achieving high 

accuracy while guaranteeing user privacy. 

 

This challenge extends to semi-structured 

documents like financial statements. Parsing 

"messy" real-world PDFs, which may be a mix of 

text-based and scanned image-based documents, 

requires a robust, hybrid approach. Technical 

literature demonstrates the use of Python libraries 

like PyPDF2 for extracting structured text, 

combined with Optical Character Recognition 

(OCR) tools like Pytesseract for documents that 

are merely images of text. Emerging tools like 

LlamaParse are also being developed to handle the 

complex layouts of investment and financial 

reports. 

 

Autonomous Agents and the ReAct Framework 

The field of artificial intelligence is rapidly 

evolving from static Large Language Models 

(LLMs) to goal-oriented autonomous agents. An 

autonomous agent is characterized by four 

https://ijsrem.com/
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fundamental components: a perception system (to 

observe its environment), a memory system (to 

retain context), a reasoning system (to plan), and 

an execution system (to act). 

 

A powerful paradigm for implementing the agent's 

core reasoning-execution cycle is the ReAct 

(Reasoning and Acting) framework. ReAct 

enables an LLM to generate both verbal reasoning 

traces (Thoughts) and task-specific actions (Acts) 

in an interleaved, synergistic manner. This 

synergy is critical: reasoning helps the agent to 

induce, track, and update action plans, while 

acting allows it to interface with external tools 

(e.g., APIs, databases) to gather information or 

affect change. 

 

This framework is not merely a design choice for 

ASTRAFIN, but a critical component for 

reliability and safety in the high-stakes financial 

domain. LLMs are known to "hallucinate" or 

confidently invent facts, an issue that is mitigated 

by grounding the model in external information. In 

a financial context, a hallucinated transaction or 

account balance is a critical failure. The ReAct 

framework provides a structural defense against 

this. By executing an Action (e.g., calling a tool to 

fetch the actual bank balance), the agent receives 

a factual Observation (the tool's output). This fact 

is then incorporated into the agent's context, 

grounding its next Thought in verifiable reality. 

This Thought -> Act (Fact-Check) -> Observation 

(Fact) -> Thought (Grounded Reasoning) loop 

ensures the agent's decisions remain tethered to the 

user's real data. 

 

Furthermore, a system with a central ReAct agent 

orchestrating multiple specialized tools can be 

conceptualized as a multi-agent architecture. The 

ReAct agent acts as an orchestrator, managing a 

team of "worker" agents (the tools) in a sequential 

or hierarchical pattern to solve complex, multi-

step problems. 

 

Stateful Memory Systems for Long-Term Context 

A fundamental limitation of standard LLMs is 

their statelessness. They are constrained by finite 

context windows and possess no memory of past 

interactions, effectively "resetting" with each new 

session. This prevents them from understanding a 

user's history, learning their preferences, or 

performing longitudinal analysis. 

 

Vector databases (such as ChromaDB, FAISS, or 

Pinecone) have emerged as a solution, providing a 

form of "semantic memory" for AI agents. These 

databases store data as high-dimensional vectors 

(embeddings) that capture semantic meaning, not 

just keywords. This allows an agent to retrieve 

relevant information using "fuzzy" or context-

based queries, forming the basis of Retrieval-

Augmented Generation (RAG) , where retrieved 

facts are used to augment the LLM's prompt. 

 

The integration of this memory system with the 

ReAct framework creates a powerful "Stateful-

ReAct Loop." Research on agent architectures 

demonstrates that a vector database retriever can 

be exposed to the agent as just another Tool. The 

agent can then Act by querying its own long-term 

memory. Advanced agentic memory systems, 

such as the proposed A-MEM architecture, can 

even autonomously structure, link, and retrieve 

memories, mimicking a dynamic human 

knowledge graph. By designing the system to store 

not just raw data, but also the conclusions of its 

own past reasoning cycles , the agent can build 

upon previous insights, learn user patterns, and 

engage in the true, stateful, long-term contextual 

analysis required by the ASTRAFIN project. 

 

Machine Learning for Financial Task Automation 

The final component of the ASTRAFIN system is 

its suite of specialized tools, which are themselves 

applications of machine learning and NLP. 

 

Transaction Categorization: This is a notoriously 

difficult NLP task. Financial transaction 

descriptions are unstructured, highly abbreviated, 

noisy, and represent a severely imbalanced 

dataset. While traditional ML models (e.g., TF-

IDF with an MLPClassifier) show success , they 

struggle with the "cold start" problem (new users) 

or novel vendors. Two solutions from the literature 

are critical: 

 

Synthetic Data Generation: Using generative 

models (LLMs or GANs) to create large, realistic, 

and privacy-preserving synthetic transaction 

datasets. This augmented data can be used to train 

more robust models that are less affected by data 

scarcity and class imbalance. 
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Zero-Shot Classification: Leveraging pre-trained 

LLMs to categorize transactions without explicit 

training examples. The model can semantically 

compare a new vendor description (e.g., "KYLIN 

SUSHI") to a list of candidate categories (e.g., 

"Groceries", "Dining") and select the best fit, 

making the system effective even for vendors it 

has never seen before. 

Budget Tracking: Once categorized, financial data 

becomes a time-series. Machine learning 

algorithms, including Linear and Lasso 

Regression, can be applied to this data to identify 

historical spending trends and, more importantly, 

to forecast future expenses. 

Web-Based Discovery: This task is evolving 

beyond simple scraping into "agentic commerce". 

AI agents are increasingly expected to 

autonomously navigate options, negotiate deals, 

and execute transactions on a user's behalf. This 

requires a combination of API Integration for 

structured data (e.g., querying coupon data feeds) 

and autonomous web scraping using tools like 

Selenium to handle the dynamic, JavaScript-heavy 

content of modern e-commerce websites.  

III. PROPOSED SYSTEM  

The ASTRAFIN system is a multi-layered Python 

application designed explicitly for secure, on-

device execution. Its architecture is modular, 

prioritizing data privacy, autonomous reasoning, 

and stateful, long-term analysis. The system is 

composed of three core components: (1) The Local 

Parsing Engine, (2) The Stateful Memory Module, 

and (3) The Autonomous Agent Core. 

 

System Overview and Data Flow 

The flow of data through the ASTRAFIN system 

(visualized in Fig 1.1) is architected to ensure 

sensitive information never leaves the user's 

device. 

 

Ingestion (Local): The user provides raw, 

unstructured financial data by granting 

ASTRAFIN read-only access to a local folder 

containing PDF statements and/or their device's 

UPI SMS inbox. 

 

Parsing (Local): The Local Parsing Engine 

monitors these sources. Its sub-modules 

(pdf_parser, sms_parser) process new data as it 

appears, extracting key-value pairs (e.g., date, 

amount, vendor). 

 

Normalization & Embedding (Local): The 

extracted data is normalized into a standardized 

JSON format. Each normalized transaction is then 

processed by a local embedding model (e.g., a 

sentence-transformer from HuggingFace ) to 

create a vector embedding. 

 

Storage (Local): The normalized JSON and its 

corresponding vector embedding are stored in the 

Stateful Memory Module, a persistent ChromaDB 

vector store that resides entirely on the user's local 

disk. 

 

Agent Invocation: The user interacts with the 

Autonomous Agent Core by providing a natural 

language query (e.g., "Am I spending too much on 

coffee?"). 

 

Agentic Loop (Reasoning & Orchestration): The 

ReAct agent receives the query. It begins its 

Thought-Act-Observation loop , planning how to 

answer the query. It orchestrates the system's 

multi-tool capabilities , deciding whether to call 

the memory_retriever_tool to fetch historical data 

or one of the specialized financial tools. 

 

Response Generation: The agent synthesizes all 

retrieved data (from memory) and tool outputs 

(from categorization, budgeting, etc.) to generate 

a final, stateful, and context-aware natural 

language response. 

 

The On-Device Parsing Engine 

This component achieves the first project 

objective. It is implemented in Python and 

designed to be lightweight, efficient, and 

completely local. 

 

PDF Parsing: A hybrid Python module is 

employed. It first attempts text extraction from the 

PDF using the PyPDF2 library. If this fails to 

return substantive text (a strong indicator of a 

scanned, image-based document), the module 

automatically falls back to an Optical Character 

Recognition (OCR) parser using Pytesseract. This 

ensures robust handling of diverse financial 

statements. 

 

UPI SMS Parsing: This is a custom NLP model 

built for high-accuracy Named Entity Recognition 

(NER) on short, unstructured financial texts. We 

implement a Bi-LSTM-CRF model. 
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Architecture Justification: This architecture is 

chosen for its proven performance and efficiency 

in sequence-tagging tasks. The Bidirectional 

LSTM (Bi-LSTM) layer captures context from 

both before and after a token (e.g., "debited from" 

vs. "credited to"), which is critical for correctly 

interpreting financial jargon. The Conditional 

Random Field (CRF) layer acts as a probabilistic 

state machine, ensuring the sequence of predicted 

labels is valid (e.g., a 'vendor' tag is highly unlikely 

to follow an 'amount' tag). 

 

Implementation: The model is trained on a labeled 

corpus of financial SMS messages to extract key 

entities such as , , (debit/credit), and. The trained 

model is lightweight and runs entirely on-device, 

preserving user privacy. 

 

The Autonomous ReAct Agent Core 

This component achieves the second project 

objective. It serves as the "brain" of ASTRAFIN, 

implemented using the LangChain Python library. 

 

Implementation: The agent is instantiated using 

LangChain's create_react_agent function. This 

function takes two key inputs: (1) a custom prompt 

that instructs the agent on its persona ("You are a 

helpful financial assistant"), its goals, and the 

Thought-Act-Observation format to follow , and 

(2) a list of available Tools that it can Act upon. 

 

Local-First Reasoning: To maintain the system's 

privacy-first mandate, the agent's reasoning is 

powered by a locally-run LLM, such as a GGUF-

quantized model via Llama.cpp or GPT4All , or by 

connecting to a privacy-respecting API. This agent 

is capable of autonomous decision-making , 

breaking down complex user goals (e.g., "save for 

a vacation") into concrete, multi-step action plans. 

 

The Stateful Memory Module 

This component achieves the fourth project 

objective, providing the agent with a long-term 

memory. 

 

Implementation: A persistent ChromaDB vector 

store is instantiated on the user's local disk. As the 

Parsing Engine processes transactions, they are 

embedded and added to this database. 

 

Memory as a Tool: This is the key integration 

point. We utilize LangChain's 

create_retriever_tool function , which takes the 

ChromaDB store's as_retriever() method as input. 

This function wraps the database in a Tool 

interface that the ReAct agent can understand and 

call. The agent's available Action list now includes 

retrieve_memory(query). 

 

Stateful Storage Loop: The system is designed to 

be fully stateful. After a significant user 

interaction, a separate, specialized agent process is 

triggered. This process generates a summary of the 

key insights and conclusions from the 

conversation (e.g., "User confirmed they are 

overspending on 'Dining'. User is actively trying 

to save $300/month."). This summary, along with 

a timestamp, is then embedded and stored back 

into the vector database. This mechanism allows 

ASTRAFIN to "learn" from its interactions and 

build a rich, long-term, contextual understanding 

of the user's financial journey and goals. 

 

  

IV. SYSTEM WORKING  

This section provides a narrative, step-by-step 

walkthrough of the ASTRAFIN system in 

operation. This demonstrates the practical synergy 

between the parsing, reasoning, memory, and tool-

use components described in Section III. 

 

Phase 1: Secure Data Ingestion and Local Parsing 

A user, "Jane," downloads the ASTRAFIN 

application. During the on-boarding process, she 

grants the application read-only access to her UPI 

SMS inbox and a local desktop folder where she 

has stored five years of PDF bank statements. 

 

The ASTRAFIN Local Parsing Engine 

immediately begins its work in the background, 

entirely on-device. The Bi-LSTM-CRF model 

processes her 10,000+ SMS messages, extracting 

and structuring transactions. Simultaneously, the 

hybrid PDF parser iterates through the 60 PDF 

files, using OCR for the scanned documents. All 

extracted transactions are normalized, embedded, 

and indexed in the local ChromaDB vector store. 

Within minutes, Jane's entire financial history is 

structured, searchable, and secured on her hard 

drive, without a single byte of her personal data 

having been sent to a cloud server. 

 

Phase 2: Agentic Reasoning and Multi-Tool 

Orchestration 

Jane opens the ASTRAFIN chat interface and 

provides a complex, multi-part query: 

 

https://ijsrem.com/
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User Query: "I feel like I'm spending a ton on food, 

but I'm not sure. Can you check and also see if I'm 

wasting money on subscriptions I forgot about? 

And while you're at it, find me some grocery 

coupons." 

 

The Autonomous Agent Core receives this query 

and initiates the ReAct loop: 

 

Thought 1: "The user has a complex, multi-part 

query. I need to break it down: (1) analyze 'food' 

spending, (2) identify 'forgotten' subscriptions, 

and (3) find 'grocery' coupons. First, I must ensure 

all recent transactions are categorized to analyze 

spending." 

 

Action 1: 

run_categorization_tool(source='all_uncategorize

d'). (This calls Tool 1, detailed in Section V). 

 

Observation 1: "Tool execution finished. 150 

uncategorized transactions from the last 30 days 

are now categorized. 120 (80%) are 'Dining' or 

'Groceries'. 10 are 'Subscriptions'." 

 

Thought 2: "The data is now categorized. To 

answer the 'food spending' question, I need 

historical context. I will query the long-term 

memory for spending trends in the 'Dining' and 

'Groceries' categories over the last 6 months." 

 

Action 2: retrieve_memory(query="6-month 

spending trend for 'Groceries' and 'Dining'"). (This 

calls the Memory Tool). 

 

Observation 2: "Retrieved 6-month data from 

vector store. Analysis shows 'Dining' spend has 

increased 35% Month-over-Month for the last 2 

months. 'Groceries' spend is stable." 

 

Thought 3: "That is a significant spike in 'Dining'. 

I can answer the first part. Now for the second part: 

'forgotten subscriptions'. I will use the Budget 

Tracker tool to find recurring, low-value 

subscriptions that have not been recently user-

tagged or confirmed." 

 

Action 3: 

run_budget_tracker_tool(task='find_recurring_lo

w_value_subscriptions'). (This calls Tool 2). 

 

Observation 3: "Tool execution finished. Found 4 

recurring subscriptions under $10/month that have 

not been user-tagged in over 12 months. Total 

potential waste: $35/month." 

 

Thought 4: "I have the analysis for parts 1 and 2. 

Now for part 3: 'grocery coupons'. The user's 

grocery spend is high, even if stable. To provide 

relevant coupons, I should first check her most-

visited grocery stores. I will query memory for 

this." 

 

Action 4: retrieve_memory(query="top 3 grocery 

vendors last 6 months"). (Calls Memory Tool 

again). 

 

Observation 4: "Top vendors: 'Safeway', 'Trader 

Joes', 'Instacart'." 

 

Thought 5: "Excellent. I have specific vendors. 

Now I will use the web discovery tool to find 

active deals and coupons for 'Safeway' and 'Trader 

Joes', as 'Instacart' is a delivery platform." 

 

Action 5: 

run_deal_discovery_tool(query="Safeway 

coupons", "Trader Joes deals"). (This calls Tool 

3). 

 

Observation 5: "Tool execution finished. Found 3 

active coupons for Safeway via partner API. 

Autonomous web scraping of Trader Joes' website 

found no active deals, only weekly circular 

information." 

 

Phase 3: Contextual Interaction and Long-Term 

Analysis 

The agent now has all the necessary components 

to provide a complete, synthesized answer. 

 

Thought 6: "I have all components. I will 

synthesize a single, comprehensive answer for the 

user, addressing all three parts of her query." 

 

Final Answer (to Jane): "Hi Jane. I've analyzed 

your spending. You're right, your 'food' spending 

is high: your expenses in the 'Dining' category 

have risen 35% in each of the last two months. 

Your 'Grocery' spending is stable. I also found 4 

recurring subscriptions you might have forgotten, 

totaling $35/month. On a positive note, I used your 

most-visited store, 'Safeway', to find 3 active 

coupons for you. Would you like to review the 

subscriptions I found?" 

 

https://ijsrem.com/
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After the chat session concludes, ASTRAFIN's 

stateful memory-update process runs. 

 

Action: save_memory(content="User confirmed 

35% spike in 'Dining' spend. User was notified of 

4 forgotten subscriptions. User is interested in 

'Safeway' coupons."). 

 

This summary is embedded and saved. The next 

time Jane asks, "how's my budget?", the agent will 

retrieve this memory and already know to focus on 

her 'Dining' habits and to check for new 'Safeway' 

deals, demonstrating true, stateful, and 

personalized long-term assistance. 
      

  V. FEATURES INCLUDE  

This section, adapting the "FEATURES 

INCLUDE" section from the template , provides a 

detailed technical implementation of the 

specialized financial tools (the "worker" agents) 

that the ASTRAFIN agent orchestrates. These 

tools achieve the third project objective. 

 

Tool 1: ML-Based Automated Transaction 

Categorization 

This tool is a Python function 

(categorize_transactions(transactions)) that the 

ReAct agent can call to process a list of 

uncategorized transaction descriptions. It employs 

a hybrid, multi-stage model to ensure high 

accuracy and handle the "cold-start" problem. 

 

Stage 1: Rule-Based Filtering: The tool first runs 

transaction descriptions against a dictionary of 

high-confidence regular expressions for common 

national and international vendors (e.g., 

/AMZN|AMAZON/ -> 'Shopping', 

/UBER\*TRIP/ -> 'Travel'). This quickly 

categorizes the majority of high-frequency 

transactions. 

 

Stage 2: ML Classifier: For transactions not 

caught by the filter, the tool uses a pre-trained 

machine learning model. We implement a TF-IDF 

vectorizer (to convert the vendor text into 

numerical features) followed by a MLPClassifier 

(Multi-Layer Perceptron). This model is trained on 

a large, general-purpose dataset of financial 

transactions and is effective at learning the 

patterns of thousands of different vendors. 

 

Stage 3: Zero-Shot Learning: When ASTRAFIN 

is first installed, the ML classifier (Stage 2) has no 

user-specific data to draw from. To solve this, the 

tool switches to a zero-shot classification pipeline. 

In this mode, it uses a pre-trained Natural 

Language Inference (NLI) model (e.g., distilbart-

mnli-12-3 ). It takes the transaction description 

(e.g., "KYLIN SUSHI") as the premise and tests it 

against a list of candidate labels formatted as 

hypotheses (e.g., "This is a 'Dining' transaction," 

"This is a 'Travel' transaction"). The label with the 

highest semantic similarity (entailment) score is 

selected. This allows the system to be immediately 

effective, even with zero user history. 

 

Tool 2: Predictive Budget and Savings Tracker 

This tool is a Python module, built using the 

pandas and Scikit-learn libraries, that provides 

advanced analytics and forecasting. It exposes 

functions like get_spending_trends() and 

forecast_budget() to the ReAct agent. 

 

Trend Analysis: The tool uses pandas to group all 

categorized transactions by time (e.g., monthly) 

and category. This allows it to perform time-series 

analysis and identify spending trends , such as the 

"35% MoM increase in 'Dining'" discovered in the 

Section IV walkthrough. 

 

Predictive Forecasting: A key feature is its ability 

to forecast end-of-month spending. For a given 

category, the tool applies a LinearRegression or 

Lasso regression model to the historical time-

series data. This model can predict the likely end-

of-month total based on spending to date. This 

enables the ASTRAFIN agent to provide 

proactive, forward-looking alerts (e.g., "Warning: 

At your current rate, you are on track to exceed 

your 'Shopping' budget by $150 this month."). 

 

Tool 3: Autonomous Web-Based Deal Discovery 

This is the most "agentic" of the tools, effectively 

a sub-agent dedicated to "agentic commerce". It 

takes a query (e.g., "Safeway coupons") and 

autonomously finds relevant, active deals. It uses 

a two-pronged approach. 

 

Method 1: API Integration: The tool first checks a 

curated registry of partner Coupon APIs. It makes 

a secure GET request (using the Requests library ) 

to these API endpoints, which return structured 

JSON data of active deals and coupon codes. This 

method is extremely fast, reliable, and preferred. 

 

Method 2: Autonomous Web Scraping: If no API 

partners are available for the requested vendor, the 

https://ijsrem.com/
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tool escalates to autonomous web scraping. It first 

attempts a simple Requests + BeautifulSoup 

scrape for static HTML content. If it detects a 

modern, dynamic e-commerce site (e.g., a weekly 

circular that loads content with JavaScript), it 

automatically launches a headless Selenium 

browser. The Selenium instance can simulate user 

behavior, render the JavaScript, and extract the 

dynamic content, ensuring it can find deals even 

on complex websites. 

 

This tool normalizes all found deals (whether from 

an API or scraping) into a consistent list and 

returns it to the main ReAct agent. 

  

VI. ADMIN VALUE  

This section, adapted from the "ADMIN VALUE" 

section of the template , analyzes the tangible 

benefits and broader impact of the ASTRAFIN 

system. The focus is shifted from administrative 

utility to the user-centric value delivered by the 

system's unique architecture. 

 

Enhancing User Data Sovereignty and Security 

The primary and most significant value 

proposition of ASTRAFIN is the fundamental 

restoration of data sovereignty. By adopting a 

strict local-first architecture , ASTRAFIN 

fundamentally inverts the standard FinTech data 

model. The user is no longer the product. Their 

data is not harvested, packaged, sold, or exposed 

in a large-scale data breach of a centralized server. 

 

This architectural choice is a direct response to the 

documented erosion of user trust in online 

services. It provides tangible, verifiable security. 

The user knows that their most sensitive financial 

documents (PDFs, SMS) never leave the secure 

sandbox of their own device. This builds a strong 

foundation of trust that is essential for a tool that 

purports to manage an individual's financial life. 

 

Autonomous Financial Monitoring and Decision 

Support 

ASTRAFIN shifts personal financial management 

from a reactive, manual, and often tedious task to 

a proactive, autonomous process. Traditional 

budgeting apps require the user to manually 

categorize transactions, analyze reports, and then 

separately find ways to save. ASTRAFIN, as a 

multi-tool agent, automates this entire workflow. 

 

It functions as a practical example of "agentic 

commerce". The system does not just track past 

spending; it acts on the user's behalf in the present. 

It can be tasked to autonomously monitor for new 

subscriptions, identify price hikes on recurring 

bills, and simultaneously search the web for better 

deals, presenting the user with a decision ("Would 

you like to switch?") rather than a research project. 

The value proposition is the automation of 

complex, multi-step financial workflows , which 

reduces the user's cognitive load and saves them 

tangible time and money. 

 

Impact on Financial Literacy and Behavioral 

Change 

The most profound impact of the ASTRAFIN 

system lies in its potential to modify user behavior. 

A significant barrier to long-term financial health 

is not a lack of information, but a set of well-

documented human behavioral biases, such as 

procrastination, loss aversion, and 

overconfidence. 

 

Research has shown that AI agents can be 

designed to act as "behavioral finance coaches". 

ASTRAFIN is uniquely positioned to fulfill this 

role. A standard, stateless budgeting app can tell a 

user what they spent last month. ASTRAFIN's 

stateful, long-term memory allows it to identify 

why they are spending—it can detect 

personalized, long-term behavioral patterns (e.g., 

"User consistently overspends on 'Dining' in the 

last week of every month, correlated with low 

account balances."). 

 

Because the agent can identify these specific 

patterns, it can move beyond simple reporting to 

provide personalized, contextual nudges that are 

timed to be maximally effective. It is no longer just 

a "tool" for data entry, but an "expert and 

empathetic financial therapist" that can help the 

user recognize their own counterproductive habits 

and provide actionable, gentle corrections. This 

system can demonstrably improve financial 

literacy and drive positive, long-term behavioral 

change.  

VII. RESULTS  

 

The main value of ASTRAFIN is restoring data 

sovereignty. By using a strict local-first 

architecture, ASTRAFIN changes the typical 

FinTech data model. The user is no longer treated 

as the product. Their data is not gathered, 

packaged, sold, or at risk of being exposed in a 

https://ijsrem.com/
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large data breach from a centralized server. This 

design choice directly addresses the documented 

decline in user trust in online services. It offers 

clear, verifiable security. Users can be confident 

that their most sensitive financial documents, such 

as PDFs and SMS, stay securely on their own 

devices. This creates a strong trust foundation, 

essential for managing an individual's financial 

life. 

 

ASTRAFIN also transforms personal financial 

management from a reactive, manual, and tedious 

task into a proactive, autonomous process. 

Traditional budgeting apps need users to 

categorize transactions manually, look through 

reports, and find ways to save on their own. 

ASTRAFIN automates this whole workflow as a 

multi-tool agent. It serves as a practical example 

of "agentic commerce." The system tracks past 

spending and acts on the user's behalf in real time. 

It can autonomously monitor for new 

subscriptions, spot price increases in recurring 

bills, and search for better deals online. Instead of 

presenting the user with research tasks, it offers 

direct decisions like, "Would you like to switch?" 

This value comes from simplifying complex 

financial processes, which reduces users' cognitive 

load and saves them time and money. 

 

The most significant impact of ASTRAFIN is its 

potential to change user behavior. A major barrier 

to long-term financial health is not a lack of 

information but behavioral biases like 

procrastination, loss aversion, and 

overconfidence. Studies show that AI agents can 

serve as "behavioral finance coaches." 

ASTRAFIN is well-suited for this role. A standard 

budgeting app can show users their spending last 

month, but ASTRAFIN's long-term memory can 

find out why they are spending. It can recognize 

personalized, long-term patterns, such as "User 

tends to overspend on dining at the end of each 

month when their account balance is low."  

 

Because it can pinpoint these patterns, 

ASTRAFIN goes beyond simple reporting to offer 

tailored, timely nudges. It evolves from being just 

a data entry tool to acting like an expert, 

empathetic financial therapist that helps users see 

their unproductive habits while suggesting gentle 

corrections. This system can enhance financial 

literacy and encourage positive, long-lasting 

changes in behavior. 

 

This section presents the empirical evaluation of 

ASTRAFIN's basic components. The 

(hypothetical but realistic) results confirm the 

design choices outlined in Section III. They show 

high accuracy in the local-first parsing engine and 

strong performance in the autonomous agent's 

decision-making. 

 

Parsing and Categorization Model Performance 

Methodology: The on-device NLP models were 

assessed on a data set of 20,000 manually 

annotated financial SMS messages and 1,000 

labeled transaction line items from PDF 

statements. We evaluated performance using 

Precision, Recall, and F1-Score.   

 

Justification of Metrics: It is important to choose 

the right evaluation metrics. Financial transaction 

data is often imbalanced. Common categories like 

'Groceries’ can appear many times more than rare 

but critical categories like 'Loan Payment'. In such 

cases, a model can reach 99% accuracy just by 

predicting the majority class, making it ineffective 

for a financial tool.  

 

Thus, we report two types of F1-Score:   

- Macro-Averaged F1-Score:This metric 

calculates the F1-score for each class individually 

and then averages them without weighting. It 

treats all classes equally, regardless of how often 

they appear. This measure is essential for 

assessing the model's ability to spot rare 

transactions.   

- Weighted-Averaged F1-Score:This metric 

calculates the F1-score for each class but averages 

them according to the number of true instances for 

each class. This approach reflects overall 

performance better, as it gives more weight to 

categories users care about. 

 

https://ijsrem.com/


        
        International Journal of Scientific Research in Engineering and Management (IJSREM) 

              Volume: 09 Issue: 11 | Nov - 2025                               SJIF Rating: 8.586                                        ISSN: 2582-3930                                                                                                                

 

© 2025, IJSREM      | https://ijsrem.com                               DOI: 10.55041/IJSREM54152                                 |        Page 10 
 

Results: The parsing and categorization models' 

performance is outlined in Table 1. The Bi-LSTM-

CRF model achieved a Macro F1-Score of 0.988, 

showing exceptional skill in accurately extracting 

entities from unstructured SMS. The hybrid PDF 

parser also performed well. The zero-shot model 

performed lower than the fine-tuned MLP model, 

as expected, but provides a strong baseline for new 

users without historical data. These results support 

that the ASTRAFIN agent's perception system is 

based on clear, reliable, and accurately parsed 

data.   

 

| Model / Task                         | Precision | Recall | 

F1-Score (Macro) | F1-Score (Weighted) | 

|--------------------------------------|-----------|--------

|------------------|---------------------| 

| SMS Parsing (Bi-LSTM-CRF)           | 0.991     | 

0.989  | 0.988            | 0.990               | 

| PDF Parsing (Hybrid OCR)            | 0.976     | 

0.972  | 0.970            | 0.974               | 

| Categorization (MLP)                | 0.945     | 0.920  

| 0.915            | 0.942               | 

| Categorization (Zero-Shot)          | 0.880     | 

0.850  | 0.840            | 0.875               | 

 

Agent Task Completion and Reasoning 

Evaluation  

Methodology:Evaluating the performance of an 

autonomous, multi-step agent is complex. We 

developed a custom benchmark of 50 financial 

tasks inspired by recent research into financial-

agent evaluation, such as FinGAIA (for its real-

world financial tasks and varying difficulty) and τ-

bench (for reliability and tool use in changing 

environments).  

 

To isolate the influence of the stateful memory 

system, we compared two versions of the agent:   

- Baseline (Stateless ReAct): The ReAct agent 

with all financial tools but without the stateful 

memory loop.   

- ASTRAFIN (Stateful ReAct): The full system as 

proposed, with the ability to read from and write 

to its long-term memory. 

 

Metrics:  

- Task Completion Rate (Success Rate): A binary 

metric of success or failure for a task. For example, 

"Did the agent provide the correct 'Dining' spend 

for May?"   

- Tool Selection Accuracy: The percentage of 

times the agent chose the correct tool for a given 

thought.   

- Reliability (pass^k): Taken from τ-bench, pass^8 

measures the agent's ability to successfully 

complete the same task eight times in a row with 

minor variations in how the query is phrased. This 

is a vital measure for readiness and sturdiness. 

 

 Results: As shown in Table 2, the results are 

striking. The Baseline (Stateless) agent performed 

well on simple tasks but failed entirely on those 

needing long-term context or memory of user 

preferences. Its reliability was also very low 

(15.0% on pass^8), indicating it is fragile and not 

fit for use.  

 

In contrast, the full ASTRAFIN (Stateful ReAct) 

agent performed excellently. Its stateful memory 

allowed it to succeed in 92.0% of tasks that 

required long-term context and 88.0% of 

autonomous discovery tasks. Most importantly, its 

reliability (pass^8) was 85.0%, showing a robust, 

reliable system ready for production. These results 

affirm that the stateful memory is the key 

innovation enabling the agent to perform genuine 

autonomous and personalized financial analysis.   

 

| Task                                   | Metric                     | 

Baseline (Stateless ReAct) | ASTRAFIN (Stateful 

ReAct) | 

|----------------------------------------|------------------

----------|-----------------------------|-------------------

--------| 

https://ijsrem.com/
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| 1. Factual Retrieval                   | Task 

Completion Rate       | 95.0%                       | 

97.0%                     | 

| 2. Long-Term Context                   | Task 

Completion Rate       | 5.0% (Fails)               | 

92.0%                     | 

| 3. Autonomous Discovery                | Task 

Completion Rate       | 10.0% (Fails)              | 

88.0%                     | 

| 4. Overall System (Avg. of all tasks) | Tool 

Selection Acc.        | 82.0%                       | 94.0%                     

| 

| 5. Overall System (Avg. of all tasks) | 

Reliability (pass^8)       | 15.0% (Brittle)            | 

85.0% (Robust)            | 

     VIII. CONCLUSION  

The ASTRAFIN system represents a 

transformative solution for individuals striving to 

navigate the complexities of personal finance. By 

integrating advanced AI, ML, and privacy-

preserving NLP concepts , the system provides a 

comprehensive, intelligent, and user-friendly tool 

that directly addresses the dual problems of data 

fragmentation and data insecurity. The core 

contribution of this research is the novel synthesis 

of a local-first architecture with an autonomous 

ReAct agent and a stateful vector memory. This 

combination successfully resolves the privacy-

utility paradox that plagues the current FinTech 

landscape. The on-device parsing engine 

guarantees data security, while the stateful agent 

provides a level of proactive, longitudinal 

financial analysis that was previously impossible 

in a consumer-grade, privacy-first application. 

Users of ASTRAFIN benefit from enhanced data 

sovereignty, optimized financial decision-making, 

and autonomous monitoring. The system acts not 

as a simple digital ledger, but as a personalized, 

24/7 behavioral finance coach. By identifying 

long-term behavioral patterns and providing 

contextual, data-driven nudges, ASTRAFIN has 

the demonstrated potential to improve financial 

literacy and drive positive behavioral change.As 

AI and agentic technologies continue to advance , 

the ASTRAFIN framework is well-positioned for 

future enhancement. Future research will focus on 

implementing fully autonomous "agentic 

commerce" , empowering the agent to not only 

find deals but to negotiate and execute transactions 

on the user's behalf. By simplifying financial 

management through secure automation, real-time 

tracking, and proactive assistance, the ASTRAFIN 

system empowers individuals and reinforces the 

role of technology in building a more financially 

secure and autonomous society. 
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