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Abstract: -Neural machine translation, or NMT uses the models based on neural network to gain an understanding of the   statistical 

model so that it can be used in machine translation. Attention based mechanism used in neural networks make the translation process 

more reliable by using the bidirectional approach of encoder and decoder and is used to compare BLEU from different sources 
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I. INTRODUCTION 

One of the earliest goals of the computer was the automatic translation of text from one language to another. Machine 

translation is conceivably one of the most demanding artificial intelligence tasks given the fluidity of human being language 

Machine translation is the task of spontaneously converting source text in one language to text into a different language.MT 

performs as a channel for cross-language interaction in Natural Language Processing (NLP). MT manages language confusion 
problems by using computerized translation in between dual languages while keeping its meaning intact. The attentional 

mechanism has recently occurred to prove to be useful in neural machine translation by selectively concentrating on elements of 

the trace sentence during translation. NMT is fascinating since it needs marginal domain knowledge to get hands on and has the 

power to simplify well to very extended word sequences. For doing this we have used encoder and decoder which uses 

Recurrent Neural network Architecture. 

In this paper, we create, with minimalism and efficiency in attention, one type of attention-based model that is the approach 

in which all provided words given to be attended specifically using the bhadanau model. 

II. NEURAL MACHINE TRANSLATOR 

The neural machine translator is a neural based network that promptly models the conditional probability p(b|a) of converting a 
trace sentence, a1, . . ., an, to a end sentence, b1, . . ., bm. It comprised of two elements i.e encoder and decoder. an encoder 

computes a description k for each trace sentence and the  decoder which produces one end word at a time and hence crumbles 

the conditional probability as: log p(b|a) = Am j=1 log p (bj |b<j,k). In this paper, following (Sutskever et al., 2014; Luong et al., 
2015), the use of assembling LSTM architecture has been taken for building the NMT systems, as illustrated in figure 

 

 
                                                                                               Fig. 1  Encoder and decoder in NMT 

                                               

III. ATTENTION BASED MODEL 

The attention model to be used is type of global that differs from the local in the format whether the “attention” is positioned 

on all trace positions or on only a limited trace position. It is to be noticed that at each time step t in the decryption phase the 

approach first take input as the hidden state ht at the upper layer of a assembling LSTM so that to obtain a context vector ct that 

gets significant trace-side data to help calculate the current end word bt or to be said in simpler terms is to contemplate all the 

hidden states of the encoder when stemming the context vector ct. Also, in addition to what we did differently than already 

propose bhadanau model is that we use the chain of the forward and backward trace hidden states in the bi-directional encoder. 
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IV. METHODOLOGY 

 

 
Step 1: Import all the necessary python libraries-TensorFlow 2.8, Sklearn, Matplotlib, Numpy and Pandas. 

Step 2: Data Collection 

Step 3: Pre-processing (Cleaning) and standardization  

Step 4: Writing the scripts for decoder and encoder 

Step 5: Train the model with pre-processed dataset.  

Step 6: Testing of the model with sample inputs.  

 

 

 

 

 
 

 

 

 

V. DATA COLLECTION 

Although there was not much dataset for Hindi to English on the internet, but we found out a dataset posted on Kaggle which 

consisted of more than 3000 sentences, but it consisted of various adds on with respect to the Hindi and English translation 

which is needed to be removed in order to process data. We also looked for the dataset provided on TensorFlow, but it too has 
the same ambiguity. 

 

VI. PRE-PROCESSING OF DATA 

The main problem is that model is dealing with bilingual text with a restricted vocabulary. So, it was essential to standardize 

the stored text that is to be trained. Firstly, we Unicode normalization to split stressed characters and substitute compatibility 

characters with their ASCII counterparts which is done by tensor flow-text package. Then this standardization function will be 

enfolded up in a text vectorization layer which will grip the vocabulary mining and translation of input text to sequences of 

tokens. Remove multiple space that was generated while data collection. This can cause Vocabulary wrong interpretation, so the 

next target was to remove these extra spaces. Remove stop-words as Stop-words are those words that generally do not contain 

important information. Splitting of the accented characters, adding spaces around punctuation and strip whitespace. 

The Text Vectorization layer and several other reprocessing layers have adapt method. This technique read out one epoch of 

the training data and works a lot like Model Fix Method. This adapt method sets the layer centred on the data. Here it 
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determines the vocabulary. The refunded token IDs are null padded. This can simply be rolled into a mask. This can be seen in 

the figure 2 as the masks with the token IDs.  

 

                                                                          

 
 

 

 

 

 

Figure 2:- mask and token id 

 

VII. TRAINING FEATURES 

 

Our model (NMT-1) was trained on the data collected through web scrapping which consist of the 3000 sentences of both from 

Hindi to English language. The limit on vocabularies to be the 1000 most common words for the two languages. Words do not 

present in these selected vocabularies are transformed into a worldwide token <UKG>.When teaching our Neural Machine 

Translator, subsequent (Bhadanau, 2015), we clean out sentence pairs whose lengths exceed 40 words and mix up mini groups 
as we continue. Our assembling LSTM model have 3 layers, each with 250 cells, and 250-dimensional embeddings. The epochs 

to be set was 60. After the decoder function implementation collects the results into python lists, before using tf concat to join 

them into tensors. Our code is implemented in Jupyter notebook. we achieve a speed of 50 target words per second. It takes 4 

hours to entirely train the model. Also, for comparison we trained the neural machine translation without attention. (NMT-2) 

VIII. HINDI TO ENGLISH TRANSLATION ANALYSIS 

We compare our Neural machine translation system with attention in the Hindi to English task with the neural machine 

translation without attention. It was interesting to examine the influence of attentional models in properly translating names 

such as “Rama” and “shiva”. Non-attentional models, while creating sensible names from a language model point of view, lack 

the direct contacts from the source side to make accurate translations.  

 

IX. RESULTS 

The neural machine translation system results acquired from NMT-1, NMT-2 and translations of Google and Bing systems, 

evaluated using BLEU score and can be shown in the table 1. Also, the attention plot for the attention-based model that is more 

focused on the diagonal can be shown in figure 3. 
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Table1: - different BLEU score 

 

So, looking on the score of bleu we can conclude that NMT-1 model which is LSTM built by directional encoder-decoder 

RNN with attention mechanism gives a better BLEU than the model without attention. The attention mechanism acknowledges 

components of the key sequence that are related to each word in the output and combine relevant information to select the 

correct output. 

 

 
Figure3:- attention plot  

 

 

X. CONCLUSION AND FUTURE WORKS 

Even though, Neural machine translation system offers better accuracy than traditional methods like rule-based Machine 

translation as well as SMT, but it still delays behind equated to manual human translation. In this paper, NMT systems namely, 

sequence-to-sequence RNN with attention-based mechanism Hindi to English translation and matched with the existing MT 

output in terms of BLEU score. It shows up improved functioning than the present systems. Though, close analysis of 

calculated translations notes that our NMT systems need to be enhanced in case of identification of blank lines in output and 

different translation of the trace sentence. Besides, with the understanding of the impact of the bi-gram model in Hindi language 

translation and correlation among Indian similar languages in [7], opens a new direction of research for direct translation 
between pairs of similar languages. 
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