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Abstract 

This project explores audio classification leveraging representation learning within the TensorFlow framework. 

The methodology focuses on the initial engineering of wave features derived from raw audio data, which are 

subsequently used to train convolutional neural networks (CNNs) for effective representation learning. By 

transforming the audio signals into a structured format amenable to convolutional processing, our system is 

designed to capture the intrinsic properties and patterns embedded in the sound waves. The feature engineering 

process is detailed where various envelope features such as the homomorphic envelogram, hilbert envelogram and 

wavelet decompositions help in extracting meaningful information from the raw audio signals. These 

engineered features provide a robust foundation for the subsequent layers of convolutional networks. The CNNs 

are meticulously architected to learn hierarchical representations, effectively capturing both low-level and high-level 

audio characteristics.This study attempts to reinforces the significance of tailored feature engineering in deep 

learning and demonstrate an effective audio classification pipeline using representation learning and open up 

new avenues for research in audio signal processing and machine learning. 

 

1 Introduction 

The objective of this experiment is to explore efficacy of engineered signal features for an audio classification task in a 2-

step experiment using 1-D Convolutions to learn representations. CNNs are preferred for audio classification tasks since 

they are able to capture local frequency dependencies and learn robust representa- tions over other alternatives like a 

Hidden Markov Model(HMM) and Recurrent Networks typically not suited for non-speech data and used for 

segmentation tasks instead. The learning experiments explore digital signal processing of audio signals and the 

analysis of results and engineering features requires under- standing of audio normalization, interpolation, wave 

theory, digital filters and sample frequency. To model design, architecture, implementation and analysis of 

performance requires understanding representation learning, convolutional networks, batch processing, hyper 

parameter tuning, vector processing and data analysis. The fundamental goal of this project remains to demonstrate an 

audio classification pipeline for a 2 step learning experiment using engineered features and learned representations and 

analysis. 

 

1.1 Feature Engineering 

Feature engineering from raw audio involves extracting meaningful and informa- tive characteristics from audio signals 

to improve the performance of classification models. This process typically starts with the raw audio waveform, 

which is then transformed into a format that better represents the underlying properties of the sound for analytical 

purposes. 

http://www.ijsrem.com/
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1.1.1 Homomorphic Envelope 

The Homomorphic envelope is a technique often used to separate the source and the filter characteristics of a sound. It 

usually involves taking the logarithm of the signal’s spectrum, performing operations (such as filtering), and then 

taking the inverse transform. This can help in situations where you need to analyze the underlying spectral envelope of 

a sound, which is useful for speaker or phoneme recognition in speech analysis. The negative values in the homomorphic 

envelope indicate that the envelope does not show absolute values but relative changes in the signal’s spectral envelope. 

The choice of pass band (5Hz to 40Hz) is because it’s broad enough to detect slow changes in dynamic range across 

various sounds without being too specific to any particular type of sound. For audio files with rhythmic content, 

such as musical instruments (e.g., bass drum, tambourine) and environmental noises (e.g., applause, bus), this range 

helps in detecting the rate of energy changes which relate to tempo or the occurrence of events. This passband is a 

compromise designed to provide useful information across various types of audio signals without specializing too 

much in any one attribute like pitch or timbre. It focuses on the overall "energy" shifts within the audio which can 

be crucial for several forms of analysis, including detecting presence, changes in sound levels, and basic rhythmic 

patterns. This makes it generally useful for a variety of applications, from simple sound detection to more complex 

analysis involving rhythms and dynamics. 

The homomorphic envelope of a signal s(t) is often used to extract the envelope of the signal in a way that 

separates the contributions of the rapidly varying fine structure and the slowly varying amplitude envelope. The 

process involves several steps, usually starting with taking the natural logarithm of the absolute value of the 

signal’s analytic representation (obtained via the Hilbert transform) to linearize convoluted relationships in the 

frequency domain. Mathematically, it can be defined as: 

Ehom(t) = exp(Hlog(|s(t)|)), where H is the Hilbert transform 

 

1.1.2 Hilbert Envelope 

The Hilbert envelope image illustrates the amplitude envelope of the audio signal. It provides a smooth curve 

representing the instantaneous amplitude of the audio waveform. The Hilbert envelope is useful for analyzing 

the amplitude modulations and can be used for detecting the presence of transient sounds or the rhythmic 

structure of the audio. This envelope starts high and tapers off, which corresponds to the decaying sound 

indicated in the waveform. The amplitude envelope is a smooth curve that outlines the extremes of an audio 

waveform and can highlight the temporal structure of the sound events in this dataset, which can be more informative 

than the frequency-based features alone. The Hilbert envelope of a signal provides a measure of the signal’s 

amplitude envelope, capturing the local amplitude variations. It is defined using the Hilbert transform H(√s ( t ))  of the 

signal s(t). The envelope is then given by: 

Ehil (t) = √(s(t)
2𝐻(s(t)2) 

http://www.ijsrem.com/
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1.1.3 Wavelet Decomposition 

The Wavelet transform is a powerful tool for time-frequency analysis, capable of providing time and frequency 

information simultaneously, and is particularly adept at identifying transient features and anomalies in a signal. The 

Wavelet transform plot shows how the frequency content of the signal changes over time, with the x-axis representing 

the wavelet coefficient index and the y-axis the coefficient values. Unlike the Fourier transform, wavelet transform 

can give a better picture of non-stationary signals such as audio, as it can capture both high-frequency events with 

fine temporal resolution and low-frequency events with fine frequency resolution. Wavelets provide a time-frequency 

representation of the signal and are especially good at analyzing non-stationary signals because they can capture both 

high-frequency events (like transients) and low-frequency events (like sustained notes) with high resolution. This 

makes wavelet features particularly well-suited to a dataset with a wide variety of sounds, as they can capture 

the nuances of both quick, sharp sounds (like a "gunshot" or "gunfire") and slower, evolving sounds (like "acoustic 

guitar" or "cello") Wavelet decomposition involves breaking down a signal into a series of wavelets or small waves, 

which can vary in frequency and position, allowing for multi-resolution analysis of the signal. The decomposition 

of a signal can be represented as 

s(t) = j,k cj,kψj,k(t), where ψj,k(t) is the scaled and transformed wavelet function and cj,k are the wavelet 

coefficients. 

 

1.2 Representation Learning 

Representation learning in audio classification using TensorFlow involves training models to automatically discover 

the representations needed for classification directly from raw audio data or pre-processed audio features. The goal 

is to transform raw audio or engineered features into a form where classification tasks, such as identifying spoken 

words or music genres, become more manageable. 

TensorFlow facilitates this by providing a robust and scalable platform for building and training deep learning 

models, such as convolutional neural networks (CNNs). 

 

2 Related Work 

Almost all deep learning tasks in signal processing follow a conventional approach wherein domain expertise is required 

to first engineer relevant features and then further processing is a complete black box. Recent work has been trying 

to mitigate the domain knowledge required to build such a pipeline by shifting towards end-to-end models which 

are seeing success in segmentation tasks[1]. Using logarithmic audio scaling as in mel-spectrograms and MFCC 

features has also seen success in classification and segmentation tasks[2]. The paper by Juhan Nam, Keunwoo Choi, 

Jongpil Lee, Szu-Yu Chou, and Yi-Hsuan Yang[3] also illustrates a sample-level CNN amongst other industry 

approaches on audio classification, sentiment tagging and music genre classification. This project aims to re-

emphasize the foundational knowledge in signal processing and wave theory required to truly fine-tune an audio 

processing pipeline such as the one used in this experiment. 

 

3 Experiment 

The classification pipeline can be broken down into steps - data pre-processing, feature extraction, model training 

and testing. 

 

http://www.ijsrem.com/
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3.1 Data Preparation 

3.1.1 Dataset 

The FSDKaggle 2018 audio dataset has 11,073 audio files annotated with 41 labels 

- "Acoustic guitar", "Applause", "Bark", "Bass drum", "Burping or eructation", "Bus", "Cello", "Chime", 

"Clarinet", "Computer keyboard", "Cough", "Cow- bell", "Double bass", "Drawer open or close", "Electric 

piano", "Fart", "Finger snapping", "Fireworks", "Flute", "Glockenspiel", "Gong", "Gunshot or gun- fire", 

"Harmonica", "Hi-hat", "Keys jangling", "Knock", "Laughter", "Meow", "Microwave oven", "Oboe", 

"Saxophone", "Scissors", "Shatter", "Snare drum", "Squeak", "Tambourine", "Tearing", "Telephone", "Trumpet", 

"Violin or fiddle", "Writing". The minimum number of audio samples per category in the train set is 94, and the 

maximum is 300. The duration of the audio samples ranges from 300ms to 30s and all audio samples in this dataset 

have a single label. The sample rate for the files is 44,100 Hz(high resolution). 

 

3.1.2 Pre-processing 

The audio data is loaded and immediately normalized early in the pipeline by feature scaling using min-max 

normalization y = y/np.max(np.abs(y)) The normalized signal is then broken into chunks of size = length*sample 

rate for further processing. Samples shorter than the fixed chunk length(in seconds) are 0 padded to make up the 

difference. Only the manually verified samples are considered for training. The final training set is reduced and 

balanced. There are 50 examples from each of the 41 classes reducing the final training set to 2050 samples. The audio is 

not downsampled from the original 44,100Hz sampling rate. Downsampling is not preferred, the tradeoff being 

degradation of information in the signal with lesser sample rates. However, some downsampling can help 

compromise the loss in quality of the data with quantity; allowing processing a larger dataset with a more 

minimal GPU throughput. These considerations were taken into account and the decision to retain the original 

sampling rate was made, considering the goals aligned with that of an academic end semester project; processing the 

whole dataset was not prioritized in this experiment. 

 

3.2 Feature Extraction 

 

 

a. original audio chunk 

 

http://www.ijsrem.com/
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b. hilbert envelope 

 

 

 

c. homomorphic envelope 

 

d. wavelet transform 

 

a. Original Audio The chunk is taken from a sample belonging to the class "Cello". The length of the 

feature arrays are concatenated to match the length of the chunk (the last few samples of the wavelet transform are 

lost as a result) 

 

b. Hilbert Envelope Cellos produce sound through the vibration of strings caused by bowing or 

plucking, leading to a smooth variation in amplitude as the note swells and decays. This gradual increase and 

decrease in volume can be clearly seen in the Hilbert envelope, where peaks correspond to the bowing action causing 

maximum displacement of the string, and the troughs reflect the points where the string returns to a less excited state. 

This envelope shows the dynamics of each note played on the cello, highlighting the expressive volume control a 

cellist has. 

http://www.ijsrem.com/
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c. Homomorphic Envelope The specific bandpass filtering used to generate the homomorphic envelope 

(5Hz to 40Hz) targets very slow oscillations in the signal’s amplitude, often corresponding to the tempo or the 

rhythmic pacing of a musical piece. For a cello, this could capture the pacing of bowing motions or phrasing in a solo 

performance, which often involves deliberate and measured changes in intensity and speed. The homomorphic 

envelope in this case smooths out the fine textural details and focuses on these broad dynamics, emphasizing how a 

cellist may sustain notes and use silences effectively, contributing to the distinct emotive quality of the cello. 

 

d. Wavelet Transform The wavelet transform using a Daubechies 4 wavelet is particularly adept at 

capturing both transient details and localized frequency information. For a cello, which has a rich harmonic content 

and a distinctive timbre, the wavelet transform can reveal start and end of notes, visible as sharp changes in the 

wavelet coefficients, Variations in playing technique, such as vibrato or changes in bowing pressure, reflected in 

modulations of the wavelet coefficients and the rich overtones and the fundamental frequency of notes, which are visible 

across different scales of the wavelet decomposition. The lower scales (higher frequencies) capture the detailed texture 

of the sound, including the scratch of the bow on the string, while the higher scales (lower frequencies) can show the 

fundamental tone of the note being played. 

 

Each of these features—Hilbert envelope, homomorphic envelope, and wavelet transform—provides a unique lens 

through which the distinctive sound of a cello can be analyzed. By comparing these features against known 

characteristics of cello sounds (like those from acoustic studies or sound libraries), one can convincingly argue that 

the audio recording is indeed of a cello, based on the cap- tured envelopes and wavelet features that align well with the 

expected acoustic behavior of cello sounds. 

 

3.3 Model Training 

 

e. model 

 

http://www.ijsrem.com/
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3.3.1 Model Hyper-parameters 

Kernel size = 3 MaxPooling, pool size = 2 

Optimizer = “Adam”, learning rate = 0.0001 Dropout rate = 0.2 

Length = 3 seconds Batch size = 128 

Input shape = ((sample rate*length),1) Epochs = 50 

Xtrain.shape = (batch size, sample rate*length, of features), Ytrain.shape = (batch size,) 

 

3.3.2 Activations 

 

f. activations for first convolution 

 

The images above show the activations/representations learned by the first convolution in my model for the 

aforementioned audio waveform, which belongs to the class “Cello”. Each kernel captures different aspects of the audio 

waveform, translating these into a feature map that the neural network uses to understand and process the audio data. 

By analyzing the activation patterns in relation to the waveform, we can infer what each part of the network is 

focusing on, such as detecting the onset of sounds, capturing frequency changes, or identifying rhythmic patterns. 

This helps in refining the model for more precise audio analysis tasks, like distinguishing different types of 

sounds(audio classification/tagging) or understanding speech dynamics. Cellos produce rich, resonant tones that 

can vary in pitch, timbre, and intensity, and have distinctive attack, sustain, and decay phases in their notes. The 

audio waveform shows the following characteristics that can be related to a cello: 

 

Onset Of Notes : The beginning of a Cello note is characterized by a distinct attack where the bow strikes the 

strings, leading to an initial spike in amplitude. 

 

Sustain and Vibrato : As the note is held, the Cello exhibits a sustained sound with possible vibrato, which 

would appear as oscillations in amplitude within the waveform. 

 

Changes in Pitch or Dynamics : Changes in pitch or dynamics during playing would lead to corresponding 

variations in the waveform’s amplitude and frequency. 

http://www.ijsrem.com/
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Kernels 0 and 7 (High Initial Response) : Likely sensitive to the onset and attack phase of the Cello notes. The 

initial response tapering off could reflect the decay of the attack into the smoother sustain phase of the note. 

 

Kernels 1, 2, 4, 5, 6 (Sharp Isolated Spikes): These kernels may be capturing specific transient features of the 

Cello, such as the striking of the bow on the strings, changes in bowing pressure, or quick changes in pitch. The sharp 

spikes could correspond to points where the bow changes direction or when the player shifts positions on the 

fingerboard. 

 

Kernels 3, 8 and 9 (Multiple Peaks): Could be responding to rhythmic patterns in the Cello playing, or repeated 

motifs and phrases within the piece. These kernels might also be picking up on the vibrato or the repetitive bowing 

technique common in Cello playing. 

 

Cellos produce a range of frequencies, typically lower than many other string instruments but with significant 

harmonic content. Kernels showing responses across a broad range might be capturing these harmonic elements, 

essential for timbre recognition. The kernels displaying gradual activations might be sensitive to the dynamic range of 

the Cello, capturing the crescendos and decrescendos typical in classical Cello compositions. 

 

3.4 Results 

 

 

g. training accuracy 

http://www.ijsrem.com/
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h. training loss 

 

i. testing metrics 

 

training loss The training loss shows multiple sharp peaks which may indicate occasional large errors in prediction 

during training. These peaks decrease in frequency and magnitude as training progresses, indicating some improvement 

in the model’s learning. The general trend is a decrease in loss, suggesting that the model is learning to minimize the 

error over iterations. However, the existence of peaks suggests instability which may be due to insufficient outlier 

handling. 

 

training accuracy The training accuracy starts very low and increases gradu- ally, showing a positive trend but with 

significant fluctuation. Again, the general trend is improvement implying the model is somewhat learning to 

classify cor- rectly. The noticeable fluctuations could imply that the model struggles with a consistently reliable 

prediction across different stages of training. This can be influenced by factors like model complexity, noise in 

data, or overfitting on specific parts of the training data. 

 

precision Precision measures the accuracy of positive predictions. It is calcu- lated as the ratio of true positive 

(correctly predicted positive instances) to the sum of true positive and false positive (incorrectly predicted positive 

instances). In this case, the precision is quite low at approximately 0.058. 

http://www.ijsrem.com/
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recall measures the ability of the classifier to find all the positive samples. It is calculated as the ratio of true 

positive to the sum of true positive and false negative (positive instances incorrectly classified as negative). The 

recall score here is around 0.110, also relatively low. 

 

F1 score The F1 score is the harmonic mean of precision and recall. It provides a balance between precision and 

recall. The F1 score here is approximately 0.068, indicating that the model’s performance is low on both precision and 

recall. 

 

Overall, the model is generalizing very poorly. I believe a possible fix to the problem is using more of the dataset in 

a balanced fashion like in this experiment for a more complex model architecture however this solution is restricted 

by system and GPU requirements. Similarly, validation logic would make the script too bulky since we are training in 

batches and we extract features for every audio chunk. The training matrix is a large np.ndarray and the model is 

complex, making space for an additional validation matrix would compromise data set size and model complexity. 

Hence, validation metrics are unavailable. 
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