
 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 07 Issue: 03 | March - 2023 Impact Factor: 7.185 ISSN: 2582-3930

© 2023, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM18184 | Page 1

Automated Debugging : Still a Dream ?

Deepak Varma, Alwala Nehansh, Jatin Adya B, Anshul Gupta

 Hyderabad Institute of Technology and Management

---***---
Abstract - Software debugging is the process of finding and

fixing incorrect statements in programs. The process of

debugging takes a lot of time and is challenging. Therefore, the

field of automated debugging, which is focused on automating

the discovery and correction of a failure's underlying cause, has

made huge progress in the past. By applying automated

approaches to identify and correct any erroneous statements in

a program, the cost of producing software may be significantly

decreased while also improving the quality of the final product.

The purpose of this paper is to shed light on the application of

automated debugging in the current market scenario.

Techniques like Delta Debugging, Path-based Weakest

Preconditions, Fault Localization, and Program Slicing have

been demonstrated to be quite effective in dealing with the

identification and resolution of inconsistencies. This paper also

aims to examine the question, "Is Automated Debugging still a

dream? ".

Key Words: Automated Debugging, Delta Debugging,

Program Slicing.

1.INTRODUCTION

The process of developing, designing, implementing, and

maintaining software is known as software development.. With

the growing demand for software in the industry, programmers

must provide a plethora of new features to keep customers

satisfied, which may increase the number of bugs. A

programmer must debug a program when it fails to fix the

problem. A program's bugs are found and fixed during the

debugging process. Three crucial actions are used to achieve

this. The first step, fault localization, involves identifying the

specific program statements that caused the failure. The second

step, fault understanding, entails figuring out where the failure

occurred. The third activity, fault correction, involves changing

the existing code and, in some cases, the programming strategy.

Debugging is a tedious and expensive process that significantly

raises the cost of software maintenance.

Software development costs can be significantly reduced by

using automated methods to identify and correct incorrect

statements in the program.

Several research methodologies have been created in recent

years to aid in the automation or semi-automation of a variety

of debugging jobs. In the history of automated debugging, One

of the first methods for assisting program slicing was proposed

by Weiser [4,5]. Slicing identifies all statements in a program

P that have the potential to change the value of a variable v used

at a statement s in P. Although slicing can produce sets of

relevant statements, these sets are frequently too large to aid in

debugging [8].

Several approaches to dynamic slicing have been proposed to

address this issue in the years since Korel and Laski presented

dynamic slicing, which computes slices for specific executions,

such as critical slices, relevant slices [7], data-flow slices, and

pruned slices [8]. These methods can significantly reduce the

size of slices, which may help with debugging.

Because the groups of relevant statements discovered are

generally quite large, slicing-based debugging techniques are

rarely used in practice. Other methods for detecting potentially

problematic code include comparing the characteristics of

unsuccessful program executions to those of successful

executions. This broad category of techniques has the drawback

that they are only interested in minimizing the number of

statements that developers must look at when analyzing a

failure, presuming that looking at a flawed statement in

isolation is sufficient for a developer to find and correct the

corresponding bug.

With approaches like BigSift, which makes automated

debugging a reality, the future of automated debugging seems

bright. Given a test function, BigSift finds a minimum set of

error-causing input records accountable for an undesirable

output.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 07 Issue: 03 | March - 2023 Impact Factor: 7.185 ISSN: 2582-3930

© 2023, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM18184 | Page 2

For a long time, programmers have waited for usable

automated debugging tools, and we've come a long way since

debugging began. More research should be done on more

promising paths that take into account how programmers debug

in real-world circumstances to advance the current status of

debugging.

2. Debugging Techniques and Tools

Over the years, researchers have defined increasingly complex

debugging strategies, moving from primarily manual to highly

automated techniques. The execution of each task as well as the

change in the state of the software can be monitored using the

event log. Even for distributed and large software programs,

reading through an event log can take some time. Because of

this, cutting-edge methods like program slicing and delta

debugging have been created.

2.1 Delta Debugging

Every bug in the database describes a complex scenario that

leads to software failure. Because they may contain a lot of

irrelevant information, many bug reports may be ignored. Delta

debugging is an automated technique that analyzes a test case

that results in a bug and converts bug reports into minimal test

cases in which every part of the input is tested significantly in

reproducing the failure, resulting in simpler bug reports as

shown in Fig.1.Examining an output file would be absurd to

simplify the input file while still generating the same failure.

The delta debugging technique automates this method of

reducing input through repeated trials[7].

 Fig. 1. Delta Debugging workflow

Before we can describe the algorithm, we must first define the

process. The delta debugging technique, in general, deals with

circumstances that can cause a change in program behavior. All

of the program's and its environment's possible behaviors are

included in these variable circumstances. Other applications of

Delta debugging include locating failure-inducing code

changes in programs. Given two versions of a program, one that

works correctly and the other that fails, the delta debugging

algorithm can be used to search for changes that are responsible

for the failure.

2.2 Program Slicing

Program slicing is a method that concentrates on the areas of a

program that might have caused the failure.

A program slice is what this method creates; it's a segment of

the program execution that's pertinent to a particular state or

behavior.On statement dependencies, slices are based:A

statement S2 is dependent upon a statement S1 if S1 has an

impact on the program state that S2 accesses.

 Fig. 2. Program Slicing

As shown in Fig. 2, a program slice is created by transitively

closing all dependencies that begin with a statement. When

debugging, computing the backward slice for a failing

statement yields all statements that might have contributed to

the failure. Static and dynamic slicing differ greatly from one

another. A dynamic slice only applies to the failing run and is

therefore more accurate, whereas a static slice applies to all

possible runs and is computed without making any assumptions

about a particular program run.

2.3 Indus

Indus is a module that contains the implementation of

algorithms and data structures that are common to analyses and

transformations that are or will be part of Indus. This module

contains interface definitions common to most analyses and

transformations to provide a framework in which various

analyzes and transformations can be easily combined to form

systems[7]. There are 2 more modules supported by Indus

● StaticAnalyses is a collection of static analyses such

as object-flow analysis, escape analysis, and

dependence analysis.The analyzes in this module

make use of common Indus interfaces and

implementations and may define/provide new

interfaces/implementations for new analyses.

● The Java Program Slicer module contains the core

Java programme slicer implementation as well as

adapters that deliver the slicer in other applications

such as Bandera and Eclipse.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 07 Issue: 03 | March - 2023 Impact Factor: 7.185 ISSN: 2582-3930

© 2023, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM18184 | Page 3

2.4 Algorithmic Tracing

This method of debugging employs passive user contact, in

which the user must respond but has no control over the

procedure. This implies that there is no way for the user to

switch between algorithms[3]. A large percentage of software

uses a variety of techniques to perform various operations such

as searching, sorting, and data fetching to and from modules.

The most well-known algorithms include:

● Divide-and-Query(APD), which attempts a binary

search on the execution tree.

● Top-down diagnosis (DED), which displays the trace

in breadth-first although the execution is depth-first.

2.5 Spectrum-based debugging

Monitoring the instructions in a particular execution tree is a

component of spectrum-based debugging, also referred to as

spectrum-based fault location (SFL). The program spectrum is

used to locate the active portions of the program runtime to

achieve this.

A program spectrum is a group of runtime statistics that offers

a picture of a program's changing behavior. It includes a few

flags that are related to various programmatic components.

Block hits/misses and function hits/misses are the two

categories into which program profiles are divided.

The precise line of code that runs in response to a particular or

abstract input can be located using these spectrums.

 Fig. 3. Spectrum Based Debugging

2.6 Fault Localization

The process of pinpointing the exact locations of program flaws

is known as fault localization. It takes a long time and costs a

lot of money. Its effectiveness depends on developers’

understanding of the program being debugged, their ability of

logical judgment, past experience in program debugging, and

how suspicious code, in terms of its likelihood of containing

faults, is identified and prioritized for an examination of

possible fault locations.

Research on fault localization has been ongoing, and as a result,

several tools, including Tarantula and GZOLTAR, have been

developed to address the initial stages of fault localization. The

tools described here are based on the statistical debugging

method known as "spectrum-based fault localization" (SFL),

which uses code coverage data.

Users of other debugging tools, like dbx and the Microsoft

VC++ debugger, can set breakpoints along the execution of a

program and inspect variable values and internal states at each

breakpoint. These tools offer a snapshot of the program's state

at different execution-path breakpoints. dbx is a command-line

debugging tool that is interactive and source-level.

This method's primary drawback is that users must create their

own strategies to avoid going through excessive amounts of

information for nothing. Another significant drawback is that it

is unable to narrow the search domain by giving priority to code

based on how likely it is to contain errors along a particular

execution path.

2.7 GZOLTAR

GZoltar is an Eclipse plug-in that uses cutting-edge spectrum-

based fault localization algorithms to produce precise fault

localization information and provides the most recent research

on regression testing. Additionally, it produces simple and

interactive diagnostic report visualizations like Sunburst and

Treemap.

Eclipse integration is incredibly helpful. GZoltar constructs the

System Under Test (SUT) structure for the visualization view

using Eclipse's standard features, such as detecting open

projects in the workspace and their classes. To make the

debugging process easier, GZoltar also seamlessly integrates

the code editor and the standard Eclipse warnings generation

with the offered visual diagnostic reports.

3. CONCLUSION

With this paper, we have attempted to present the current state

of automated debugging in the industry, as well as the

approaches and tools that are available, as well as the gaps in

those tools, and future study and work that needs to be carried

out. Debugging is crucial for any form of software, especially

in safety-sensitive systems, therefore developers would benefit

from having additional alternatives to investigate this topic.

The goal of automated debugging is to make it easier to locate

the source of a failure. As most software development

organizations spend a significant amount of time and money on

testing and debugging, automated debugging might save them

both time and money. Returning to the original question, "Is

Automated Debugging Still a Dream?" No, as demonstrated by

the development of technologies like Bigshift, SPIN, Path-

Based Weakest Preconditions, Language Consistency

Checking, Plan Recognition, and others, automated debugging

is not only possible but also potentially quite useful and

valuable when used efficiently. Even if there is a shortage of

understanding in this area, the growing need for error-free

software will make it simpler for organizations to reduce

uncertainty and provide successful outcomes.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 07 Issue: 03 | March - 2023 Impact Factor: 7.185 ISSN: 2582-3930

© 2023, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM18184 | Page 4

3. FUTURE WORK

In this part, we discuss future research prospects.

Extending the period of a systematic literature review to obtain

additional data on a relevant issue might help to improve the

study.

Without a doubt, present debugging approaches can meet the

needs of consumers, but they have some shortcomings that may

be addressed to improve the user experience. As this study

attempts to determine the possibility of automated debugging,

progress in the categories below would be extremely beneficial.

● Windows Integration: The vast majority of currently

available debugging approaches, such as GZoltar,

Eclipse plugins, and expanded Delta Debugging

variants, are designed to operate with the Unix

operating system.The growing popularity of the

Windows operating system demands the availability

of tools for that operating system.

● Integration of testing tools with IDEs: While

Eclipse supports some Delta Debugging plug-ins, it is

only available on unix platforms.VS Code, for

example, is a well-known IDE.Integrating debugging

tools / plug-ins with IDEs such as VS Code and Atom

would help users to save time while also eliminating

ambiguity.

● Improving from previous test results: Learning

from prior test results, whether positive or negative,

may be a highly useful metric for future testing since

the tool will gather experience from previous tests.

REFERENCES

1. Chris Parnin and Alessandro Orso. 2011. Are automated

debugging techniques actually helping programmers? In

Proceedings of the 2011 International Symposium on Software

Testing and Analysis (ISSTA '11). Association for Computing

Machinery, New York, NY, USA, 199–209.

https://doi.org/10.1145/2001420.2001445.

2. J. Rößler, "How helpful are automated debugging tools?,"

2012 First International Workshop on User Evaluation for

Software Engineering Researchers (USER), 2012, pp. 13-16,

doi: 10.1109/USER.2012.6226573.

3. M.Decasse and A. . -M. Emde, "A review of automated

debugging systems: knowledge, strategies and techniques,"

Proceedings. [1989] 11th International Conference on Software

Engineering, 1988, pp. 162-171, doi:

10.1109/ICSE.1988.93698.

4. M. Weiser. Program slicing. In Proceedings of the

International Conference on Software Engineering (ICSE 81),

pages 439–449, San Diego, CA, USA, 1981.

5. M. Weiser. Program slicing. IEEE Transactions on Software

Engineering, 10(4):352–357, 1984.

6. T. Gyimothy, A. Beszedes, and I. Forgacs. An efficient

relevant slicing method for debugging. In Proceedings of the

European Software Engineering Conference and Symposium

on the Foundations of Software Engineering (ESEC/FSE 99),

pages 303–321, London, UK, 1999.

7. WAMBUGU, Geoffrey Mariga; NJERU, Kevin Mwiti. The

Automatic Debugging approaches. International Journal of

Applied Computer Science (IJACS), [S.l.], v. 1, n. 1, p. 1-5,

sep. 2017. ISSN 2522-6258.

8. X. Zhang, N. Gupta, and R. Gupta. Pruning dynamic slices

with confidence. In Proceedings of the Conference on

Programming Language Design and Implementation (PLDI

06), pages 169–180, New York, NY, USA, 2006.

http://www.ijsrem.com/
https://doi.org/10.1145/2001420.2001445

