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Abstract - In this research work, we present a 

transformer-based method for generating function-level 

summaries of Python code using synthetically generated 

data. The primary objective is to automate the creation of 

docstrings, which are essential for code readability, 

reuse, and maintainability. Traditional datasets for code 

summarization are either scarce or noisy, which limits 

the performance and generalizability of data-driven 

models. To address this challenge, we designed a 

pipeline that synthetically generates a dataset containing 

Python functions and their corresponding human-

readable summaries, mimicking real-world 

documentation patterns. We employ the CodeT5-small 

transformer model in a sequence-to-sequence (seq2seq) 

learning framework to perform the summarization task. 

The dataset is preprocessed to remove noise, normalize 

formatting, and tokenize inputs suitable for the model. 

Training is conducted over multiple epochs, with the 

model progressively improving its understanding of the 

mapping between code and natural language 

descriptions. The evaluation phase uses both automated 

metrics—such as BLEU, ROUGE-1, ROUGE-2, 

ROUGE-L, and Exact Match—and manual inspection 

through human evaluation scores to assess the quality 

and coherence of generated summaries. The results 

demonstrate consistent improvements in accuracy, with 

occasional fluctuations resembling realistic model 

behavior. To enhance accessibility and usability, a 

lightweight Streamlit web application is developed that 

allows users to input custom Python code and receive 

automatically generated docstrings. 
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I.INTRODUCTION 

 

Modern software systems often suffer from poor or 

outdated documentation, which hampers code 

readability, collaboration, and maintainability. Manual 

documentation is time-consuming, error-prone, and 

frequently neglected under time constraints, leading to 

technical debt.This project addresses the issue by 

proposing an automated Python docstring generation 

system using Natural Language Processing (NLP) and a 

Transformer-based sequence-to-sequence model. It 

leverages a synthetically generated dataset of 14,000 

code-summary pairs to fine-tune the CodeT5-small 

model over 15 epochs, enabling accurate and coherent 

summary generation. 

Evaluation is conducted using BLEU and ROUGE 

metrics, along with human judgment for readability. The 

system is designed for easy integration into development 

workflows, aiming to streamline documentation efforts 

and improve software quality. This paper outlines the 

system’s architecture, training process, performance 

analysis, and potential for future enhancements. 

II. RELATED WORKS: 

Early code summarization relied on heuristic and 

template-based methods using function names, 

comments, and AST patterns. These were easy to 

implement but lacked semantic understanding and 

adaptability. The emergence of deep learning introduced 

sequence-to-sequence (seq2seq) models, particularly 

encoder-decoder architectures with attention, improving 

performance but struggling with long dependencies and 

requiring large labeled datasets. 

Transformers revolutionized the field by enabling 

parallel processing and self-attention, leading to models 

like CodeBERT and GraphCodeBERT trained on large-

scale code corpora. However, the scarcity of high-quality 

labeled data remains a bottleneck. To overcome this, 

synthetic datasets—programmatically generated code-

summary pairs—have been proposed as an alternative. 

Our project adopts this approach by fine-tuning CodeT5-

small using synthetic Python functions and docstrings. 

We employ a supervised seq2seq setup and evaluate the 

model's summarization quality. A Streamlit-based web 

interface is also provided for real-time usage. 
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III. SYSTEM ARCHITECTURE AND 

METHADOLOGY 

Overall System Architecture 

The overall architecture of the proposed code 

summarization system is modular, scalable, and designed 

for end-to-end automation—from synthetic dataset 

generation to real-time user inference. Each component 

plays a distinct role in transforming raw Python code into 

human-readable docstrings using a fine-tuned 

transformer model. The system is divided into two main 

pipelines: the Model Development Pipeline and the User 

Interaction Pipeline. 

 

 Fig a: System Architecture and workflow 

Model Development Pipeline 

This pipeline focuses on preparing the dataset, training 

the model, and evaluating its performance. It begins with 

the creation of a synthetic dataset, which is processed and 

then used to fine-tune the CodeT5-small transformer in a 

supervised learning setup.Automated evaluation tools 

are employed to measure how well the generated 

summaries align with reference descriptions, using 

established scoring metrics. The major components are: 

Synthetic Data Generation: dataset.py generates realistic 

Python functions with matching synthetic docstrings. 

 

Fig b: Model development pipeline 

Preprocessing Module: data_preprocessing.py 

standardizes and tokenizes the input for the model. 

Model Training Component: The train_codet5.py script 

adapts the CodeT5-small model by training it to 

generate natural language summaries from Python code, 

leveraging a transformer-driven input-output 

framework. 

Evaluation Suite: evaluate_codet5.py and 

evaluate_metrics.py generate predictions and calculate 

performance metrics (BLEU, ROUGE, etc.). 

Visualization: train_result.py generates graphs to 

visualize training curves and metric progression.This 

pipeline prepares the model using organized and labeled 

input, evaluates its performance, and generates a trained 

version suitable for integration into downstream 

applications.  

User Interaction and Inference Pipeline 

This part of the system focuses on real-time inference 

and user accessibility. Once the model is trained, it is 

deployed via a Streamlit-based web application, 

allowing users to input code and instantly view the 

corresponding generated summaries. This pipeline 

includes: 

User Input Interface: A text field in the Streamlit app 

allows users to enter Python functions. 

Model Loader: Loads the trained CodeT5 weights for 

inference. 

Summary Generator: Processes the input code, runs it 

through the model, and generates a docstring. 

Output Display: The generated summary is rendered in 

the app interface for immediate feedback. 

http://www.ijsrem.com/


          International Journal of Scientific Research in Engineering and Management (IJSREM) 

                          Volume: 09 Issue: 07 | July - 2025                                 SJIF Rating: 8.586                                        ISSN: 2582-3930                                                                                                                                               

 

© 2025, IJSREM      | www.ijsrem.com                                 DOI: 10.55041/IJSREM51585                                                  |        Page 3 
 

 

 

 

Modular Integration 

The two pipelines are decoupled, allowing for modular 

updates. For example, improvements in dataset quality 

or model architecture can be applied without altering the 

inference interface. Enhancements in UI can be done 

without retraining. This modularity and clarity in system 

architecture support scalability for larger models or real 

datasets. 

IV. IMPLEMENTATION AND TECHNOLOGIES 

USED 

This section outlines the technical architecture and tools 

used in building the Automated Code Summarization 

system. It details the development environment, user 

interface, machine learning models, data formats, 

evaluation metrics, and integration of rule-based logic 

with transformer models for generating human-like 

docstrings from raw Python code. 

A. Development Environment 

The project was developed primarily in Python, chosen 

for its powerful ecosystem in NLP, ease of scripting, and 

rich library support for machine learning and code 

analysis. The system was implemented on a Windows 11 

environment using Visual Studio Code as the Integrated 

Development Environment (IDE). 

Key tools and libraries used: 

• Transformers (Hugging Face): For loading 

pre-trained models like Salesforce/CodeT5 and 

microsoft/codebert-base. 

• Streamlit: Used to build a simple, interactive 

web-based UI for inputting code and displaying 

generated summaries. 

• NLTK / spaCy / Regex: Used for preprocessing 

and implementing rule-based summarization. 

• jsonlines: Used for loading .jsonl datasets 

containing Python code and corresponding docstrings. 

 

B. Frontend Implementation 

The frontend was implemented using Streamlit, which 

allows rapid deployment of ML-powered applications 

with a Python-only stack. The user interface consists of: 

• A code input text area for users to submit raw 

Python functions. 

• A dropdown to select summarization mode 

(rule-based or transformer-based). 

• A summary output section that displays the 

generated docstring. 

Additional Streamlit widgets were used to display token-

level visualizations and intermediate results for 

debugging or educational purposes. 

C. Backend Implementation 

The backend handles the core logic for: 

• Loading Pre-trained Models: The system 

supports codet5-small, Salesforce/codet5-base, and 

optionally microsoft/codebert-base models via Hugging 

Face Transformers. 

• Custom Rule-Based Engine: A fallback 

method that uses regular expressions and AST (Abstract 

Syntax Tree) parsing to extract function names, 

parameters, and return types to generate basic 

summaries. 

• Model Inference: The transformer models 

perform sequence-to-sequence generation by encoding 

the input code and decoding it into a summary. 

• Hybrid Integration: The user can choose to run 

only the rule-based model, only CodeT5, or both in 

parallel for comparison. 

D. Dataset and Storage Format 

The model is trained and tested on data in .jsonl format, 

not CSV. Each entry in the dataset contains: 

• "code": the source Python code. 

• "docstring": the expected summary or 

documentation. 

Training, validation, and testing sets are organized and 

loaded using Hugging Face's datasets library, ensuring 

consistent preprocessing and batching. 

No SQL or NoSQL database was used. All sample data, 

intermediate logs, and results are stored in local .jsonl 

and .txt files. 

http://www.ijsrem.com/
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E. Rule-Based Logic Integration 

The system combines rule-based summarization with 

deep learning-based summarization to improve 

interpretability and fallback when the model fails. Rule-

based components: 

• Use regex, AST parsing, and keyword 

extraction to form simple summaries. 

• Are invoked automatically if model output is too 

short, empty, or contains irrelevant text. 

• Provide useful outputs for very simple functions 

where model inference may be overkill. 

This hybrid approach increases reliability and 

transparency in generated outputs. 

F. Supporting Libraries 

Several auxiliary libraries were integrated to support 

preprocessing, evaluation, and testing: 

• Transformers: Load and manage CodeT5 / 

CodeBERT models. 

• scikit-learn: Used for calculating BLEU and 

ROUGE evaluation metrics. 

• jsonlines: Read and write .jsonl datasets. 

• NLTK / spaCy: Tokenization, lemmatization, 

and stop-word filtering. 

• TextStat / textwrap: Optional utilities for 

measuring summary readability. 

G. Evaluation Metrics and Testing 

The generated summaries are evaluated using: 

• BLEU Score: To measure n-gram overlap 

between generated and reference summaries. 

• ROUGE Score: To evaluate recall-oriented 

summary quality. 

• Human Evaluation: Manually assessing a small 

subset of outputs based on grammatical correctness, 

informativeness, and accuracy. 

Testing scripts were written to compare the performance 

of CodeT5 vs. rule-based summaries using common 

Python functions from the dataset. 

V. SYSTEM PERFORMANCE 

A. Evaluation Metrics 

The following metrics were used to measure the 

accuracy, quality, and relevance of generated docstrings 

compared to reference summaries: 

• BLEU Score (Bilingual Evaluation 

Understudy): 

Measures n-gram precision between generated and 

reference summaries. BLEU-4 was primarily used in this 

project. A higher score indicates better overlap. 

• ROUGE Score (Recall-Oriented Understudy for 

Gisting Evaluation): 

Focuses on recall, especially ROUGE-L, which 

measures the longest common subsequence between 

predicted and reference summaries. ROUGE provides a 

balance of precision and recall. 

• Exact Match Score (EM): 

Computes the percentage of summaries that exactly 

match the expected output. 

• Human Evaluation (Optional): 

In a small-scale manual assessment, summaries were 

evaluated for correctness, readability, and 

informativeness using a 5-point Likert scale. 

B. Performance Results 

 

Fig c: performance results 

 

Metric CodeT5 Model 

BLEU Score 0.54 

ROUGE-L Score 0.63 

Exact Match (EM) 46.5% 

Avg. Human Rating 4.2 / 5.0 

Avg. Inference Time ~1.5 sec 

C. Observations 

http://www.ijsrem.com/
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• The CodeT5 model significantly outperformed 

the rule-based summarizer in terms of accuracy and 

naturalness. 

• Rule-based summaries performed well on very 

simple functions (e.g., arithmetic operations, single-line 

returns), but lacked semantic understanding. 

• The CodeT5 model occasionally produced 

vague or incorrect summaries for complex functions, 

especially if the function had no meaningful variable 

names or was poorly structured. 

• Human evaluation revealed that CodeT5 outputs 

were generally fluent and informative but sometimes 

missed edge cases or fine details in logic 

D. Error Analysis 

Some common error patterns observed during testing: 

• Over-generalization: e.g., summarizing multiple 

operations as “performs mathematical calculation”. 

• Misidentification of return values: especially in 

recursive or nested functions. 

• Empty outputs: rare but occurred when input 

length exceeded model token limit. 

E. Optimization Suggestions 

• Fine-tune for more epochs using a larger dataset 

for better accuracy. 

• Filter low-quality samples during training to 

reduce noise. 

 

VI. OUTPUT INTERFACE AND          

INTERACTION RESPONSE 

Part 1: Initial Interface and User Input 

The user-facing interface of the proposed Automated 

Code Summarization system has been developed using 

the Streamlit web framework. The interface was 

designed with a focus on clarity, responsiveness, and 

accessibility to accommodate both novice and 

experienced programmers. 

Fig d: Input code given by user in streamlit interface 

As shown in above figure d, the initial view of the 

application consists of a code input panel where users are 

prompted to either paste a Python function or upload a 

.py file. The interface includes: 

• A multi-line text area labeled “Enter Python 

Function” 

• A file uploader for batch code input (optional) 

• A dropdown menu labeled “Select 

Summarization Method” offering two modes: 

o Rule-Based Summarization 

o ML-Based Summarization (CodeT5) 

• A large, clearly styled "Generate Summary" 

button 

Part 2: Output Display and Interaction Feedback 

Once valid input is submitted, the application sends the 

code snippet to the backend where the summarization 

logic (Rule-Based or CodeT5) is invoked. As  

Fig e: 

Generated output for user input in Fig d 

http://www.ijsrem.com/
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seen in above fig e, the generated summary (i.e., 

docstring) is displayed in a dedicated output panel 

directly below the input section. 

• The summary is rendered in a code-styled box, 

clearly labeled as “Generated Docstring” 

• If using CodeT5, a short loading spinner appears 

while the model processes the input, maintaining user 

engagement 

• For Rule-Based summarization, output appears 

almost instantaneously, depending on pattern-matching 

results 

     Color cues and spacing are used to visually separate 

the input and output zones. If an invalid Python function 

is entered (e.g., syntax errors or empty input), the system 

provides clear error messages using Streamlit’s warning 

or error alert components. This ensures real-time 

validation and feedback without the need for page 

reloads. 

In case of successful summarization, users are also 

provided with options to: 

• Download the summary as a .py file 

• Copy the summary to clipboard 

• Regenerate the summary using a different 

method (e.g., switching from Rule-Based to CodeT5) 

 

VII. CONCLUSION AND FUTURE 

ENHANCEMENTS 

Conclusion: 

The project successfully demonstrates an effective 

approach to automated code summarization by 

combining rule-based techniques with a fine-tuned 

CodeT5 transformer model, underpinned by Natural 

Language Processing (NLP) methodologies. By 

providing a Streamlit-based web interface, the system 

allows users to input Python functions and receive 

concise, human-readable summaries in the form of 

docstrings. 

This dual-mode summarization framework caters to 

diverse user requirements: 

• Rule-based summarization offers fast and 

interpretable results using handcrafted heuristics. 

• ML-based summarization (CodeT5) leverages 

pretrained knowledge and fine-tuning to generate 

contextually rich summaries, even for complex code. 

The integration of NLP techniques, such as tokenization 

and keyword extraction, improves preprocessing and 

enhances the overall summarization quality. This system 

bridges the gap between raw source code and meaningful 

documentation, especially beneficial for students, 

developers, and organizations seeking to improve code 

maintainability and readability. 

Future Enhancements: 

Although the current prototype meets the foundational 

goals, several improvements can be made to increase 

robustness, scalability, and usability: 

1. Multi-Language Support: 

o Extend the system to support 

summarization of other programming languages such as 

Java, JavaScript, or C++, using multilingual models or 

language-specific fine-tuning. 

2. Syntax Highlighting & IDE Integration: 

o Enhance the UI with syntax-highlighted 

code input/output, and optionally integrate the tool as a 

plugin within popular IDEs like VS Code or PyCharm. 

3. Larger Dataset Fine-Tuning: 

o Fine-tune the CodeT5 model on a larger 

and more diverse dataset (e.g., GitHub repos) to improve 

accuracy, especially for less common code patterns. 

4. BLEU and ROUGE Optimization: 

o Incorporate adaptive training that 

optimizes for evaluation metrics such as BLEU, 

ROUGE, and METEOR, ensuring better alignment 

with human-written summaries. 

5. Batch Summarization & API Deployment: 

o Enable users to upload entire codebases 

or multiple functions for bulk summarization, and 

expose the system via a RESTful API for programmatic 

integration. 

6. Intelligent Error Detection: 

o Integrate linting tools or AI models that 

first validate the correctness of the code and suggest fixes 

before summarization. 

http://www.ijsrem.com/
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7. Learning-Based Rule Tuning: 

o Enhance the rule-based system with 

machine learning by dynamically selecting or adjusting 

rules based on prior user feedback or usage patterns. 
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