

Automated Leaf Disease Diagnosis with Deep Learning

Sakshi Abhale¹, Shrutika Bhavsar², Kadambari Ghadge³, Akash Sale⁴

¹ Electronics & Telecommunication, Sinhgad Institute of Technology and Science, Narhe, Pune ²Electronics & Telecommunication, Sinhgad Institute of Technology and Science, Narhe, Pune ³Electronics & Telecommunication, Sinhgad Institute of Technology and Science, Narhe, Pune ⁴Electronics & Telecommunication, Sinhgad Institute of Technology and Science, Narhe, Pune

Abstract - Agriculture is crucial for India's economy, but one problem is identifying plant diseases, especially in remote areas where contacting experts is difficult. Wrong disease identification can lead to crop loss. Even government agriculture departments sometimes give incorrect advice to farmers. To tackle this, a dataset of apple crop images has been created to help identify healthy and diseased leaves accurately. These images come from different angles and directly from apple fields. The early disease detection in agriculture, particularly focusing on diseases affecting apple crops. Specifically, it mentions diseases like early blight, late blight, black scurf, common scab that can affect apple plants. It discusses using automatic methods like Convolutional Neural Networks (CNN) to detect and classify these diseases based on a dataset. The approach involves automatic feature extraction and classification using colur information.

1.INTRODUCTION

The "Automated Leaf Disease Diagnosis with Deep Learning" project utilizes smart technology, specifically Convolutional Neural Networks (CNN), to accurately distinguish between healthy and diseased apple leaves. By analyzing images from plots, the CNN algorithm detects diseases reliably, allowing farmers to take timely action to protect their plants. This approach not only assists in disease identification but also reduces farming costs by preventing further damage to crops. Project that helps farmers detect diseases in apple crops using smart technology. They use a computer program called a Convolutional Neural Network (CNN) to analyze images of apple leaves and accurately identify any diseases. This helps farmers take quick action to protect their plants, reducing costs and promoting healthier harvests. Ultimately, the project aims to enhance farming practices, promote sustainable agriculture, and contribute to global food security by leveraging technology automated advanced for disease identification in apple crops.

2. Literature Review

Paper No	Technology Used	Methodology	Accuracy
[1]	Machine Learning	They used a DL approach based on the Google Net Inception structure and the rainbow concatenation for apple leaf disease detection. They generated a custom dataset of 2,029 images of diseased apple leaves and trained their algorithm to detect five common apple leaf diseases: Alternaria leaf spot, brown spot, mosaic, grey spot, and rust.[1]	78.80%
[2]	Machine Learning	The goal of Huang et al was to develop a decision support system for spraying machines that could identify Helminthosporium leaf spots in wheat fields using remote sensing data from a UAV. The dataset was divided into four categories based on disease severity: normal, light, medium, and heavy. In the preprocessing step, they extracted $100 \times$ 100 samples from the images [2]	91.43%
[3]	Deep Learning	Karlekar and Seal proposed a computer	98.14%

Volume: 08 Issue: 04 | April - 2024

SJIF Rating: 8.448

ISSN: 2582-3930

		identify and categorize				divided into 15	
		loof discasses present in				alogoifications is used	
		lear diseases present in				to halp with plant	
		soybean crops. The				to help with plant	
		proposed approach				disease recognition	
		separates the leaf				study.[5]	
		section by removing		[6]	Deep	Oppenheim and Shani	96%
		the complex			Learning	[20] used a CNN	
		background from the				based on VGG [21] to	
		entire image.				classify potatoes into	
		Following this, a deep				five classes, four	
		learning Convolutional				diseased ones and a	
		Neural Network				healthy potato class.	
		(CNN) known as Soy				They acquired 400	
		Net, trained on a 16-				images of	
		class dataset called				contaminated potatoes	
		PDDB [3]				using three simple	
[4]	Deen	Mohanty et al trained	99%			digital cameras and	
ניין	Loorning	Alax Nat and Googla	5570			augmented date by	
	Learning	Net for detecting 26				flipping and gropping	
		Net for detecting 20				the images. In the	
		diseases on 14 crop				the images. In the	
		species using the Plant				preprocessing step,	
		Village dataset with				they downsized	
		54, 306 images. In the				images to 224×224	
		preprocessing step,				and converted to	
		they downsized				grayscale.[6]	
		images to 256×256 .		[7]	Machine	Khalili et al. [68]	96.79%
		They also			Learning	experimented with six	
		experimented with the				different ML	
		original Plant Village				algorithms, namely	
		dataset, with a grey-				MLP, Gradient Tree	
		scaled version of this				Boosting (GBT), L1	
		dataset, and a version				regularization (LR-	
		in which the leaves				L1), L2 regularization	
		were segmented.[4]				(LR-L2). SVM. and	
[5]	Deep	P Vishnu, K Sangeetha	96.63%			RF in order to forecast	
r 1	Learning	Ninisa B A .Samiksha				charcoal rot disease in	
	0	. Saniutha et.al.				sovbean on a custom	
		examined the problem				dataset [69] of 2 000	
		of plant disease				healthy and diseased	
		detection which is				nlants [7]	
		done visually for		[9]	Machina	Author introduced a	09.40/
		identification of plant		[0]	Lorning	CNN model with eight	50.470
		disease Compared to			Learning	hiddon lovers that is	
		other forma of				lightweight	
		photographic shots				designed f	
		photographic photos,				designed for	
		plant disease images				classifying nine types	
		are more likely to				of diseases in tomato	
		reature randomly				crops. The model	
		spread lesions,				outperformed	
		variable symptoms,				traditional ML	
		and complicated				techniques and pre-	
		backdrops, making				trained models with an	
		discriminative in-				accuracy of 98.4% on	
		tormation difficult to				the publicly available	
		capture. Plant Village				Plant Village dataset,	
		Dataset, which				which had 200–1400	
		contains 20,000 photos				images in different	

I

Volume: 08 Issue: 04 | April - 2024

SJIF Rating: 8.448

ISSN: 2582-3930

		classes.[8]	
[9]	Deep Learning	Wang et al trained and fine-tuned four CNN models, for detecting apple leaf black rot. The authors utilized the Plant Village dataset, which contained two classes of images: healthy apple leaves and apple leaf black rot. The images were further categorized by botanists into four stages: healthy, early stage, middle stage, and end stage.[9]	90.4%
[10]	Deep Learning	Author introduced a multi-stage CNN architecture that was based on AlexNet, aimed at identifying diseases in rice plants. They preprocessed the images by resizing them to 512×512 pixels and then applied the ZCAWhitening technique to remove the correlation between data.[10]	

Problem Statement:

To develop an advanced deep learning system that can accurately detect and diagnose plant leaf diseases by leveraging cutting-edge computer vision techniques and deep neural networks for early disease identification to enhance plant health and agricultural productivity.

Experimentation Platform:

The experiment was done using Google Collab, which is an online platform for coding, and a dataset that had pictures of apple leaves with five types of diseases, plus some pictures of healthy leaves.

Language: Python

Algorithm: CNN

Library: Matplotlib, NumPy, Pandas, Tensor Flow

Summary

This project helps farmers by improving crop yields and managing diseases. It identifies problems early on, which helps increase productivity. In the future, it can detect diseases in multiple crops and use data to predict and prevent diseases. Farmers can access this through easy-to-use apps, making it simpler to identify and address plant diseases.

REFERENCES

- 1 P. Jiang, Y. Chen, B. Liu, D. He, and C. Liang, "Realtime detection of apple leaf diseases using deep learning approach based on improved convolutional neural networks," IEEE Access, vol. 7, pp. 59069– 59080, 2019.[1]
- 2. H. Huang, J. Deng, Y. Lan, A. Yang, L. Zhang, S. Wen, H. Zhang, Y. Zhang, and Y. Deng, "Detection of helminthosporium leaf blotch disease based on UAV imagery," Appl. Sci., vol. 9, no. 3, p. 558, Feb. 2019.[2]
- A. Karlekar and A. Seal, "SoyNet: Soybean leaf diseases classification," Comput. Electron. Agricult., vol. 172, May 2020, Art. no. 105342.[3]
- 4. S.P. Mohanty, D. P. Hughes, and M. Salathe, "Using deep learning for image-based plant disease detection," Frontiers Plant Sci., vol. 7, p. 1419, Sep. 2016.[4]
- 5. P. V. Raja, K. Sangeetha, N. B A, S. M and S. S S, "Convolutional Neural Networks based Classification and Detection of Plant Disease," 2022 6th International Conference on 1488.[5]
- D. Oppenheim and G. Shani, "Potato disease classification using convolution neural networks," Adv. Animal Biosci., vol. 8, no. 2, pp. 244–249, 2017.[6]
- E.Khalili, S. Kouchaki, S. Ramazi, and F. Ghanati, "Machine learning techniques for soybean charcoal rot disease prediction," Frontiers Plant Sci., vol. 11, Dec. 2020, Art. no. 590529 .[7]
- M. Agarwal, S. K. Gupta, and K. K. Biswas, "Development of efficient CNN model for tomato crop disease identification," Sustain. Comput., Informat. Syst., vol. 28, Dec. 2020, Art. no. 100407. [8]
- G. Wang, Y. Sun, and J. Wang, "Automatic imagebased plant disease severity estimation using deep learning," Comput. Intell. Neurosci., vol. 2017, pp. 1–8, Jul. 2017. [9]

10. Y. Lu, S. Yi, N. Zeng, Y. Liu, and Y. Zhang, "Identification of rice diseases using deep convolutional neural networks," Neurocomputing, vol. 267, pp. 378–384, Dec. 2017. [10]

I