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Abstract - Lung cancer remains a leading cause of cancer-

related mortality worldwide, primarily due to late-stage 

diagnosis. Early and accurate detection from Computed 

Tomography (CT) scans is critical but is often hindered by the 

time-consuming and subjective nature of manual interpretation. 

This paper presents a deep learning-based system for the 

automated classification of lung CT images into Normal, Benign, 

and Malignant categories. We leverage an MLOps-driven 

pipeline to ensure reproducibility and scalability. The system 

employs transfer learning with VGG16 and Vision Transformer 

(ViT) architectures and introduces knowledge distillation to train 

a lightweight, efficient student model (VGG16) from a high-

performing teacher model (ViT). Our dataset of 2,097 CT 

images was balanced using data augmentation and oversampling. 

The final distilled VGG16 model achieves a test accuracy of 

98.09%, matching the performance of the larger teacher model 

while being significantly more efficient. This demonstrates that 

knowledge distillation can produce clinically viable models that 

balance high accuracy with the practical requirements for 

deployment in real-world healthcare settings. 
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1.INTRODUCTION 

 
Lung cancer is the most fatal cancer globally, with a starkly low 

survival rate that is directly linked to late-stage diagnosis [1]. 

Early detection is the most effective strategy to improve patient 

outcomes. Computed Tomography (CT) is the clinical standard 

for thoracic imaging, providing detailed cross-sectional images 

that can reveal nascent pulmonary nodules. However, the manual 

review of these scans is a significant bottleneck in the diagnostic 

pathway. Radiologists must meticulously analyze hundreds of 

slices per patient, a process that is not only labor-intensive but 

also susceptible to perceptual errors, fatigue, and high inter-

observer variability [2]. 

To address these challenges, this project develops an automated 

system for classifying lung CT scan images into three clinically 

relevant classes: Normal, Benign, and Malignant. The primary 

goal is to create a reliable decision-support tool for radiologists 

that can accelerate diagnosis, improve consistency, and enhance 

accuracy. 

A secondary but equally important objective is to build this 

system within a robust Machine Learning Operations (MLOps) 

framework. This ensures that the entire development lifecycle—

from data ingestion and training to evaluation—is reproducible, 

traceable, and scalable. By using tools like DVC for pipeline 

orchestration and MLflow for experiment tracking, we establish a 

production-ready workflow. Furthermore, we explore advanced 

techniques like knowledge distillation to create a model that is not 

only accurate but also computationally efficient, making it 

suitable for deployment in resource-constrained clinical 

environments. 

 

II. RELATED WORK 
The effort to automate the analysis of medical images is not new. 

Early attempts relied on classical machine learning and 

computer-aided diagnosis (CADx) systems. 

 

A. Classical Machine Learning Approaches Traditional CADx 

systems were based on a "handcrafted" feature engineering 

pipeline [3]. This involved complex, multi-stage processes 

including image preprocessing, nodule segmentation, and the 

manual extraction of quantitative features (e.g., size, sphericity, 

texture). These features were then fed into classifiers like 

Support Vector Machines (SVMs) or Random Forests. While 

pioneering, these systems were often brittle, highly dependent on 

the accuracy of the segmentation step, and struggled to 

generalize to new data from different scanners or hospitals. 

B. The Rise of Deep Learning The advent of deep learning, 

particularly Convolutional Neural Networks (CNNs), marked a 

paradigm shift. Architectures like VGG16 [4], with their ability 

to learn hierarchical features directly from raw pixel data, 

demonstrated superior performance. VGG16’s deep stack of 

small 3x3 convolutional filters proved effective for image 

classification and became a popular choice for transfer learning 

in the medical domain. 

More recently, the Vision Transformer (ViT) [5], adapted from 

natural language processing, has emerged as a powerful 

alternative. By using a self-attention mechanism, ViT can model 

long-range dependencies across the entire image from its first 

layer, giving it a global receptive field that is highly 

advantageous for interpreting complex patterns in medical 

images. 

C. Knowledge Distillation for Clinical Efficiency While large 

models like ViT achieve high accuracy, their size and 

computational cost can be prohibitive for clinical deployment. 

Knowledge distillation [6] offers a solution. In this teacher-

student paradigm, the knowledge from a large, high-performing 

"teacher" model is transferred to a smaller, more efficient 

"student" model. The student is trained to mimic the teacher's 

output probability distribution, allowing it to learn a more 

effective generalization policy than it could from hard labels 

alone. This enables the development of models that are both 

accurate and practical. 

 

III. METHODOLOGY 
The system was developed using a structured, modular MLOps 

pipeline to ensure rigor and reproducibility. This section details 

the data preparation, model architectures, and training strategies 

employed. 
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A. Dataset and Preprocessing 

The dataset consists of 2,097 2D CT scan image slices, 

categorized into Benign, Malignant, and Normal cases. The data 

was partitioned using stratified splitting into training (1341 

images), validation (336 images), and test (420 images) sets. 

The initial training set was imbalanced. To address this, we 

employed data augmentation and oversampling. Augmentation 

techniques applied to the training set included: 

• Random horizontal flipping 

• Random rotation (up to 15 degrees) 

• Random zoom and shifts 

Oversampling was then used to augment the minority classes 

(Malignant and Normal) to match the sample count of the 

majority class (Benign), resulting in a balanced training set of 

approximately 600 images per class. All images were resized to 

224x224 pixels and normalized. 

B. MLOps Pipeline 

The project was architected as a Directed Acyclic Graph (DAG) 

of automated stages orchestrated by DVC. Key stages included 

data ingestion, augmentation, model training, and evaluation. 

MLflow was integrated to log all experiments, including 

hyperparameters, performance metrics, learning curves, and 

model artifacts. This setup provides a complete, traceable record 

of every experiment, facilitating data-driven model selection. 

C. Model Architectures 

1. VGG16 (Student Model): We used a VGG16 model pretrained 

on ImageNet. The convolutional base was frozen, and the final 

fully connected classifier was replaced with a new head adapted 

for our 3-class problem. This served as both a performance 

baseline and the "student" in our distillation experiments. 

2. Vision Transformer (ViT - Teacher Model): A ViT model, 

pretrained on a large corpus of medical images, was selected as 

our high-performance "teacher" model. Its self-attention 

mechanism is well-suited to capturing the global context and 

subtle textural details present in CT scans. 

D. Knowledge Distillation 

To create a final model that is both accurate and efficient, we 

used knowledge distillation. The goal was to transfer the 

diagnostic capabilities of the large ViT teacher model to the 

lightweight VGG16 student model. The student was trained 

using a composite loss function: 

Ltotal = α * LCE + (1 - α) * LDistill 

where: 

• LCE is the standard Cross-Entropy loss between the student's 

predictions and the true labels. 

• LDistill is the Kullback-Leibler (KL) Divergence loss between 

the softened probability distributions of the teacher and student 

models. 

• α is a hyperparameter that balances the two loss terms. 

• The softening is controlled by a temperature parameter, T. 

This process guides the student to learn the nuanced decision 

boundaries of the teacher, resulting in improved performance. 

 

IV. EXPERIMENTAL SETUP 
All experiments were conducted using Python with the PyTorch 

deep learning framework. Training was performed on Google 

Colaboratory using NVIDIA T4 GPUs. The models were 

evaluated on the held-out test set using standard classification 

metrics: Accuracy, Precision, Recall, and F1-Score. The 

confusion matrix was also analyzed to understand specific error 

patterns. 

 

 

 

V. RESULTS AND DISCUSSION 
The performance of each model was systematically evaluated on 

the test set. The results are summarized in Table I. 

 

The baseline VGG16 model achieved a strong accuracy of 

97.14%, demonstrating the effectiveness of transfer learning. 

The larger ViT teacher model improved upon this, reaching 

98.09% accuracy with a notably higher recall for the critical 

Malignant class. 

Remarkably, the distilled VGG16 student model matched the 

98.09% accuracy of its much larger teacher. It inherited the 

teacher's ability to correctly identify malignant cases while 

retaining the computational efficiency of the VGG16 

architecture. Analysis of the confusion matrix for the distilled 

model revealed only 2 false negatives for the Malignant class out 

of 112 actual cases, highlighting its clinical reliability. 

These results validate our hypothesis that knowledge distillation 

is an exceptionally effective technique for developing high-

performance, lightweight models for medical image analysis. 

 

VI. FUTURE WORK 
While the current system is robust, several avenues for future 

work exist. These include integrating Explainable AI (XAI) 

techniques like Grad-CAM to visualize model decisions, 

expanding the dataset with more diverse and rare cases, and 

exploring federated learning to train models across multiple 

institutions without sharing sensitive patient data. The ultimate 

goal is to deploy the system in a real-time clinical setting for 

prospective validation. 

 

VII. CONCLUSION 
This project successfully developed and validated an end-to-end 

deep learning pipeline for automated lung cancer classification 

from CT scans. By leveraging knowledge distillation, we 

produced a lightweight VGG16 model that achieves a state-of-

the-art accuracy of 98.09%, matching the performance of a much 

larger Vision Transformer. The integration of an MLOps 

framework ensures that the system is reproducible, scalable, and 

ready for clinical deployment. This work serves as a strong 

proof-of-concept for how advanced AI techniques can be 
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practically applied to create efficient and reliable tools to aid 

radiologists, accelerate diagnosis, and ultimately improve patient 

outcomes in the fight against lung cancer. 
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