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Abstract - Lung cancer remains a leading cause of cancer-
related mortality worldwide, primarily due to late-stage
diagnosis. Early and accurate detection from Computed
Tomography (CT) scans is critical but is often hindered by the
time-consuming and subjective nature of manual interpretation.
This paper presents a deep learning-based system for the
automated classification of lung CT images into Normal, Benign,
and Malignant categories. We leverage an MLOps-driven
pipeline to ensure reproducibility and scalability. The system
employs transfer learning with VGG16 and Vision Transformer
(ViT) architectures and introduces knowledge distillation to train
a lightweight, efficient student model (VGG16) from a high-
performing teacher model (ViT). Our dataset of 2,097 CT
images was balanced using data augmentation and oversampling.
The final distilled VGG16 model achieves a test accuracy of
98.09%, matching the performance of the larger teacher model
while being significantly more efficient. This demonstrates that
knowledge distillation can produce clinically viable models that
balance high accuracy with the practical requirements for
deployment in real-world healthcare settings.
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1.INTRODUCTION

Lung cancer is the most fatal cancer globally, with a starkly low
survival rate that is directly linked to late-stage diagnosis [1].
Early detection is the most effective strategy to improve patient
outcomes. Computed Tomography (CT) is the clinical standard
for thoracic imaging, providing detailed cross-sectional images
that can reveal nascent pulmonary nodules. However, the manual
review of these scans is a significant bottleneck in the diagnostic
pathway. Radiologists must meticulously analyze hundreds of
slices per patient, a process that is not only labor-intensive but
also susceptible to perceptual errors, fatigue, and high inter-
observer variability [2].

To address these challenges, this project develops an automated
system for classifying lung CT scan images into three clinically
relevant classes: Normal, Benign, and Malignant. The primary
goal is to create a reliable decision-support tool for radiologists
that can accelerate diagnosis, improve consistency, and enhance
accuracy.

A secondary but equally important objective is to build this
system within a robust Machine Learning Operations (MLOps)
framework. This ensures that the entire development lifecycle—
from data ingestion and training to evaluation—is reproducible,
traceable, and scalable. By using tools like DVC for pipeline
orchestration and MLflow for experiment tracking, we establish a
production-ready workflow. Furthermore, we explore advanced

techniques like knowledge distillation to create a model that is not
only accurate but also computationally efficient, making it

suitable for deployment in resource-constrained clinical
environments.
II. RELATED WORK

The effort to automate the analysis of medical images is not new.
Early attempts relied on classical machine learning and
computer-aided diagnosis (CADx) systems.

A. Classical Machine Learning Approaches Traditional CADx
systems were based on a "handcrafted" feature engineering
pipeline [3]. This involved complex, multi-stage processes
including image preprocessing, nodule segmentation, and the
manual extraction of quantitative features (e.g., size, sphericity,
texture). These features were then fed into classifiers like
Support Vector Machines (SVMs) or Random Forests. While
pioneering, these systems were often brittle, highly dependent on
the accuracy of the segmentation step, and struggled to
generalize to new data from different scanners or hospitals.

B. The Rise of Deep Learning The advent of deep learning,
particularly Convolutional Neural Networks (CNNs), marked a
paradigm shift. Architectures like VGG16 [4], with their ability
to learn hierarchical features directly from raw pixel data,
demonstrated superior performance. VGG16’s deep stack of
small 3x3 convolutional filters proved effective for image
classification and became a popular choice for transfer learning
in the medical domain.

More recently, the Vision Transformer (ViT) [5], adapted from
natural language processing, has emerged as a powerful
alternative. By using a self-attention mechanism, ViT can model
long-range dependencies across the entire image from its first
layer, giving it a global receptive field that is highly
advantageous for interpreting complex patterns in medical
images.

C. Knowledge Distillation for Clinical Efficiency While large
models like ViT achieve high accuracy, their size and
computational cost can be prohibitive for clinical deployment.
Knowledge distillation [6] offers a solution. In this teacher-
student paradigm, the knowledge from a large, high-performing
"teacher" model is transferred to a smaller, more efficient
"student" model. The student is trained to mimic the teacher's
output probability distribution, allowing it to learn a more
effective generalization policy than it could from hard labels
alone. This enables the development of models that are both
accurate and practical.

III. METHODOLOGY

The system was developed using a structured, modular MLOps
pipeline to ensure rigor and reproducibility. This section details
the data preparation, model architectures, and training strategies
employed.
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A. Dataset and Preprocessing

The dataset consists of 2,097 2D CT scan image slices,
categorized into Benign, Malignant, and Normal cases. The data
was partitioned using stratified splitting into training (1341
images), validation (336 images), and test (420 images) sets.

The initial training set was imbalanced. To address this, we
employed data augmentation and oversampling. Augmentation
techniques applied to the training set included:

* Random horizontal flipping

* Random rotation (up to 15 degrees)

* Random zoom and shifts

Oversampling was then used to augment the minority classes
(Malignant and Normal) to match the sample count of the
majority class (Benign), resulting in a balanced training set of
approximately 600 images per class. All images were resized to
224x224 pixels and normalized.

B. MLOps Pipeline

The project was architected as a Directed Acyclic Graph (DAG)
of automated stages orchestrated by DVC. Key stages included
data ingestion, augmentation, model training, and evaluation.
MLflow was integrated to log all experiments, including
hyperparameters, performance metrics, learning curves, and
model artifacts. This setup provides a complete, traceable record
of every experiment, facilitating data-driven model selection.

C. Model Architectures

1. VGG16 (Student Model): We used a VGG16 model pretrained
on ImageNet. The convolutional base was frozen, and the final
fully connected classifier was replaced with a new head adapted
for our 3-class problem. This served as both a performance
baseline and the "student" in our distillation experiments.

2. Vision Transformer (ViT - Teacher Model): A ViT model,
pretrained on a large corpus of medical images, was selected as
our high-performance "teacher" model. Its self-attention
mechanism is well-suited to capturing the global context and
subtle textural details present in CT scans.

D. Knowledge Distillation

To create a final model that is both accurate and efficient, we
used knowledge distillation. The goal was to transfer the
diagnostic capabilities of the large ViT teacher model to the
lightweight VGG16 student model. The student was trained
using a composite loss function:

Ltotal = a * LCE + (1 - a) * LDistill

where:

* LCE is the standard Cross-Entropy loss between the student's
predictions and the true labels.

* LDistill is the Kullback-Leibler (KL) Divergence loss between
the softened probability distributions of the teacher and student
models.

* o is a hyperparameter that balances the two loss terms.

* The softening is controlled by a temperature parameter, T.

This process guides the student to learn the nuanced decision
boundaries of the teacher, resulting in improved performance.

IV. EXPERIMENTAL SETUP

All experiments were conducted using Python with the PyTorch
deep learning framework. Training was performed on Google
Colaboratory using NVIDIA T4 GPUs. The models were
evaluated on the held-out test set using standard classification
metrics: Accuracy, Precision, Recall, and F1-Score. The
confusion matrix was also analyzed to understand specific error
patterns.

V. RESULTS AND DISCUSSION
The performance of each model was systematically evaluated on
the test set. The results are summarized in Table I.

Model Recall F1-Score
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Accurac Precision
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VGGl
6
(Trans
fer
Learni

ng)

97.14% 0.96 0.96 0.96

ViT 98.09% 0.97 0.98 0.98
(Teach
er)

VGGl
6
(Distill
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t)

98.09% 0.97 0.98 0.98

The baseline VGG16 model achieved a strong accuracy of
97.14%, demonstrating the effectiveness of transfer learning.
The larger ViT teacher model improved upon this, reaching
98.09% accuracy with a notably higher recall for the critical
Malignant class.

Remarkably, the distilled VGG16 student model matched the
98.09% accuracy of its much larger teacher. It inherited the
teacher's ability to correctly identify malignant cases while
retaining the computational efficiency of the VGGI16
architecture. Analysis of the confusion matrix for the distilled
model revealed only 2 false negatives for the Malignant class out
of 112 actual cases, highlighting its clinical reliability.

These results validate our hypothesis that knowledge distillation
is an exceptionally effective technique for developing high-
performance, lightweight models for medical image analysis.

VI. FUTURE WORK

While the current system is robust, several avenues for future
work exist. These include integrating Explainable Al (XAI)
techniques like Grad-CAM to visualize model decisions,
expanding the dataset with more diverse and rare cases, and
exploring federated learning to train models across multiple
institutions without sharing sensitive patient data. The ultimate
goal is to deploy the system in a real-time clinical setting for
prospective validation.

VII. CONCLUSION

This project successfully developed and validated an end-to-end
deep learning pipeline for automated lung cancer classification
from CT scans. By leveraging knowledge distillation, we
produced a lightweight VGG16 model that achieves a state-of-
the-art accuracy of 98.09%, matching the performance of a much
larger Vision Transformer. The integration of an MLOps
framework ensures that the system is reproducible, scalable, and
ready for clinical deployment. This work serves as a strong
proof-of-concept for how advanced Al techniques can be
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practically applied to create efficient and reliable tools to aid
radiologists, accelerate diagnosis, and ultimately improve patient
outcomes in the fight against lung cancer.
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