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Abstract— Traditional methods of diagnosing plant 

diseases are mainly based on expert diagnosis which easily 

causes delay in crop disease control and crop management. 

Due to the problems of many target areas and similar target 

types in the process of plant disease detection, the 

identification accuracy and speed are required to be high. 

Therefore, it is necessary to optimize and improve the existing 

methods (CNN, RCNN, Fast RCNN, Faster RCNN, and SSD) 

to meet the detection needs. So, we came up with a deep 

learning-based approach to identify the plant leaf diseases 

and classify the diseases using an object detection model 

called YOLO. There are different versions of YOLO, 

proposed in recent times, in that YOLOv5 model is considered 

one of the best models and the other is the recent version, 

YOLOv8 which was proposed in 2022. So, in this paper we 

compared the two models of YOLO, YOLOv5 and YOLOv8 

on the same dataset, and found that for the dataset used the 

YOLOv5 model was found to be the better model with a mAP 

of 0.641, while the YOLOv8 model has mAP of 0.516. This 

study proposes that the YOLOv5 model is suitable for plant 

disease identification tasks by comparing it with the latest 

version of the YOLOv8 model which was proposed in 2022. 

To make the YOLO model to be better it can be optimized and 

the transfer learning ability of the model can be used to 

expand the application scope in the future. 

Keywords— Deep Learning, CNN, RCNN, Fast RCNN, 

Faster RCNN, SSD, YOLO, mAP, Transfer Learning, Disease 

Classification, Detection. 

I. INTRODUCTION 

Detection of plant diseases is essential to agriculture 

because it affects crop quality, yield, and overall food 

security. Pathogen-induced diseases, which include those 

caused by fungi, bacteria, viruses, and pests, can lead to 

significant financial losses for farmers and threaten the 

world's food supplies. To implement timely intervention 

measures, such as targeted pesticide use, crop rotation, and 

genetic resistance breeding, early identification and precise 

diagnosis of plant diseases are essential. Conventional 

techniques for diagnosing diseases, which rely on visual 

inspection by human experts, are often labour- intensive, 

time-consuming, and prone to errors. To enable preventive 

management methods and reduce production losses, there 

is an urgent need for automated and effective disease 

detection systems that can quickly identify and classify 

illnesses across extensive agricultural landscapes. 

A subset of machine learning methods called "deep 

learning," which draws inspiration from the composition 

and operations of the human brain, has become a potent 

tool for automated disease diagnosis in various fields, 

including agriculture. When it comes to picture 

classification, object detection, and segmentation tasks, 

YOLO, a class of deep learning models designed for 

analyzing visual data, has shown remarkable performance. 

Deep learning algorithms can identify complex patterns 

and characteristics from photos of diseased plants, enabling 

accurate classification and localization of diseases in the 

field of plant disease detection. Deep learning models have 

the potential to revolutionize the diagnosis and treatment of 

plant diseases by leveraging large-scale datasets and 

computational resources to achieve high levels of accuracy 

and robust generalization to previously unexplored data. 

The cutting-edge object detection system known as 

YOLOv3 (You Only Look Once version 3) is renowned for 

its speed and accuracy. Instead of using multiple passes 

over an image as typically required by object detection 

algorithms, YOLOv3 employs a single-stage approach. It 

directly predicts bounding boxes and class probabilities 

from the entire image in a single feedforward pass. 

YOLOv3 is well-suited for applications requiring low-

latency inference, such as plant disease detection in the 

field, due to its real-time detection capabilities. The 

foundation of the YOLOv3 architecture is a deep 

convolutional neural network, such as Darknet-53, 

followed by several detection layers that predict bounding 

boxes and associated class probabilities. YOLOv3 has 

gained popularity for a variety of computer vision tasks, 

including object recognition in agricultural applications, 

due to its effective architecture and exceptional speed. 
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II. RELATED WORK 

      The effectiveness of YOLOv2, Faster R-CNN, and 

SSD, among other CNN architectures, has been thoroughly 

investigated in previous research on automated plant 

disease diagnosis. This research has highlighted the 

significance of large-scale annotated datasets and transfer 

learning techniques for reliable model training. 

Furthermore, studies on YOLOv3's streamlined single-

stage method and real-time object detection capabilities 

have demonstrated the platform's potential for rapid disease 

identification across various plant species and 

environmental conditions. These investigations have 

highlighted the speed and accuracy advantages of 

YOLOv3, paving the way for its application in efficient and 

successful automated plant disease detection systems in 

agriculture. 

[1] Sachin D. Khirade and A. B. Patil propose utilizing 

vegetation indices from hyperspectral data, coupled with 

the RELIEF-F algorithm and artificial neural networks 

(ANN), achieving classification accuracies ranging from 

85.2% to 93.5%. However, a limitation arises due to the 

challenge of implementing RGB applications, necessitating 

the conversion of images to grayscale. 

 

[2] Rudresh Dwivedi et al. introduce the Grape Disease 

Detection Network (GLDDN), leveraging attention 

mechanisms to achieve an impressive accuracy of 99.93% 

on a public grape disease dataset, aiming for real-time 

detection and robotic arm-based solutions. 

[3] Monzurul Islam and colleagues focus on potato disease 

detection through image segmentation and multiclass 

support vector machines (SVM), achieving a testing 

accuracy of 95% on the Plant Village Dataset, yet 

challenges persist in automatically estimating disease 

severity. 

[4] TAN NHAT PHAM et al. propose an early disease 

classification system for mango leaves using a 

combination of feed-forward neural networks (CNN) and 

hybrid metaheuristic feature selection methods, though 

sensitivity to evolving disease patterns remains a concern. 

[5] CHANGJIAN ZHOU et al. introduce a restructured 

deep residual dense network for tomato leaf disease 

identification, achieving a balance between accuracy and 

efficiency, yet concerns arise regarding image quality 

variations and model reliance on updates. 

[6] YUXIA YUAN et al. address crop disease leaf 

segmentation using a spatial pyramid-oriented encoder-

decoder cascade CNN, enhancing segmentation accuracy, 

but challenges persist with diverse backgrounds and 

lighting conditions in real-world scenarios. 

[7] R. Kavitha Lakshmi and Nickolas Savarimuthu 

propose PLDD, a deep learning-based system for plant leaf 

disease detection, utilizing Efficient Set to automatically 

estimate disease severity. 

[8] MAJJI V APPLALANAIDU and G. 

KUMARAVELAN conduct a comprehensive review of 

machine learning approaches in plant leaf disease 

detection and classification, highlighting the efficacy of 

deep learning models with CNN architecture but 

emphasizing the need for further research in pest 

recognition. 

[9] LILI LI et al. review plant disease detection and 

classification methods leveraging deep learning 

techniques, emphasizing the benefits of using GANs and 

visualization for enhanced detection, yet challenges 

remain in model clarity and adaptability to real-world 

scenarios. 

[10] HELONG YU et al. propose a method for corn leaf 

disease diagnosis utilizing k-means clustering and deep 

learning, achieving up to 96% accuracy, with future work 

focusing on optimizing results through swarm intelligence 

methods. 

[11] Sunil C. k. et al. introduce an approach for cardamom 

plant disease detection using EfficientNetV2, achieving 

98.26% accuracy, with potential extensions for identifying 

disease severity and nutrition deficiencies. 

[12] Vibhor Kumar Vishnoi et al. focus on apple plant 

disease detection using CNN, achieving 98% accuracy on 

the Plant Village dataset, highlighting the need for more 

diverse leaf images to improve disease detection. 

[13] Emmanuel Moupojou et al. introduce FieldPlant, a 

dataset of field plant images for disease detection and 

classification using deep learning, emphasizing the need 

for more accurate models tailored to field conditions. 

[14] Nikolaos Ploskas explores machine learning and deep 

learning techniques for plant disease classification and 

detection using datasets comprising apple leaf images, 
achieving high accuracy but lacking fine-grained spatial 

details in classification. 

[15] Emerson Ajith Jubilson compares multiple deep 

learning models for plant leaf disease detection and 

classification, achieving 99.69% accuracy, yet facing 

limitations such as high parameters and slow detection. 

 

III. METHODOLOGY 

  The methodology for using YOLO in automated plant 

disease detection involves systematic steps to train a robust 

model that allows accurate disease detection in plants from 

images. It starts with building a diverse dataset of images of 

healthy plants and plants with various diseases, followed by 

labelling bounding boxes to indicate disease location and 
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categories. The YOLO architecture is then configured by 

selecting the appropriate hyperparameters and adapting the 

network architecture. Data augmentation techniques 

increase the diversity of the dataset and the robustness of the 

model. Appropriate loss functions and optimizers are used 

for training, and performance is monitored by metrics such 

as precision and recall. Evaluation with a particular data set 

assesses the effectiveness and generality of the model. Fine-

tuning and optimization can be followed to improve 

performance or optimize model performance. Finally, the 

trained YOLO model is used for automatic detection of 

diseases in real agricultural environments to help in 

preventive management. This method uses the efficiency 

and precision of YOLO to promote precision agriculture, 

which improves crop health and productivity. 

                                          

 

Fig. 1. Architecture 

Fig. 2.YOLO Network 

 

A. Data Collection: 

Dataset helps you to organize unstructured data collected 

from multiple sources to get the target outcome. Initial data 

that you give to an algorithm for learning is usually called 

a training dataset. Training data is a foundation for further 

development that determines how effective and useful your 

Machine Learning system will be. However, all initial 

datasets are flawed and require some preparation before 

using them for training. For mapping data to the features 

valuable precisely for your business, you need to label it 

and make it clean. It will help you exclude useless elements 

and files, increasing the ML model’s chances of becoming 

smart. The labelling process used by Exposit usually 

includes the following steps: 

• Data Analysis 

• Creation of Data Labelling rules 

• Data labelling  

• QA Step  

• Neural Network training  

• Measurement of the output quality 

Collecting and labelling images to create a high-quality 

dataset from scratch requires a lot of resources. If you need 

to do research or create MVP, you can use publicly 

available datasets with already labeled data that can include 

up to 80 categories of different objects. Remember that if 

you use the same dataset for training, validation, and 

testing, you won’t be able to evaluate the efficiency of your 

solution objectively. At Exposit we are more likely to use 

new and unseen data for testing to ensure excellent 

performance. 

Image Dataset: A well-prepared training dataset drives the 

quality of your Machine Learning model and effectiveness 

in fulfilling business purposes. The more quality and 

accurate results you use for company decision making, the 

more relevant business strategies you can apply. A good 

dataset can also help you to save resources on future 

Machine Learning implementations as you will already 

have the quality input data. The first and most 44 important 

stage in training a deep learning model is to gather the 

necessary images and prepare the dataset on our own, or to 

select relevant existing datasets for the task and use them. 

For a Neural Network model, a collection of labeled images 

as a dataset is used to train, test and assess the performance 

of the model. Convolutional neural networks are thought to 

learn from the images in the dataset. The dataset is image-

processed before being input into the training module, 

which is constantly monitored for training accuracy and 

loss at each epoch. The dataset used for training the model 

is made up of 2321 RGB images of different plant leaf 

diseases gathered from the Kaggle website. 

Different classes of dataset: Dataset is classified into 30 

different classes Apple Scab Leaf, Apple leaf, Apple rust 

http://www.ijsrem.com/
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leaf, Bell_pepper leaf spot, Bell_pepper leaf, Blueberry 

leaf, Cherry leaf, Corn Gray leaf spot, Corn leaf blight, 

Corn rust leaf, Peach leaf, Potato leaf early blight, Potato 

leaf late blight, Potato leaf, Raspberry leaf, Soyabean leaf, 

Squash Powdery mildew leaf, Strawberry leaf, Tomato 

Early blight leaf, Tomato Septoria leaf spot, Tomato leaf 

bacterial spot, Tomato leaf late blight, Tomato leaf mosaic 

virus, Tomato leaf yellow virus, Tomato leaf, Tomato mold 

leaf, Tomato two spotted spider mites leaf, grape leaf black 

rot, grape leaf. Some of the images in the dataset are shown 

in fig.8.1 1. Apple Scab Leaf – 158 images 2. Apple leaf – 

232 images 3. Apple rust leaf – 167 images 4. Bell_pepper 

leaf spot – 312 images 5. Bell_pepper leaf – 248 images 6. 

Blueberry leaf – 796 images 7. Cherry leaf – 218 images 8. 

Corn Gray leaf spot – 72 images 9. Corn leaf blight – 356 

images 10. Corn rust leaf – 117 images 11. Peach leaf – 579 

images 12. Potato leaf early blight – 11 images 13. Potato 

leaf late blight– 301 images 14. Potato leaf – 235 images 

15. Raspberry leaf – 539 images 45 16. Soybean leaf- 246 

images 17. Soybean leaf -15 images 18. Squash Powdery 

mildew leaf – 243 images 19. Strawberry leaf – 438 images 

20. Tomato Early blight leaf – 193 images 21. Tomato 

Septoria leaf spot – 402 images 22. Tomato leaf bacterial 

spot – 373 images 23. Tomato leaf late blight – 266 images 

24. Tomato leaf mosaic virus – 204 images 25. Tomato leaf 

yellow virus - 225 images 26. Tomato leaf - 759 images 27. 

Tomato mold leaf – 279 images 28. Tomato two spotted 

spider mites leaf– 2 images 29. grape leaf black rot – 201 

images 30. grape leaf – 125 images. 

B. Dataset Collection and Preprocessing: 

The initial step involves gathering a diverse dataset 

comprising images of healthy plants and plants affected by 

various diseases. Each image is annotated with bounding 

boxes to indicate the location and classification of the 

disease. Preprocessing techniques are applied to 

standardize the image sizes, formats, and quality, ensuring 

uniformity across the dataset. 

C. Model Configuration: 

YOLO's architecture is configured by selecting appropriate 

hyperparameters and adjusting the network architecture. 

This involves determining the number of anchor boxes and 

detection layers based on the characteristics of the dataset. 

Fine-tuning may involve optimizing parameters such as the 

learning rate and batch size to enhance the model's 

performance during training. 

D. Data Augumentation: 

Data augmentation is crucial for enriching the training 

dataset and improving the model's generalization ability. 

Techniques such as random rotation, flipping, scaling, and 

brightness adjustment are applied to introduce diversity 

and robustness to the training data, helping the model learn 

invariant features across different conditions. 

E. Training: 

YOLO is configured and is trained on the augmented 

dataset suitable appropriate loss functions and optimizers. 

During training, batches of images are fed through the 

network, and the model's weights are updated iteratively to 

minimize the loss and improve performance. Common loss 

functions include binary cross-entropy or focal loss, while 

popular optimizers include Adam or stochastic gradient 

descent (SGD). 

F.    Evaluation: 

After training, trained YOLO model is evaluated on a 

separate validation dataset to assess its performance and 

generalization ability. Evaluation metrics such as precision, 

recall, and F1-score are computed to quantify the accuracy 

of the model in detecting plant diseases. Qualitative 

evaluation involves visually inspecting the model's 

predictions overlaid on test images to identify any 

discrepancies or areas for improvement. 

G.   Fine-tuning and Optimization: 

Based on the evaluation results, fine-tuning and 

optimization steps may be performed to further improve 

the model's performance or optimize its efficiency for 

deployment. This may include adjusting hyperparameters, 

exploring different loss functions or optimizers, or fine-

tuning the model architecture. Techniques such as model   

ensembling, pruning, and quantization may also be 

employed to enhance model efficiency and resource 

utilization. 

H.    Deployment: 

Finally, the trained and optimized YOLO model deployed 

in real-world agricultural settings for automated plant 

disease detection. Integration with user-friendly 

interfaces enables farmers and agricultural experts to 

interact with the system, receiving actionable insights and 

recommendations based on disease detection results. 

Continuous monitoring and feedback mechanisms ensure 

the reliability and effectiveness of the deployed system, 

facilitating proactive management practices and 

enhancing crop health and productivity. 

IV. EXPERIMENTAL RESULTS 

 Results and Analysis for YOLO 

The results obtained from implementing YOLO for object 

detection provide valuable insights into the model's 

performance in accurately detecting and localizing objects 

within images. Through a detailed analysis of classification 

and localization metrics, such as precision, recall, and 

Intersection over Union (IoU), the effectiveness and 

robustness of the YOLO model can be thoroughly assessed. 

http://www.ijsrem.com/
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Fig. 3. Disease of Potato Leaf 

 

Fig. 4. Disease of Apple Leaf 

 

Fig. 5. Soyabean Leaf 

 

Localization Performance with YOLO 

The localization performance of YOLO evaluates the 

accuracy of the model in predicting the coordinates of 

bounding boxes around detected objects. The Intersection 

over Union (IoU) metric is particularly critical for 

evaluating YOLO's localization performance because it 

quantifies the overlap between the predicted and ground 

truth bounding boxes. High Intersection over Union (IoU) 

values indicate that YOLO accurately localizes objects 

within images, with the predicted bounding boxes closely 

aligning with the ground truth. 

Analysis of YOLO Results 

Analyzing the results obtained from YOLO enables a 

comprehensive assessment of its performance and efficacy. 

High precision and recall values in classification signify 

YOLO's proficiency in accurately identifying objects and 

assigning them to their respective classes. Furthermore, 

high Intersection over Union (IoU) values indicate the 

accuracy of YOLO in localizing objects within images. 

However, areas for improvement may be identified through 

detailed analysis, such as instances of false positives or 

false negatives. These insights can inform further 

refinement of the YOLO model, guiding adjustments to 

optimize its performance and address any shortcomings. 

Overall, the results and analysis of YOLO provide valuable 

feedback for assessing its effectiveness in object detection 

tasks and guiding future enhancements to maximize its 

utility and accuracy. 

 

 

Fig. 6. Working of YOLO Algorithm 

 

Fig. 7. Confusion Matrix for built YOLOv8 model 
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V. CONCLUSION 

Crops and plants are an important part of agriculture and 

must be protected. This requires a thorough knowledge of 

the plant species cultivated and the possible diseases that the 

plants may suffer. To achieve the desired results in the 

research, we developed an automated disease detection 

model that uses image processing techniques such as 

enhancement, segmentation, feature extraction and 

classification. The YOLO network was used to determine 

whether the leaves of the plant were affected or not, which 

proved to be more accurate. These technologies help farmers 

detect diseases at an early stage so that they can monitor and 

warn against them. In order for every farmer to benefit from 

this approach, the research domain will be expanded to 

include more classifiable diseases in the future.Due to the 

increased size of the dataset, it is necessary to compare the 

YOLOv5 and YOLOv8 models. The YOLOv5 model is 

optimized as a lightweight YOLOv5 model and can then be 

compared to the latest YOLOv8 model. Transfer learning 

must be enabled to allow the model to adapt to new 

changes.Once a lightweight version of YOLOv5 is obtained, 

it is compared with the latest YOLOv8 model on several 

performance parameters, including accuracy. , speed of 

reasoning and use of resources. Taking into account 

variables including model complexity, computational needs, 

and realistic implementation considerations, this comparison 

attempts to determine whether the model is better suited to 

handling a larger data set. 

VI. FUTURE SCOPE 

The validation process involved evaluating the effectiveness 

of the project against the original requirements and 

objectives. This process allowed the development team to 

identify areas that needed improvement and optimize the 

project accordingly. The test and validation metric is 

important because it ensures that the project will work as 

planned, meet initial requirements and be ready for 

deployment. In addition, the test and validation metrics are a 

roadmap for future development and allow developers to 

identify areas that need improvement and optimize the 

project accordingly. The test and validation metrics are 

generally a critical part of the project development process. 

This ensures that the project meets the initial requirements, 

works as planned and is ready for use. The testing and 

validation chapter also provides a roadmap for future 

development, ensuring that the project continues to meet the 

changing needs of its users. 

Going forward, the future of YOLO object recognition offers 

a mature landscape with development and application 

opportunities in many different fields. Going forward, 

researchers and developers are ready to explore new ways to 

improve YOLO's capabilities, focusing on improving model 

architectures to achieve superior performance in object 

detection in complex environments. In addition, there is a 

growing demand for fine-grained object detection 

capabilities, which could be addressed by further research on 

adapting YOLO to extract complex object details. Real-time 

video object tracking is another promising area for future 

research, as it uses YOLO's high-speed processing 

capabilities to track objects seamlessly between video 

frames. In addition, adapting YOLO to domain-specific 

tasks such as agriculture or healthcare offers significant 

opportunities to optimize model performance and respond to 

the unique challenges of specialized domains. As the field 

progresses, attention will also be directed towards enhancing 

YOLO's robustness to adversarial attacks, improving 

interpretability and explainability, and optimizing 

deployment on edge devices for efficient real-world 

applications. By delving into these avenues for future 

research and development, YOLO is poised to remain at the 

forefront of object detection technology, driving innovation 

and enabling transformative advancements in computer 

vision and beyond. 
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