
 INTERNATIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT (IJSREM)

 VOLUME: 06 ISSUE: 11 | NOV - 2022 SJIF RATING: 7.185 ISSN: 2582-3930

© 2022, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM16818 | Page 1

Automated Security Vulnerability Backlog Management

Kamalakar Reddy Ponaka

DevSecOps

Abstract — In today’s fast-paced development

environments, security vulnerabilities often emerge at

the same rapid rate as code updates. Security teams

and developers face challenges in addressing these

vulnerabilities while maintaining operational

efficiency. Managing a security backlog manually can

be cumbersome, slow, and prone to human error.

Automating the security vulnerability backlog allows

organizations to track, prioritize, and mitigate security

risks more efficiently and effectively, ensuring a

secure software development lifecycle (SDLC) without

sacrificing agility.

This white paper outlines the need for an

automated security backlog, the benefits it provides,

and strategies for implementing it using modern

DevSecOps tools.

Keywords — Automated security backlog,

vulnerability management, CI/CD, DevSecOps, risk-

based prioritization, SAST, DAST, software

composition analysis, continuous security, vulnerability

tracking, security remediation, cybersecurity

automation, security risk management

I. INTRODUCTION

As development cycles shorten, with continuous

integration and delivery (CI/CD) pipelines becoming the

norm, identifying and remediating security

vulnerabilities becomes a critical bottleneck. Manual

processes for managing vulnerabilities—identifying,

tracking, assigning, and resolving—are increasingly

ineffective and cannot keep pace with modern agile and

DevOps environments.

An automated security vulnerabilities backlog refers

to the practice of integrating security vulnerability

detection, tracking, and prioritization into an automated

workflow. By using automated tools, organizations can

ensure that vulnerabilities are discovered early, added to

the backlog, prioritized according to risk and business

impact, and continuously monitored until they are

resolved.

II. THE CHALLENGES OF MANUAL APPROACH

Manual vulnerability management introduces several

inefficiencies and risks:

a) Inconsistent Discovery: Developers and security

teams often rely on periodic scans or ad-hoc

discovery processes, leaving systems vulnerable

between scans.

b) Delayed Resolution: Without automated

prioritization and tracking, vulnerabilities may

remain unaddressed, increasing exposure.

c) Lack of Visibility: Manual processes make it

difficult to gain a holistic view of the organization's

security posture.

d) Human Error: Tracking vulnerabilities manually

leads to missed or incorrectly logged items,

reducing remediation effectiveness.

These challenges contribute to increased risk for the

business, potentially leading to security breaches, legal

penalties, and reputational damage.

III. BENEFITS OF AUTOMATING A SECURITY

BACKLOG

A. Continuous Vulnerability Detection

Automated tools can scan applications and

infrastructure continuously or at regular intervals to

detect vulnerabilities, ensuring no gaps in coverage

between manual scans.

http://www.ijsrem.com/

 INTERNATIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT (IJSREM)

 VOLUME: 06 ISSUE: 11 | NOV - 2022 SJIF RATING: 7.185 ISSN: 2582-3930

© 2022, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM16818 | Page 2

B. Real-Time Vulnerability Tracking

By automating vulnerability discovery and

tracking, the backlog is always up-to-date. This ensures

that all vulnerabilities are logged immediately, along

with key details like severity, affected systems, and

CVSS scores.

C. Improved Prioritization and Risk Management

Automated tools integrate with vulnerability

databases and threat intelligence to provide real-time

updates on the severity and exploitability of

vulnerabilities. By using a risk-based approach (risk =

severity x likelihood), teams can prioritize remediation

efforts effectively, focusing on the most critical issues

first.

D. Integration with CI/CD Pipelines

With the integration of security tools into CI/CD

pipelines (such as GitLab, Jenkins, or GitHub Actions),

security scans (SAST, DAST, SCA) are automatically

triggered with every code commit, flagging

vulnerabilities early in the development lifecycle.

Vulnerabilities can be automatically added to the

backlog without manual intervention.

E. Reduced Time to Remediation

Automated workflows enable immediate ticket

creation and assignment to the appropriate development

teams. This reduces the mean time to remediation

(MTTR), helping organizations meet compliance

requirements and minimize security exposure.

F. Better Collaboration Between Teams

When vulnerabilities are automatically tracked and

assigned, collaboration between development,

operations, and security teams improves. Development

teams can work on fixing vulnerabilities as soon as they

are identified, while security teams can monitor the

status of remediation in real-time.

IV. IMPLEMENTATION

A. Key Components of Automation

To implement an automated vulnerability backlog,

organizations must integrate various tools into their

software development lifecycle:

a) Static Application Security Testing (SAST):

Analyzes source code for vulnerabilities during

development.

b) Dynamic Application Security Testing (DAST):

Scans running applications to identify security

flaws from the outside.

c) Software Composition Analysis (SCA): Scans for

vulnerabilities in third-party libraries and open-

source components.

d) Container and Infrastructure Scanning: Ensures

that container images and infrastructure (IaaS,

PaaS) configurations are secure.

e) Threat Intelligence: Feeds that provide real-time

information about active exploits and emerging

vulnerabilities, ensuring the backlog is always

prioritized based on risk.

B. Integration with Existing Tools

Most organizations already use some combination

of CI/CD, issue tracking (e.g., GitLab, Jira), and code

repositories (e.g., GitHub, Bitbucket). Automation is

achieved by integrating security scanning tools into

these platforms. Here’s how it works:

a) CI/CD Integration: Security scans are triggered

automatically with every build, test, or deployment

cycle.

b) Ticket Management: Vulnerabilities are

automatically logged into issue tracking systems as

tickets with all relevant details.

c) Prioritization: Based on severity, risk, and business

impact, tickets are assigned priority levels.

d) Alerts and Notifications: Automated notifications

ensure that stakeholders are aware of critical

vulnerabilities and any delays in remediation.

http://www.ijsrem.com/

 INTERNATIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT (IJSREM)

 VOLUME: 06 ISSUE: 11 | NOV - 2022 SJIF RATING: 7.185 ISSN: 2582-3930

© 2022, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM16818 | Page 3

C. Workflow Example

a) Commit Code: A developer commits code changes

to a GitLab repository.

b) Trigger Security Scan: The CI/CD pipeline runs

automated SAST, DAST, and SCA scans.

c) Log Vulnerabilities: Detected vulnerabilities are

automatically logged in GitLab Issues with relevant

metadata (e.g., severity, affected components, risk

level).

d) Assign Priority: Vulnerabilities are automatically

prioritized based on risk and business impact.

e) Remediate: Development teams work on resolving

the issues. Once the vulnerability is fixed, it is

marked as resolved.

f) Retest: Upon resolution, security tests are

automatically re-triggered to ensure that the fix is

successful.

g) Monitor: Continuous monitoring tools ensure that

new vulnerabilities are tracked in real-time.

V. SECURITY VULNERABILITIES AS TECHNICAL

DEBT

A. Creating a Workflow

A custom workflow helps treat vulnerabilities like

any other issue type in Jira (e.g., bugs, tasks), but with

specific stages designed for security purposes. Here’s a

suggested workflow for managing security

vulnerabilities as technical debt:

a) Open: When a vulnerability is identified (via

automated tools or manual discovery).

b) In Review: Security teams validate and assess the

risk of the vulnerability.

c) Backlog: The vulnerability is added to the backlog

and treated as technical debt.

d) Prioritized: The vulnerability is prioritized

according to risk (high, medium, low) and

scheduled for remediation.

e) In Progress: The vulnerability is being actively

worked on.

f) Testing/Validation: The fix is tested to ensure the

vulnerability has been properly addressed.

g) Resolved: The vulnerability has been remediated

and tested.

h) Closed: Final stage after confirmation that the

vulnerability no longer exists.

B. Defining a Jira Issue Type for Vulnerabilities

In Jira’s administration panel, create a new issue

type called “Security Vulnerability” or simply

“Technical Debt”.

Define custom fields specific to vulnerabilities, such as:

a) CVSS Score: Indicates the severity.

b) Risk Level: High, medium, low.

c) Exploitable: Yes/No (is there a known exploit for

this vulnerability?).

d) Affected Components: Parts of the system affected

by the vulnerability.

e) Exposure: Public-facing, internal, etc.

C. Collaboration And Ownership

Assign clear ownership of security vulnerabilities:

a) Security Team: Validates and triages the

vulnerability, assigning a risk level.

b) Development Team: Remediates the vulnerability

as part of sprint tasks.

c) Operations/QA: Validates that the vulnerability has

been properly fixed.

VI. KEY CONSIDERATIONS FOR SUCCESSFUL

IMPLEMENTATION

A. Selecting the Right Tools

Choosing the right security tools is critical. They

should integrate seamlessly with existing development

workflows and have built-in automation capabilities.

B. Risk-Based Prioritization

Not all vulnerabilities should be treated equally.

Organizations need to ensure they are prioritizing based

on the risk a vulnerability poses to the business,

http://www.ijsrem.com/

 INTERNATIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT (IJSREM)

 VOLUME: 06 ISSUE: 11 | NOV - 2022 SJIF RATING: 7.185 ISSN: 2582-3930

© 2022, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM16818 | Page 4

considering factors like exposure, criticality, and

exploitability.

C. Collaboration Across Teams

Development, security, and operations teams must

work closely to ensure that vulnerabilities are addressed

efficiently. Automated workflows can help, but

fostering a collaborative culture is equally important.

D. Continuous Improvement

Automating the backlog isn’t a one-time task.

Organizations must continuously monitor and adjust

their security processes to account for new threats,

changing technology, and business growth.

VII. NEXT STEPS

a) Evaluate Tools: Assess your current security tools

and their ability to integrate with your CI/CD and

ticketing systems.

b) Pilot Automation: Start with a pilot project to

implement and test automation for managing a

subset of vulnerabilities.

c) Scale Gradually: Once the pilot is successful, scale

the solution to cover your entire application

landscape.

By adopting an automated security vulnerabilities

backlog, organizations can achieve enhanced security,

improved collaboration, and faster remediation of risks

in today’s high-velocity development environments.

CONCLUSION

Automating the security vulnerabilities backlog

is essential for maintaining secure and agile

development practices. By leveraging continuous

vulnerability detection, automated tracking, and risk-

based prioritization, organizations can drastically

reduce the time and effort required to manage security

risks. With the right tools and integrations,

organizations can achieve a balance between speed and

security, ensuring that vulnerabilities are remediated

efficiently without slowing down development.

REFERENCES

[1] N. Z. Stakhanova, "Enhancing Security in Agile

Software Development Using Automated Tools,"

IEEE Transactions on Security and Privacy, vol.

18, no. 1, pp. 22-34, Jan. 2022.

[2] D. Johnson and E. Smith, "Vulnerability

Prioritization for Large Scale Organizations,"

Proceedings of the 29th International Conference

on Software Engineering, New York, NY, USA,

2021, pp. 514-523.

[3] Smith, J., et al., "Automated Vulnerability

Detection in SDLC," IEEE J. Gupta, "Best

Practices for Implementing DevSecOps," IEEE

Software, vol. 34, no. 4, pp. 12-19, Jul. 2020.

http://www.ijsrem.com/

