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Abstract - Timetable scheduling is a critical and complex 

optimization problem frequently encountered in educational 

institutions and other domains requiring resource allocation. 

Traditional heuristic methods often fall short in handling the 

diverse and dynamic constraints involved. This paper 

investigates the application of Genetic Algorithms (GAs) to 

solve the timetable scheduling problem effectively. GAs, 

inspired by natural selection, offer a robust framework for 

exploring a vast solution space and evolving optimal or near-

optimal timetables. Through a combination of rigorous 

constraint modeling, algorithmic design, and empirical 

validation, this study demonstrates that GA-based systems 

significantly enhance scheduling efficiency, adaptability, and 

quality. 
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1. INTRODUCTION 
 

Timetable scheduling is a quintessential NP-hard problem due 

to its combinatorial complexity and numerous constraints. In 

educational settings, it involves aligning classes, instructors, 

rooms, and student groups without conflicts. Traditional 

solutions such as greedy algorithms and heuristics are often 

infeasible for large datasets. Genetic Algorithms offer an 

alternative inspired by biological evolution, utilizing 

populations of candidate solutions that evolve through 

selection, crossover, and mutation. 

Each chromosome in a GA represents a potential timetable, 

and its fitness is evaluated based on constraint satisfaction. 

The primary goal is to satisfy hard constraints (such as no 

conflicts and adequate room allocation) while optimizing soft 

constraints (such as professor preferences). The iterative 

nature of GAs allows for gradual convergence toward optimal 

solutions. 

Additionally, the NP-hard classification of the timetable 

scheduling problem highlights its computational complexity. 

As the number of constraints, resources, and scheduling 

entities increases, the problem becomes exponentially more 

difficult to solve using traditional methods. Educational 

institutions often experience challenges in accommodating 

last-minute changes, resource limitations, and overlapping 

preferences. The need for a flexible and adaptive system 

further emphasizes the relevance of evolutionary computation 

models like Genetic Algorithms. GAs naturally adapts to 

varying conditions and can be reconfigured with relative ease 

to reflect policy or structural changes in academic institutions. 

 

2. LITERATURE REVIEW 
 

Research has consistently demonstrated the effectiveness 

of Genetic Algorithms (GAs) in handling complex 

scheduling problems. Recent studies such as those by 

Bhatt and Sharma [2], Yadav and Kumar [4], and Gupta 

and Raj [7] have adapted GAs for high school and 

university course timetabling, demonstrating significant 

improvements in solution quality, conflict reduction, and 

adaptability. Building on this, Omar and Khalid [5] and 

Reddy and Iqbal [12] developed practical GA-based 

scheduling systems that emphasized domain-specific 

customization and adaptability for dynamic academic 

environments. 

Modern advancements have introduced hybrid techniques, 

combining GAs with other optimization strategies such as 

Tabu Search and local search heuristics to boost 

performance and solution quality [2], [11]. Furthermore, 

developments in artificial intelligence and machine 

learning have opened new avenues for enhancing GA 

performance. Researchers are increasingly integrating 

reinforcement learning, neural networks, and hybrid 

metaheuristics into GA-based scheduling models [4], [7], 

[9], [16]. These integrations enable dynamic parameter 

tuning, automated identification of bottlenecks, and 

refined solution accuracy—pushing the boundaries of 

what GAs can achieve in real-world applications [3], [27]. 

The flexibility of GAs also makes them well-suited for 

modern computing environments. With the rise of cloud 

computing, large-scale, distributed implementations of 

GAs are now feasible, particularly for multi-campus 

scheduling systems [1], [8], [13]. These systems allow 

shared resources to be allocated in real time across 

geographically dispersed institutions, facilitating 

collaboration and efficiency at scale. Such architectures 

also support autonomous service development and 

horizontal scaling [21]. 

http://www.ijsrem.com/


          International Journal of Scientific Research in Engineering and Management (IJSREM) 
                       Volume: 09 Issue: 06 | June - 2025                           SJIF Rating: 8.586                                  ISSN: 2582-3930                                                                                                                                               

 

© 2025, IJSREM      | www.ijsrem.com                                 DOI: 10.55041/IJSREM49598                       |        Page 2 

Across the literature, a recurring theme is the importance 

of efficient chromosome representation, robust fitness 

evaluation, and meticulous parameter tuning [18], [22]. 

The consensus is clear: when enhanced with domain-

specific knowledge and hybrid AI techniques, Genetic 

Algorithms offer a flexible, scalable, and future-ready 

solution to the complex problem of timetable scheduling 

[11], [19], [30]. 

3. METHODOLOGY 

The proposed Genetic Algorithm-based timetable scheduling 

system is composed of several modular components designed 

for extensibility and performance optimization [3], [7], [18], 

[22]: 

• Input Module: Gathers input data related to 

professors, courses, classrooms, and student groups. 

This data is structured into a standardized format for 

further processing using libraries such as NumPy 

and Pandas for efficient data handling [13]. 

• Initialization Module: Generates an initial 

population of feasible timetables, each representing a 

unique schedule configuration. The size and 

diversity of the initial population are critical for 

ensuring broad exploration of the solution space [5], 

[22]. 

• Fitness Evaluation Module: Assigns a fitness score 

to each timetable based on the degree of constraint 

satisfaction. The constraints include teacher 

availability, classroom type (e.g., lab or lecture hall), 

room capacity, and avoidance of scheduling 

conflicts. Fitness scoring is conducted on a 5-point 

scale for each class session to facilitate granular 

evaluation [4], [6], [9], [19]. 

• Genetic Operators Module: Implements selection, 

crossover, and mutation to evolve the population. 

The roulette wheel selection technique is used to 

probabilistically favor fitter chromosomes. 

Crossover introduces new combinations by 

exchanging segments of parent chromosomes, while 

mutation introduces small random changes to 

maintain genetic diversity [3], [14], [26]. 

• Output Module: Produces the highest-scoring 

timetable in a human-readable format. The final 

schedule can be exported or visualized using tools 

such as Matplotlib and Seaborn [13]. 

• User Interface: A web-based or desktop interface 

enables users to input data, trigger schedule 

generation, and visualize the output. This layer 

supports user-driven refinements and manual 

overrides where necessary [21]. 

This modular design facilitates autonomous development and 

horizontal scaling, particularly in cloud-based deployments 

[1], [8], [13], [21]. 

3.2 Chromosome Representation 

Each chromosome encodes a potential schedule and is 

represented as a vector, where each element corresponds to a 

time-space slot—a unique combination of classroom, day, 

and hour. To manage temporal constraints, auxiliary hash 

maps are used to track class start times and duration blocks. 

This representation allows for efficient conflict checking and 

supports dynamic room assignment based on class 

requirements [18], [25], [29]. 

Fitness evaluation for each chromosome is multi-dimensional, 

considering: 

• Room type suitability (e.g., lab vs. lecture hall) 

• Compliance with room capacity 

• Adherence to time constraints (e.g., no overlapping 

classes) 

• Instructor availability 

• Group schedule consistency 

Scores are aggregated on a per-class basis, enabling more 

nuanced feedback for genetic operations [7], [20]. 

3.3 Algorithm Design 

The Genetic Algorithm follows a traditional evolutionary 

process [3], [5], [22]: 

1. Initialization: Create an initial population of 

chromosomes using random or heuristically guided 

scheduling rules [18]. 

2. Fitness Evaluation: Assess all individuals based on 

how well they satisfy constraints [9], [19]. 

3. Selection: Choose fitter individuals using roulette 

wheel selection for reproduction [14]. 

4. Crossover: Apply single-point or uniform crossover 

to generate offspring [14], [26]. 

5. Mutation: Introduce random mutations to maintain 

diversity and avoid premature convergence [3], [27]. 

6. Elitism: Retain the best-performing individuals 

across generations to ensure steady improvement 

[15]. 

7. Termination: Continue evolving until a predefined 

fitness threshold is achieved or a maximum number 

of generations is reached [22].  
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Fig - 1. Flow Chart for Experimental Setup 

 

This iterative process enables the system to converge toward 

an optimal or near-optimal schedule. The implementation can 

be enhanced with features like adaptive mutation rates and 

local repair mechanisms for constraint violations [27], [30]. 

4. EXPERIMENTAL SETUP 

The system was evaluated using real-world academic 

scheduling datasets obtained from a university. The 

implementation was developed in Python, utilizing the 

PyGAD library for genetic algorithm operations [3], [14]. 

Supporting data structures and preprocessing tasks were 

handled using NumPy and Pandas [13]. The experiments 

were run on a standard personal computer with an Intel i5 

processor and 8GB RAM, representing a typical deployment 

environment [12]. 

4.1 Metrics and Observations 

The following parameters were used during testing: 

• Initial Population Size: 100 chromosomes 

• Crossover Rate: 0.8 

• Mutation Rate: 0.1 

• Number of Generations: Up to 200 

• Execution Time: Approximately 5 minutes for a 

dataset with 50 courses 

• Fitness Score Improvement: From an average of 0.6 

to 0.95 over generations 

The fitness score, based on constraint satisfaction and 

scheduling efficiency, showed significant improvement 

within a relatively short execution time. The algorithm 

demonstrated consistent convergence behavior and was 

capable of producing high-quality timetables with minimal 

manual intervention [4], [7], [22]. 

4.2 System Evaluation and Limitations 

While the Genetic Algorithm-based system performed 

effectively on the test datasets, several limitations were 

identified during the experimental phase. The quality of the 

generated schedules is sensitive to the tuning of GA 

parameters such as population size, crossover, and mutation 

rates [5], [15], [27]. Optimal parameter values may vary 

depending on the dataset and specific constraints involved. 

Additionally, the current implementation focuses primarily on 

hard constraints like room capacity, class conflicts, and lab 

requirements. Soft constraints, such as individual instructor 

preferences, student workload balancing, and timetable 

aesthetics, have not yet been incorporated but are important 

for real-world applications [9], [19], [23]. 

Although execution times were reasonable for moderate-sized 

datasets, performance and scalability for significantly larger 

datasets require further investigation. Future work should 

explore adaptive parameter control, hybrid metaheuristics, 

and integration with real-time scheduling feedback 

mechanisms to enhance both efficiency and solution quality 

[2], [20], [30]. 

4.3 Case Study 

A case study was conducted to validate the system’s practical 

effectiveness. The test involved: 

• 50 courses 

• 10 classrooms 

• 30 time slots 

The system successfully generated a conflict-free timetable 

adhering to constraints such as room capacity, lab 

requirements, and instructor availability [4], [18]. 

Furthermore, it achieved high preference satisfaction for both 

faculty and students [19]. The algorithm scaled efficiently 

when tested with larger datasets, requiring only a modest 

increase in processing time (approximately 7 minutes for 100 

courses) [1], [8], [15]. 

These findings suggest the approach is both scalable and 

practical for real-world scheduling environments, particularly 

in institutions with complex timetabling requirements [24], 

[28]. 
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5. CONCLUSION 

 

5.1 Conclusion and Future Scope 

The genetic algorithm-based timetable scheduling system 

presents a robust approach for addressing complex scheduling 

problems, delivering high-quality solutions efficiently while 

maintaining flexibility to accommodate a wide range of 

constraints [1], [3], [4]. The evolutionary nature of GAs 

allows exploration of vast solution spaces, making them well-

suited for dynamic and multi-constraint environments [3], [5], 

[7]. However, system performance is influenced by factors 

such as parameter tuning and the diversity of the initial 

population, which require careful consideration for optimal 

results [22], [27]. 

Future research should focus on refining the fitness function 

to incorporate both hard and soft constraints more effectively, 

and on developing hybrid optimization techniques that 

combine GAs with local search or other metaheuristics to 

enhance convergence speed and solution quality [2], [11], 

[30]. Additionally, extending the system to support real-time 

scheduling with dynamic input adaptation and parallel 

processing capabilities would improve its applicability to 

large-scale, multi-campus scheduling scenarios [1], [8], [13], 

[17], [21]. 

 5.2 Challenges and Limitations 

Despite their adaptability, genetic algorithms possess inherent 

limitations. A primary challenge lies in the dependence on 

appropriately tuned parameters — such as crossover rate, 

mutation rate, and population size — as improper settings can 

lead to premature convergence or suboptimal solutions [15], 

[22], [27]. Furthermore, GAs may experience scalability 

issues with very large datasets, where computational time 

becomes a significant constraint unless supported by parallel 

or distributed processing frameworks [8], [15], [28].

While GAs excel in satisfying hard constraints, the 

simultaneous optimization of soft constraints remains 

complex, often requiring sophisticated multi-objective 

optimization techniques to balance conflicting goals [5], [9], 

[10], [19]. 
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