

Automated Traffic Monitoring System with Integrated Accident Detection, Violation Reporting, and Emergency Vehicle Traffic Management

Prof. Akshatha K S^1 , Surya Kumar K V^2 , Nandu Varma E A^3 , VenuGopalReddy P V^4

Assistant professor, Information Science Department, East West Institute of Technology, Bangalore, India¹ Student, Information Science Department Department, East West Institute of Technology, Bangalore, India² Student, Information Science Department Department, East West Institute of Technology, Bangalore, India³ Student, Information Science Department Department, East West Institute of Technology, Bangalore, India⁴

Abstract: This paper presents an advanced automated system designed for real-time vehicle speed detection, traffic violation enforcement, accident detection, and emergency vehicle traffic management. Utilizing cuttingedge computer vision, image processing, and machine learning techniques, the system detects traffic violations such as speeding, red-light breaches, lane deviations, and accidents. In addition, the system automatically fetches vehicle owner details via license plate recognition, generates violation reports, and sends email notifications with fine receipts. In the case of an accident, the system alerts the nearest police station and notifies emergency services for swift response. Furthermore, the system ensures efficient ambulance movement by dynamically adjusting traffic lights in coordination with traffic controllers. The proposed system significantly reduces manual intervention, optimizes law enforcement, enhances emergency response, and improves traffic flow in real-time.

Key Words: automated traffic monitoring and real-time traffic violation enforcement, utilizing technologies such as license plate recognition (LPR), optical character recognition (OCR), and machine learning to enhance intelligent transportation systems (ITS), with applications in accident detection, emergency vehicle management, and traffic flow optimization through smart traffic lights and deep learning-based vehicle detection.

1.INTRODUCTION

In recent decades, significant advancements in moving object recognition and tracking have improved applications like surveillance, robotics, and traffic monitoring. Despite these advancements, challenges such as lighting variations, dynamic backgrounds, and occlusions persist. Traffic violations, particularly signal

breaches, contribute significantly to road accidents, requiring efficient monitoring systems.

Existing automated solutions like video cameras reduce manual intervention but require extensive human review for violation detection. Proposed systems integrate IR sensors, cameras, and number plate recognition to automate detection and alert mechanisms, sending SMS notifications to offenders. However, traditional OCR methods struggle with diverse number plate styles, prompting the use of advanced image retrieval techniques. For vehicle safety, India meets only limited global standards, with motorcycles accounting for 25% of crash fatalities, often due to alcohol influence and rule violations. IP cameras offer cost-effective alternatives to fibre optic systems for monitoring and fee collection. Challenges like poor image quality and internet dependence still hinder mobile-based emphasizing the need for innovative and robust approaches.

2. PROPOSED SYSTEM

The proposed system uses license plate recognition as part of the intelligent transport system technology by which it enables vehicle recognition, tracking, and differentiation. It can be supportive to applications such as the electronic toll collection, redlight violation enforcement, and secure-access control among others. Through the conversion into alphanumeric data, the plate numbers can issue fines verify access permissions, or it may check against a list for stolen or authorized ones. LPR is vital for applications such as vehicle surveillance in parking lots, access control areas, and identifying stolen cars. Real-time LPR systems suffer from the speed and accuracy issues that are defined by the quality of algorithms used. Advanced visual image processing techniques have been designed to enhance plate detection and recognition.

International Journal of Scientific Research in Engineering and Management (IJSREM)

Advantages of the Proposed System

- Operates 24/7 to detect and read number plates in real-time.
- Encourages travelers to comply with traffic regulations.
- Functions simultaneously across multiple lanes.
- Recognizes number plates with varying dimensions, contrast, colors, and character fonts/styles.
- -Enhances enforcement efficiency while ensuring robust operation under diverse conditions.

4. METHODOLOGY

1. Data Acquisition

Real-time video data is collected from traffic cameras installed at critical traffic points such as intersections and highways.

2. Traffic Violation Detection

OpenCV is utilized for image processing, and CNN-based deep learning models detect traffic violations. Speeding is identified through optical flow algorithms tracking vehicle movement between frames.

3. Accident Detection

Unusual vehicle behaviors, like rapid deceleration or collisions, are detected using motion analysis and background subtraction algorithms to identify accidents.

4. License Plate Recognition

OCR-based ANPR technology extracts license plate information from video footage and retrieves vehicle owner data from a central database.

5. Ambulance Detection

A deep learning model using YOLO identifies emergency vehicles by detecting features like flashing lights and sirens in real time.

6. Traffic Management for Emergency Vehicles

When an ambulance is detected, the system alerts nearby traffic controllers and adjusts traffic light sequences using smart algorithms to prioritize ambulance passage.

7. Data Preprocessing

Captured video data is preprocessed to enhance image quality, reduce noise, and ensure accurate detection. Techniques such as histogram equalization and Gaussian filtering are applied.

8. Vehicle Classification

Vehicles are categorized (e.g., cars, trucks, motorcycles) using machine learning models, which aids in violation detection and traffic management analytics.

9. Database Integration

The system is integrated with a centralized database to store and retrieve vehicle registration details, violation records, and historical traffic data.

10 Real-Time Alerts

The system generates real-time alerts for detected violations, accidents, or emergencies, notifying relevant authorities through automated notifications or dashboards.

11. Scalability and Adaptability

The system is designed to adapt to varying traffic conditions and is scalable for deployment in different urban or rural areas.

12. Energy Efficiency

Optimized algorithms are implemented to reduce computational overhead, ensuring energy-efficient operation, especially in high-traffic environments.

13. Privacy and Security

Strict measures are employed to ensure data privacy and secure handling of sensitive vehicle and personal information. Encryption and secure data transfer protocols are applied.

14. Periodic Model Updates

Deep learning models are periodically retrained with updated datasets to improve detection accuracy and adapt to evolving traffic patterns or conditions.

5. SYSTEM ARCHITECTURE

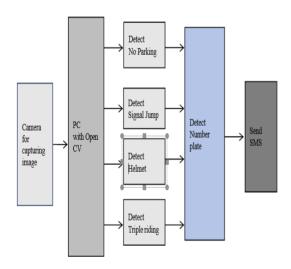


Fig -1: Figure

The proposed framework in Figure :1 is designed to capture the movement of vehicles and identify instances where traffic rules are violated. In such cases, the Raspberry Pi module takes action and detects the license plate of the specific vehicle. The system uses Automatic Number Plate Recognition (ANPR) technology to extract and store images captured by cameras, along with the plate information, and optionally, a photo of the driver. ANPR systems must be adaptable to different plate

SIIF Rating: 8.448 ISSN: 2582-3930

formats, as seen with changes made to Dutch vehicle license plates in 2003, which introduced spaces in certain characters to make them more easily detectable.

While ANPR systems offer benefits, concerns have been raised regarding security, misidentification, high error rates, and the potential for government surveillance. The use of OCR (Optical Character Recognition) enables these systems to interpret text from images captured by cameras. The OCR system is critical for the successful implementation of ANPR, as it allows the vehicle's plate number to be extracted from an image in real time.

The cameras used in ANPR systems can vary, ranging from existing traffic enforcement cameras and closedcircuit television (CCTV) to mobile units that are typically mounted on vehicles. Some systems also utilize infrared cameras for better image quality, especially in low-light conditions. These cameras must be positioned correctly for optimal operation, as the angle of the camera can significantly affect the accuracy of plate recognition. For instance, a camera placed at a slight angle or height may only capture a limited range of vehicles, resulting in a higher error rate.

In terms of design, the structure of the ANPR system involves both hardware and software components that work together to capture, process, and store vehicle information. The system's design must be flexible enough to handle a range of traffic conditions and camera placements, whether for individual vehicles or multiple lanes of traffic. The use of high-resolution cameras and optimal lighting conditions can improve the performance of the system, ensuring accurate recognition of license plates even at high speeds or in low visibility situations.

The OCR process involves scanning images for light and dark areas, where dark regions are recognized as characters. These characters are then processed further to identify the specific letters and numbers that make up the license plate. This involves either pattern recognition or feature detection algorithms, which are used to match the scanned characters against known fonts and formats. Once identified, the characters are converted into a machine-readable format, such as ASCII code, for further processing and analysis.

OCR systems are valuable tools in digitizing physical documents, but they are also used in various real-world applications.

6. HADWARE AND SOFTWARE REQUIREMENT

A comprehensive system requirement definition ensures that the proposed solution meets organizational needs and provides a clear development path. The requirements include a feasibility study, functional and non-functional specifications, and the identification of necessary hardware and software resources for implementing a machine learning-based system.

Hardware Requirements

For the machine learning system to handle data storage, model training, and inference, reliable hardware is essential. The required hardware components are as follows:

- Server Infrastructure: Powerful servers to process large datasets and run machine learning algorithms.
- Storage Devices: High-capacity SSDs to store large datasets, models, and intermediate results.
- Processing Units:
- GPUs or TPUs for fast model training, especially for deep learning algorithms.
- CPUs for general-purpose computation tasks related to data preprocessing, analysis, and inference.
- User Devices: Computers or mobile devices to access the platform and use machine learning services.
- Minimum Specifications for Devices:
- Processor: Pentium IV 2.4 GHz system.
- Hard Drive: 16 GB (32-bit) or 20 GB (64-bit) of free space.
- RAM: 4 GB.
- Monitor: 14-inch color monitor.
- Input Device: Optical mouse.

Software Requirements

The software requirements focus on tools and platforms necessary for developing, training, and deploying machine learning models:

- Programming Languages:
- Python for implementing machine learning algorithms and models, data processing, and analysis.
- Machine Learning Frameworks:
- TensorFlow or PyTorch for training and deploying machine learning models, including deep

© 2024, IJSREM DOI: 10.55041/IJSREM40053 www.ijsrem.com Page 3

SIIF Rating: 8.448

learning models.

 Scikit-learn for traditional machine learning algorithms (e.g., regression, classification, clustering).

Volume: 08 Issue: 12 | Dec - 2024

- Development Tools:
- o Jupyter Notebook for prototyping, data analysis, and model evaluation.
- o IDE: Tools such as PyCharm or VS Code for writing and debugging code.
- Databases:
- o MongoDB or PostgreSQL for storing system logs, user information, and processed data.
- Operating Systems:
- Linux is preferred for development and deployment due to its support for machine learning tools and efficient resource management.
- Windows 7/8/9 for client-side operation.
- Libraries and Tools:
- o NumPy and Pandas for data manipulation and analysis.
- o Matplotlib and Seaborn for data visualization.
- o OpenCV for image processing and computer vision tasks.

7. RESULTS

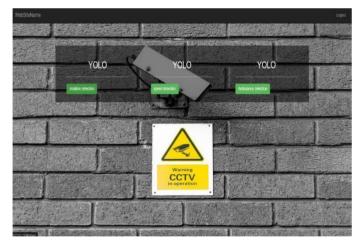


Figure 1: Home Page

ISSN: 2582-3930

Figure 2 : Vehicles Speed Detection

Figure 3: Admin Panel

Figure 4: Number Plate Detection

Volume: 08 Issue: 12 | Dec - 2024 SJIF Rating: 8.448 ISSN: 2582-3930

Figure 5: Tripple Riding and Helmet Detection

Fig 6 : Message Based Fine Generation for Triple Riding and No Helmet

```
Motorcycle detected checking for traffic violation Signal jumping KAU1EF8727 RAU1EF8727 VAU1EF8727 VAU1EF8727
```

Figure 7: Violations Detection With Fine Generation

8. CONCLUSION

The proposed system aims to replace human traffic officers with an automated solution for traffic management. It utilizes advanced techniques for traffic monitoring, vehicle detection, license plate extraction, and character recognition. By capturing images at traffic signals, the system automatically identifies vehicles that violate traffic rules. The process involves detecting and extracting license plate information, which is then analyzed to identify the type of rule violation.

Once a violation is detected, the system classifies the offense and generates an accurate report. This report is sent as a notification to the vehicle owner, detailing the type of violation committed and the corresponding fine that must be paid. The notification process ensures that the vehicle owner is promptly informed about the offense and the consequences.

The framework not only improves traffic enforcement but also reduces the need for human intervention, thereby making the system more efficient. By automating the detection and reporting of violations, it ensures timely action and accountability in traffic regulation. The system enhances public safety and streamlines traffic rule enforcement by providing a reliable and accurate solution for managing violations. Overall, the proposed system offers a modern, scalable, and effective approach to traffic monitoring and rule enforcement.

Volume: 08 Issue: 12 | Dec - 2024 SJIF Rating: 8.448 ISSN: 2582-3930

REFERENCES

- 1. K. Karthik & N. Pavithra & R. Nandini & C. Punyashree, "Automated Vehicle Driving using Image Processing", International Journal of Computer Science and Engineering, Volume-2, Issue-4, April 2014.
- 2. R. Handaric. "An Image Recognition Software Tool for Car Identification Based on License Plate", Transylvania University of Braşov Series I: Engineering Sciences, Volume-5 (54) No. 1, 2012.
- 3. Y. M. Prutha, S.G. Anuradha, "Morphological Image Processing Approach of Vehicle Detection for Real-Time Traffic Analysis", International Journal of Engineering Research & Technology (IJERT) Volume 03, Issue 05, May 2014.
- 4. W.-L. Hsu, H.-Y., M. Liao, B.-S. Jeng and K.-C. Fan, "Real-Time Traffic Parameter Extraction Using Entropy", Proc. Inst. Elect. Eng. Vis. Image Signal Process., Vol. 151, No. 3, pp. 194-202, Jun. 2004.
- 5. T. Yamashita, K. Izumi and K. Kurumatani, "Effective Information Sharing Based on Mass User Support for Reduction of Traffic Congestion", The Proceedings of International Conference of Complex Systems, 2004.
- 6. M. Schnhof and D. Helbing, "Empirical Features of Congested Traffic States and Their Implications for Traffic Modelling", Transportation Science, Vol. 41, pp. 135-166, May 2007.
- 7. J. Kong, Y. Zheng, Y. Lu and B. Zhang, "A Novel Background Extraction and Updating Algorithm for Vehicle Detection and Tracking", Proc. IEEE Int. Conf. Fuzz. Syst. Knowl. Discovery, pp. 464-468, 2007.
- 8. J. L. Wilder, A. Milenkovic and E. Jovanov, "Smart Wireless Vehicle Detection System", System Theory. 40th Southeastern Symposium, pp. 159-163, March 2008.
- 9. O. Jahn, R. H. Mhring, A. S. Schulz and N. E. S. Moses, "System-Optimal Routing of Traffic Flows with User Constraints in Networks with Congestion", Operations Research. Vol. 55, August 2001.
- 10. K. Collins and G.-M. Muntean, "A Vehicle Route Management Solution Enabled by Wireless Vehicular Networks", INFOCOM Workshops IEEE, pp. 1-6, April 2008.

 11. R. van Katwijk, P. van Koningsbruggen, B. D. Schutter and J. Hellen-doorn, "Test Bed for Multiagent Control Systems in Road Traffic Management", Transportation Research Record: Journal of the Transportation Research Board, Vol. 1910, pp. 108-115, January 2005.
- 12. J. Z. Hernandez, S. Ossowski and A. Garcia-Serrano, "Multiagent Architectures for Intelligent Traffic Management Systems", Transportation Research Part C: Emerging Technologies, Vol. 10, pp. 473-506, November 2002.
- 13. F.-Y. Wang, "Agent-Based Control for Networked Traffic Management Systems", IEEE Intelligent Systems, Vol. 20, September 2005.
- 14. J. Z. Hernandez, S. Ossowski and A. Garcia-Serrano, "Multiagent Architectures for Intelligent Traffic Management

- Systems", Transportation Research Part C: Emerging Technologies, Vol. 10, pp. 473-506, November 2002.
- 15. Y. Chen, B. Wu, H. Huang and C. Fan, "A Real-Time Vision System for Nighttime Vehicle Detection and Traffic Surveillance," in IEEE Transactions on Industrial Electronics, Vol. 58, No. 5, pp. 2030-2044, May 2011.
- 16. A. Kircher, M. Uddman and J. Sandin, "Vehicle Control and Drowsiness", 2002.
- 17. R. Yustiawati et al., "Analyzing of Different Features Using Haar Cascade Classifier," 2018 International Conference on Electrical Engineering and Computer Science (ICECOS), Pangkal Pinang, 2018.
- 18. C. Liu, Y. Tao, J. Liang, K. Li and Y. Chen, "Object Detection Based on YOLO Network," 2018 IEEE 4th Information Technology and Mechatronics Engineering Conference (ITOEC), Chongqing, China, 2018.
- 19. Z. Lu, J. Lu, Q. Ge and T. Zhan, "Multi-Object Detection Method Based on YOLO and ResNet Hybrid Networks," 2019 IEEE 4th International Conference on Advanced Robotics and Mechatronics (ICARM), Toyonaka, Japan, 2019.
- 20. N. Jmour, S. Zayen and A. Abdelkrim, "Convolutional Neural Networks for Image Classification," 2018 International Conference on Advanced Systems and Electric Technologies (IC_ASET), Hammamet, 2018.
- 21. Z. Li, X. Zhu, L. Wang and P. Guo, "Image Classification Using Convolutional Neural Networks and Kernel Extreme Learning Machines," 2018 25th IEEE International Conference on Image Processing (ICIP), Athens, 2018.
- 22. T. Guo, J. Dong, H. Li and Y. Gao, "Simple Convolutional Neural Network on Image Classification," 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA), Beijing, 2017.
- 23. R. van Katwijk, P. van Koningsbruggen, B. D. Schutter and J. Hellen-doorn, "Test Bed for Multiagent Control Systems in Road Traffic Management", Transportation Research Record: Journal of the Transportation Research Board, Vol. 1910, pp. 108-115, January 2009.