

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 09 Issue: 09 | Sept - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | https://ijsrem.com DOI: 10.55041/IJSREM52651 | Page 1

Automated Web Server Deployment Using Docker Compose

Akshitha Katkeri
Department of Computer Science and Engineering

Assistant Professor

 BNM Institute of Technology, Affliated by VTU

Bengaluru, India

akshithakatkeri@bnmit.in

Nehaa Sanchithi H
Department of Computer Science and Engineering

VII Semester, Student

BNM Institute of Technology, Affliated by VTU

Bengaluru, India

nehaasanchithi23@gmail.com

Abstract—The deployment and management of web servers is a
critical task in modern computing environments, often requiring
significant manual effort, which can lead to inconsistencies and
errors across different systems. To address these challenges,
this paper presents an automated approach for deploying the
Nginx web server using Docker Compose. The solution leverages
containerization to define services, networks, and port mappings
within a single configuration file, ensuring reproducibility and
consistency across environments. A shell script is developed
to further automate the process, enabling quick setup, fast
recovery, and seamless updates with minimal human intervention.
This approach significantly reduces deployment time, enhances
scalability, and simplifies integration with CI/CD pipelines. The
proposed system demonstrates how Docker Compose can serve
as a lightweight orchestration tool for small- to medium-scale
deployments, offering a reliable and efficient alternative to
complex orchestration platforms such as Kubernetes.

Index Terms—Nginx, Docker Compose, Containerization, De-
ployment Automation, DevOps, Web Server Orchestration,
CI/CD Integration, Scalability, Reliability.

I. INTRODUCTION

In recent years, the adoption of containerization technolo-

gies has grown rapidly due to their ability to deliver scalable,

portable, and efficient solutions for software deployment. Tra-

ditional methods of web server configuration, such as manual

installation and setup of Nginx, are often time-consuming,

error-prone, and difficult to reproduce across multiple environ-

ments. These challenges hinder the ability of organizations to

maintain consistency, especially in development, testing, and

production environments.

Docker, along with Docker Compose, provides a power-

ful solution for overcoming these challenges by allowing

developers and system administrators to define and manage

services, networks, and volumes in a simple configuration

file. Docker Compose acts as a lightweight orchestration tool,

enabling the deployment of multi-container applications with

a single command, reducing manual effort while improving

consistency and reliability.

Nginx, a widely used web server and reverse proxy, is

commonly deployed for hosting websites, load balancing, and

improving web performance. By automating its deployment

using Docker Compose, organizations can streamline the setup

process, reduce downtime, and ensure reproducible config-

urations. Additionally, this approach can be easily extended

to integrate with Continuous Integration and Continuous De-

ployment (CI/CD) pipelines, further enhancing development

workflows.

This paper focuses on automating the deployment of the

Nginx web server using Docker Compose on the Fedora

operating system. A deployment script is implemented to

execute the entire process seamlessly, ensuring scalability, fast

recovery, and simplified management. The proposed system

highlights how Docker Compose can provide a reliable and

efficient solution for web server deployment, serving as a

practical alternative to complex orchestration platforms such

as Kubernetes for small to medium-scale applications.

II. RELATED WORK

A. Containerization and Orchestration

Containerization has emerged as a critical technology for

simplifying software deployment and ensuring consistency

across environments. Docker provides lightweight virtualiza-

tion that enables applications to run in isolated environments,

reducing dependency conflicts and improving portability [1].

To manage multi-container applications, Docker Compose

was introduced as a lightweight orchestration tool, allowing

developers to define services, networks, and volumes in a

single configuration file [2]. Compared to Kubernetes, which is

designed for large-scale deployments, studies highlight Docker

Compose as more suitable for small- to medium-scale projects

due to its ease of use and reduced complexity [3], [4].

B. Web Server Deployment and Automation

Nginx has become one of the most widely adopted web

servers, primarily because of its ability to handle static content

efficiently, act as a reverse proxy, and support load balancing.

Several works emphasize its scalability and effectiveness in

high-demand environments [4]. Traditional methods of deploy-

ing Nginx involve manual setup and configuration, which are

error-prone and time-intensive. Recent works suggest using

automation tools such as Docker Compose and Ansible to

streamline deployment and reduce operational overhead [5],

[6].

https://ijsrem.com/
mailto:akshithakatkeri@bnmit.in
mailto:nehaasanchithi23@gmail.com

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 09 Issue: 09 | Sept - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | https://ijsrem.com DOI: 10.55041/IJSREM52651 | Page 2

Fig. 1. Proposed Framework

C. Integration with DevOps and CI/CD Pipelines

The integration of containerization with Continuous Integra-

tion and Continuous Deployment (CI/CD) pipelines has gained

significant attention, as it ensures faster release cycles, consis-

tency, and reduced downtime [7]. While Kubernetes dominates

in enterprise-scale CI/CD integration, lightweight approaches

with Docker Compose offer a simpler alternative for small

development teams and academic use cases. This allows for

reproducible deployments, version-controlled configurations,

and rapid recovery in case of system failures [2], [6], [7].

Building upon these studies, this paper focuses specifically

on the automation of Nginx deployment using Docker Com-

pose. Unlike prior works that either emphasize large-scale

orchestration or manual deployments, the proposed approach

demonstrates how containerization combined with automation

scripts can provide reliability, scalability, and integration ca-

pabilities for small- to medium-scale environments.

III. PROPOSED FRAMEWORK

The proposed framework introduces an automated approach

for deploying the Nginx web server using Docker Compose,

aiming to simplify the configuration, ensure consistency, and

reduce manual errors. The architecture, as illustrated in Fig.

1, is composed of four major components: environment setup,

service definition through Docker Compose, deployment au-

tomation using shell scripting, and integration with CI/CD

pipelines.

A. Environment Setup

The first component of the framework focuses on preparing

the execution environment. Docker Engine and Docker Com-

pose are installed on the Fedora operating system, forming the

foundation for container-based deployment. This ensures that

all subsequent deployment steps are executed in a standardized

and isolated environment. The setup also includes creating a

custom Docker network to manage communication between

containers, which is critical for scalability and multi-service

applications.

B. Service Definition with Docker Compose

In the second stage, a docker-compose.yml file is created

to define the Nginx service. This file specifies the base Nginx

image from Docker Hub, port mappings (e.g., mapping host

port 8080 to container port 80), and networking configurations.

By encapsulating the entire deployment configuration within a

single YAML file, the framework guarantees consistency and

reproducibility across different environments. Version control

can also be applied to track changes and maintain deployment

history.

C. Deployment Automation via Shell Script

The third component involves a shell script (deploy.sh) that

automates the entire deployment process. The script pulls the

latest Nginx Docker image, runs the docker-compose up -d

command to start the service in detached mode, and verifies

that the containers are running as expected. This automation

significantly reduces manual intervention, minimizes deploy-

ment errors, and allows for fast recovery in case of failures

by simply re-running the script.

D. CI/CD Pipeline Integration

The final component focuses on the integration of the

automated Nginx deployment with Continuous Integration and

Continuous Deployment (CI/CD) pipelines. By embedding the

docker-compose.yml file and deployment script into CI/CD

workflows, updates to the Nginx configuration or web content

can be deployed automatically after every code change. This

not only accelerates release cycles but also ensures that de-

ployments remain consistent across development, testing, and

production environments.

The proposed framework thus provides a lightweight, scal-

able, and reproducible method for automating web server

deployment. By combining Docker Compose with simple

automation scripts, it delivers a practical alternative to complex

orchestration platforms like Kubernetes, especially for small-

to medium-scale applications.

IV. IMPLEMENTATION

The system was implemented on Fedora Linux with Docker

Engine serving as the container runtime and Docker Com-

pose as the orchestration tool. To streamline operations, a

shell script (deploy.sh) was created to automate the entire

deployment workflow, ensuring minimal human intervention.

The implementation focused on achieving three goals: re-

producibility, scalability, and simplicity, enabling the same

setup to be replicated across different machines with consistent

results.

A. Environment Setup

The first step involved setting up the environment by in-

stalling Docker Engine and Docker Compose. Docker Engine

provides the base platform for containerization, while Docker

Compose simplifies the orchestration of multi-container ap-

plications. The Fedora operating system was chosen for its

robustness, compatibility with Red Hat tools, and support for

https://ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 09 Issue: 09 | Sept - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | https://ijsrem.com DOI: 10.55041/IJSREM52651 | Page 3

Fig. 2. Docker and Docker Compose installation on Fedora

Fig. 3. docker-compose.yml file used for defining the Nginx service

containerized workloads. After installation, the Docker dae-

mon was enabled as a background service, ensuring containers

could be launched immediately upon execution. Additionally,

a custom Docker network was configured, which allows seam-

less communication between containers and paves the way for

scaling beyond a single service if required.

B. Service Definition with Docker Compose

The heart of the deployment lies in the docker-compose.yml

file, which defines how the Nginx web server should run. This

file specifies: The official Nginx image pulled from Docker

Hub. Port mapping (mapping host port 8080 to container port

80) to expose the service externally. Network configuration,

enabling container-to-container communication.

Using this YAML configuration ensures that deployments

remain consistent and version-controlled. Any modifications

to the service (such as port changes or additional services like

databases) can be made centrally in this file, making updates

easy to manage.

C. Deployment Automation Script

To minimize manual execution, a shell script named de-

ploy.sh was written. The script executes three primary steps:

• Pull the latest Nginx image from Docker Hub, ensuring

that the deployment is always up to date.

• Run docker-compose up -d, which starts the containers

in detached mode.

• Verify running services to confirm that the Nginx con-

tainer has been successfully launched.

The script can be re-run at any time, making it useful for

fast recovery in case of server crashes or misconfigurations.

Fig. 4. deploy.sh script for automated Nginx deployment

This approach also reduces the learning curve for beginners,

as a single command is sufficient to launch the entire system.

D. Running the Deployment

Once the environment, configuration, and automation script

were prepared, the deployment process was executed by run-

ning ./deploy.sh. The script initialized the Docker Compose

setup, launched the Nginx container, and mapped it to the

specified host port. The deployed web server could then be

accessed by navigating to http://localhost:8080 on the host

machine’s browser. This confirmed that the deployment was

successful and that the server was operational.

E. Real-Life Usefulness

The proposed implementation addresses the common chal-

lenges of manual configuration, which is often error-prone

and inconsistent across environments. By relying on Docker

Compose and a simple script, the deployment becomes:

• Reproducible: the same YAML file and script can be used

on multiple machines with identical results.

• Scalable: additional services (such as databases or ap-

plication backends) can be easily added to the same

Compose file.

• Resilient: in case of failure, the service can be redeployed

within seconds, reducing downtime.

• CI/CD Friendly: the script and configuration files can be

integrated into pipelines, allowing automatic redeploy-

ment after code changes.

This makes the implementation suitable not only for aca-

demic learning but also for real-world scenarios, especially

for small- to medium-scale organizations seeking lightweight

alternatives to Kubernetes.

V. RESULTS

The proposed framework was tested on the Fedora operating

system to evaluate its performance, ease of use, and reliability.

The deployment process was carried out multiple times to

measure consistency and recovery speed.

Upon execution of the deploy.sh script, the Nginx container

was launched successfully using Docker Compose. The web

server was made accessible on http://localhost:8080, confirm-

ing that the container was running correctly and serving

requests. The Nginx default welcome page (shown in Fig. 5)

served as proof of a successful automated deployment.

A. Reduction in Deployment Time

Traditional manual deployment of Nginx involves installing

dependencies, configuring the server, and setting up network-

ing, which can take several minutes and requires careful

https://ijsrem.com/
http://localhost:8080/
http://localhost:8080/

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 09 Issue: 09 | Sept - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | https://ijsrem.com DOI: 10.55041/IJSREM52651 | Page 4

Fig. 5. Nginx default welcome page displayed in browser after automated
deployment

error handling. In contrast, the automated approach using

Docker Compose reduced the deployment process to less

than a minute, with no manual configuration required. This

demonstrates the efficiency of container-based deployment.

B. Consistency Across Environments

One of the key advantages of Docker Compose is envi-

ronment consistency. The same docker-compose.yml file was

tested on different machines, and each deployment produced

identical results. This eliminates common problems such as “it

works on my machine,” which often arise in manual setups.

C. Scalability and Recovery

The system was designed with scalability in mind. Ad-

ditional services such as databases or backend APIs can

be integrated into the same Docker Compose file, enabling

multi-service applications to be deployed easily. Moreover, in

case of errors or system crashes, rerunning the automation

script allowed for fast recovery, restoring the Nginx service in

seconds without reinstallation.

D. Integration Potential with CI/CD Pipelines

The deployment approach also aligns well with De-

vOps practices. By storing the configuration files (docker-

compose.yml and deploy.sh) in a version control system such

as Git, deployments can be triggered automatically via CI/CD

pipelines. This ensures that updates to configuration or code

can be reflected immediately in production environments.

Overall, the results validate the effectiveness of the proposed

framework in achieving faster, more reliable, and scalable

Nginx deployments. While Kubernetes offers more advanced

orchestration features, this lightweight approach using Docker

Compose demonstrates significant value for small- to medium-

scale environments, academic projects, and rapid prototyping

scenarios.

VI. CONCLUSION AND FUTURE WORK

This study presented an automated deployment framework

for Nginx using Docker Compose, focusing on efficiency, reli-

ability, and ease of use. The experimental results demonstrated

that the proposed approach significantly reduces deployment

time, ensures consistency across different environments, and

enables rapid recovery in case of failures. By automating repet-

itive setup tasks, the framework minimizes human error and

facilitates scalable deployments suitable for small- to medium-

scale applications, academic projects, and prototyping.

The integration potential with CI/CD pipelines further en-

hances the utility of the framework, enabling continuous de-

livery and streamlined updates. Overall, the proposed method

offers a lightweight, reproducible, and efficient alternative to

traditional manual deployment methods, while also serving as

a foundation for more complex containerized applications.

Through this implementation, several key learnings

emerged. The research highlighted the importance of con-

tainerization in simplifying deployment workflows and ensur-

ing environment consistency. Hands-on experimentation with

Docker Compose provided practical insights into dependency

management, networking configurations, and automated re-

covery strategies. Additionally, the study reinforced the value

of systematic testing, version control, and documentation in

achieving reliable and reproducible deployments. Overall, the

project enhanced understanding of modern DevOps practices,

bridging the gap between theoretical concepts and practical

application.

A. Future Work

Several avenues exist to extend and enhance this framework:

1) Monitoring and Logging Integration: Incorporate tools

such as Prometheus, Grafana, or the ELK stack to

provide real-time metrics and log analysis for deployed

containers.

2) Multi-Service Applications: Expand the docker-compose

setup to include databases, backend APIs, and other

microservices for full-stack deployment scenarios.

3) Kubernetes Migration: Evaluate the framework’s mi-

gration to Kubernetes for advanced orchestration, load

balancing, and scaling capabilities in larger production

environments.

4) Automated Testing and Validation: Integrate automated

testing scripts to verify deployment correctness and

service availability post-deployment.

By implementing these extensions, the framework can evolve

into a more robust, production-ready deployment solution,

maintaining its core benefits of speed, reliability, and repro-

ducibility, while also serving as a stepping stone toward more

complex cloud-native and microservices architectures.

REFERENCES

[1] Y. Liu and V. I. Borisov, “Containerization and automation of web
application deployment: Analysis and practical implementation,” Journal
of Applied Informatics, vol. 17, no. 1, pp. 45–53, 2022.

[2] B. Piedade, J. P. Dias, and F. F. Correia, “Visual notations in container or-
chestrations: An empirical study with Docker Compose,” arXiv preprint
arXiv:2207.09167, 2022.

[3] Y. Mao, Y. Fu, S. Gu, S. Vhaduri, L. Cheng, and Q. Liu, “Resource
management schemes for cloud-native platforms with computing con-
tainers of Docker and Kubernetes,” arXiv preprint arXiv:2010.10350,
2020.

[4] Z. Wang, M. Goudarzi, J. Aryal, and R. Buyya, “Container orchestration
in edge and fog computing environments for real-time IoT applications,”
arXiv preprint arXiv:2203.05161, 2022.

https://ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 09 Issue: 09 | Sept - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | https://ijsrem.com DOI: 10.55041/IJSREM52651 | Page 5

[5] A. S. Seisa, S. G. Satpute, and G. Nikolakopoulos, “Comparison
between Docker and Kubernetes based edge architectures for enabling
remote model predictive control for aerial robots,” arXiv preprint
arXiv:2212.05966, 2022.

[6] E. Ksontini, M. Mastouri, R. Khalsi, and W. Kessentini, “Refactoring
for Dockerfile Quality: A Dive into Developer Practices and Automation
Potential,” arXiv preprint arXiv:2501.14131, Jan. 2025. arXiv

[7] M. Ccallo and A. Quispe-Quispe, “Adoption and Adaptation of CI/CD
Practices in Very Small Software Development Entities: A Systematic
Literature Review,” arXiv preprint arXiv:2410.00623, Oct. 2024.

https://ijsrem.com/

