
 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 08 Issue: 03 | March - 2024 SJIF Rating: 8.176 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM29519 | Page 1

Automatic App Review Using Android Application

HISHAM*1, KUNA VIDYA SAGAR*2, J. JABIR*3, Mrs. L. Dharani *4, Dr. V. Sai Shanmuga Raja*5, and

Dr. G. Gunasekaran*6.

Mail id: aswaakh2012@gmail.com, sagarkuna9001@gmail.com, jabir.05.2002@gmail.com,

dharanil.cse@drmgrdu.ac.in, saishanmugaraja@gmail.com, gunasekaran.cse@drmgrdu.ac.in

*1,2,3 IV Year B. Tech Students, Dept of Computer science and Engineering, *4,5,6Professors, Dept of CSE DR. M.G.R

EDUCATIONAL AND RESEARCH INSTITUTE, Maduravoyal,
Chennai-95, Tamil Nadu, India

Abstract— DeepMatcher comes with a tool that connects

usage data from app analytics to error reports in the

monitored data. DeepMatcher uses advanced techniques

to automate this process, enabling developers to quickly

spot bugs and dynamically improve bug reporting. In

this Paper we have got Simple Mail Transfer protocol

(SMTP) which can send and receive Mail to concerned

app developers for the improvement in app experience.

As our abstract aims to make a standalone app that can

make the user give feedback directly to developer so that

the app satisfies the user as NLP required in

DeepMatcher to report the SMTP used is simplified and

make the developer easily rectify the issue with regards

to this research we propose DeepMatcher, a tool to

automate bug detection and enhance bug reporting in

app development .We contrast our solution to an

alternative, SMTP (Simple Mail Transfer Protocol),

featuring distinct advantages. Whilst DeepMatcher

illustrates automation, SMTP provides user-to-

developer direct and immediate communication

channels, simplifying feedback submission and bug

reports. This direct approach provides timely and

detailed feedback, faster bug resolution and higher app

quality resulting in improved user satisfaction.

 Keywords— SMTP, CoRe, Standalone, Feedback, Developer,

Generated

1. INTRODUCTION

When it comes to creating apps, the smooth incorporation of

user feedback is highly valuable in terms of ensuring user

satisfaction and improving the software quality.

DeepMatcher has usually been used to solve this problem of

user feedback obtained through app reviews and bug reports

stored in issue trackers. DeepMatcher uses the latest

developments in the field to programmatically carry out

issues matching from user reviews to those in bug reports,

thus making it easy for developers to quickly identify and

fix issues in software.

Nevertheless, our investigation instigates a paradigm

change by offering an alternative path for user feedback

integration, stressing the exploitation of Simple Mail

Transfer Protocol (SMTP) as direct communication line

between users and developers. In contrast to DeepMatcher

that depends on the automatic algorithms to interpret user

feedback, the SMTP approach provides a convenient way of

expressing one’s concerns and suggestions in the form of

emails to developers.

Feedback loop augmented with the SMTP allows users to

make their voice heard on the matter they are concerned

with in a more personal way thus, engaging them directly to

the development. This direct line of communication allows

the developers to get immediate and thorough feedback

which enables them to spot

bugs in a more timely manner and make the bug fixing be

more prompt. In addition, the simplicity of SMTP presents

less of a barrier for users to provide feedback which would

lead to a greater volume and improved quality of inputs

solicited.

This article investigates the comparative advantages of

SMTP over traditional automated tools like DeepMatcher in

integrating user feedback in app development. We show

how SMTP allows feedback collection with a more direct

and immediate approach, enabling developers to speedily

and user-focused enhance the app experience. Through

evaluation and case studies we illustrate the power of SMTP

as an essential instrument to improve user appreciation and

software quality when developing an application.

Moreover, expanding the framework for user feedback

integration to utilize SMTP grants developers a channel for

a more personalized and interactive relationship with their

user-base. Unlike the automated system like DeepMatcher

which creates a sense of disconnect between users and

developers because of the use on algorithmic matching, in

SMTP there are created direct communication lines that

encourage user interaction and collaboration. This direct

interaction not only improves user satisfaction but also

creates a sense of ownership and loyalty among the users;

they see their feedback being valued by the team of

developers. Therefore, the incorporation of SMTP is not

merely a technical upgrade but a strategic move making the

user a co-partner in the app development process aiming to

enhance the user engagement and evolve the app

development practices.

2. EXISTING SYSTEM

The system, described in the paper, is the existing one which

is centered around the creation of DeepMatcher - a solution

created to address the issue of feedback integration into the

http://www.ijsrem.com/
mailto:saishanmugaraja@gmail.com
mailto:%2Cgunasekaran.cse@drmgrdu.ac.in

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 08 Issue: 03 | March - 2024 SJIF Rating: 8.176 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM29519 | Page 2

bug fixing process in app development. The traditional

model gives developers a headache because of the required

manual analysis of thousands of app reviews that are

submitted by the users every day, a task that is further

complicated by the widespread use of minor expressions

like “I love this app” or “I hate it”.

For this purpose, DeepMatcher automatically extracts

problem reports from user reviews and matches them with

the bug reports existing in the development team's issue

tracker. The proposed automated approach greatly relieves

the pain of manual analysis giving developers the

opportunity to easily find and fix software problems.

DeepMatcher works in a manner where they first filter

problem reports from user reviews predominantly. This is

done exploiting recently done related work for this

particular purpose. Upon completion of the manual

validation of the filtered reports, DeepMatcher employes

context-sensitive embeddings to obtain text representations

which cosine similarity is used to find potential matches

between problem reports and bug reports.

The performance of DeepMatcher showcases its efficiency

in finding relevant matches as evidenced by 167 out of 200

issue reports being able to be matched with bug reports.

Further analysis reveals cases where DeepMatcher missed

potential candidates, or no bug report are available.

Sequentially, one can say that the presented results show

that DeepMatcher can help developers find bugs earlier,

improve bug reports with user feedback, and refine the

techniques for detecting duplicate or similar bugs.

3. PROPOSED SYSTEM

Considering the issues mentioned in the abstract, we put

forward a standalone app that serves as a single point that

users can use to input feedback, and report bugs directly to

the app developers. Our application is going to bring in

Simple Mail Transfer Protocol (SMTP) that is going to

consolidate user and developer communication, thus

streamlining the reporting and feedback gathering process.

Our proposed app shall include a user-interface which will

be user-friendly and will list the top apps along with the

developer’s contact information which can be reached via

email. The users may either encounter an issue or wish to

provide feedback; such cases can be handled by selecting

the app from the app and a feedback form shall prompt with

the area to describe the problem or provide suggestions.

On submission, the feedback will be automatically routed to

the email address `Supplied` of the respective app developer

via SMTP. This two-way communication channel allows

developers to get immediate and detailed responses from

users on which they can act immediately and improve the

overall experience the app gives.

With the utilization of SMTP within the proposed app, we

plan to simplify the process of bug reporting and feedback

collection, thereby promoting a more collaborative

relationship between users and developers. This method

does not only enable users to participate in the improvement

of their preferred apps but also speeds up the bug fixes and

iterative improvements which results in better user

experience and app quality. Here are the advantages.

• Streamlined Communication

• User-Friendly Interface

• Immediate Feedback

• Enhanced Collaboration

• Faster Bug Fixes and Iterative Improvements

• Improved User Experience

3.1 SYSTEM ARCHITECTURE

Fig 3 Devconnect app integration with SMTP

In Fig 3 it describes the implementation of the architecture,

developers have complete control over submitting requests

and providing recommended adjustments for the email

client. Utilizing the SMTP protocol, the client transmits the

email to DEVCONNECT where any feedback or issue

reports are handled, before delivering the message to the

recipient's mail server via SMTP. This seamless system

allows developers to seamlessly give feedback and report

bugs within the email client itself, streamlining the user

experience and simplifying the feedback and bug reporting

process with this email of the user is registered in the app

and while the email is sent for feedback on app the developer

gets the email received and the dev can knows who have sent

the mail. The following are the integration with SMTP,

1. Email Client: This is the app where developers can

leave feedback as well as report issues. It can be a

custom-built app or a third-party app like

Outlook/Gmail

2. DEVCONNECT: The platform or the service is

integrated with the email client. It gives a developer-

friendly interface for submitting feedback or

reporting bugs.

3. SMTP: This protocol is germane to the email clients

and DEVCONNECT in email sending to recipients.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 08 Issue: 03 | March - 2024 SJIF Rating: 8.176 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM29519 | Page 3

4. RELATED WORK

These are the works that can be done with SMTP,

Bug Tracking Systems: Many existing bug tracking systems

e.g., Jira, Bugzilla, and GitHub Issues aid bug reporting and

tracking within development teams. Also, such systems are

mostly designed for internal usage, if intended for users to

submit bugs they might not provide a user-friendly interface.

Feedback Collection Apps: There are some other feedback

collecting apps out there like UserVoice, SurveyMonkey,

and Gather from Zendesk which provide platforms for

gathering user feedback. Although these tools are good in

gathering feedback, they do not have integration with

functionalities for bug reporting and direct communication

channels with developers.

Email-Based Feedback Systems: Certain applications and

services have feedback systems based on emails whereby

users can email developers their feedback directly.

However, this approach can be bulky, since is not automated

and lacks response immediacy, having also chances of

feedback loss.

In-App Feedback Tools: Most mobile applications are

equipped with integrating in-app feedback tools that enable

the users to provide feedback right within the app interface.

For instance: Instabug, Appsee, Apptentive. Although these

tools ease user operations, they might fail to smoothly

synchronize with developer communication channels such

as email.

Research on User Feedback and Bug Reporting: Research

from academia has investigated the multifarious facets of

users feedback and bug reporting in software development.

Recent works focus on the examination of alternative

feedback collection methods, effect of user feedback on

software quality and issues of managing and prioritizing bug

reports during development.

5. METHODOLOGY DESCRIPTION

Research Design: An integrated approach using mixed

methods mixes qualitative methods (the survey, interview)

for assessing user needs and tastes, and quantitative methods

(such as the analysis of the app usage data) for app evaluation.

Participants: The study includes participants with different

backgrounds in terms of app users and developers from

among various demographics and developer communities.

Data Collection: Data is collected via surveys to capture user

feedback and preferences, interviews to gain better insight

and automatic tracking of app usage to measure effectiveness

over time.

Instruments/Tools: The instruments and interview protocols

of surveys are created to get a complete picture of users’

experiences as well as developers’ perceptions. App usage

tracking mechanisms are embedded in the app under

consideration.

Procedures: Participants are sourced online via platforms

and developer communities. Data collection includes sending

surveys electronically, conducting either in-person or video

conferencing interviews, and additionally collecting app

usage data.

 Fig 1 Architecture of proposed System

App logo: the logos of the app are visible on Fig 1. The logo

of the app is its primary visual component that helps users

recognize the app quickly. “

Rating icons: The image may depict various icons, i.e., stars

represent different ratings, which give users the possibility to

rate their experience with the app. Users can simply tap on

these icons to give their ratings.

Feedback form: The image can also have a text box or a

feedback form for the users to write a message to the app's

developer directly. This is the avenue for the users to give

constructive criticism on behalf of bugs or with them being

able to talk about new features and functionality of the app.

Navigation buttons: The image might have navigation

buttons allowing users to move between different

pages/sections of the app. These buttons may have labels

including "Back," "Home," or "Next" enabling users to

navigate the app easily.

App categories: This image could also contain icons or labels

representing the app categories, for example, "Games,"

"social media," or "Productivity". These categories could help

users to find the app easier in app stores, or on the developer's

DEVCONNECT

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 08 Issue: 03 | March - 2024 SJIF Rating: 8.176 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM29519 | Page 4

website.

Social proof: The image could feature social proof elements

e.g. awards or badges, indicating the app’s popularity and/or

awards it has won. These features promote trust with users

and also motivate them to download and use the app.

Call-to-action: In conclusion, the photo is expected to feature

a prominent CTA inviting users to rate and review the app or

linking to the app store where they can download it. The CTA

should stand out and be eye catching to motivate users to take

action.

Fig 2 Ratings and Feedback

Open the app: The user can start the app on any of their

devices.

Navigate to the feedback section: The user can go to the

feedback or support side of the application, which is likely in

the settings or help menu.

Provide ratings: The user can then enter their ratings by

selecting the right number of stars or through any other rating

system that is included within the app.

Write a message: The user can type the message in the

feedback form, or the text box made available within the

application. They can also voice their ideas, views, or

proposals about the app or service.

Send the feedback: The user can give the feedback by clicking

on the "Submit" or "Send" button which are available within

the app. The app will then send the email via SMTP to the

appropriate app developer.

6. TECHNOLOGY USED FOR APP

RESPONSE

Standalone App: Create a separate app where the users can

submit feedback and bugs directly to developers,

Simple Mail Transfer Protocol (SMTP): Seamlessly

incorporate SMTP to facilitate communication between users

and developers, ensuring they receive timely feedback.

User-Friendly Interface: Introduces and easy to use UI that

provides top apps with their respective developer contact

information, for easy management of user feedback

submission.

Automatic Routing: Automate the feedback’s direct routing

to developers’ mailboxes which should be taken care of as

soon as possible.

Two-Way Communication: Bring in users’ direct responses

towards user-user collaboration and faster bugs outcomes.

Advantages:

Streamlined Communication: Make feedback process

straightforward for users and developers.

User-Friendly Interface: Humanize the interface with an

easy UI.

Immediate Feedback: Launch prompt responses and actions

implemented off user feedback.

Enhanced Collaboration: Develop a user-developer

cooperation relationship.

Faster Bug Fixes: Accelerate bug fixing and iterative

enhancements.

Improved User Experience: Lead to the improvement of the

app quality and user satisfaction.

Enhancing Bug Reports with User Feedback

Detailed Descriptions: Urge the users to give a detailed

description of the problem that occurred, how to reproduce it

as well as the error messages seen. This helps developers find

the problem better and assists speedy resolution.

User Context: Allow users to supply contextual data such

device type, OS version, app version and network condition.

This the can the contextual data help in identifying potential

causes for the bug and rank them in terms of priority.

Screenshots and Screen Recordings**: Let users attach

screenshots or record screen videos illustrating the problem.

Visual aids can provide extremely helpful context and

facilitate our seeing the problem better.

User Feedback Integration**: Embed user feedback channels

straight into the bug reporting process. Permit users to raise

general suggestions or bug reports so that developers will

DEVCONNECT

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 08 Issue: 03 | March - 2024 SJIF Rating: 8.176 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM29519 | Page 5

work on usability issues or feature requests simultaneously.

Feedback Prioritization: In place of user voting, introduce

mechanisms that allow them to prioritize reported bugs

depending on their severity or impact to their experience. This

helps developers to prioritize critical issues first and response

to user concerns quickly.

Two-Way Communication: Establish a communication

channel between users and developers to clarify or reopen the

cases of reported bugs. This enables collaboration and

developers can get more details if necessary.

Feedback Analysis: Analyze user feedback and bug reports

methodically and search for the patterns and problems

frequently occurring among these inputs. This can also guide

quality assurance activities and determine which bugs to take

care of first according to user impact and rate of occurrence.

Feedback Acknowledgment: Act on the user comments in a

timely manner to assure the users that their reports have been

taken notice of and are being acted upon. Keeping the users

informed of the current state of the reported bugs will

maintain transparency and trust.

Thanks to user feedback on bugs, developers can improve

their troubleshooting skills, prioritize bug fixes accurately

and end up with a better product overall.

7. IMPLEMENTATION

App Development:

• Design and develop the single- purpose application

with the convenient user interface.

• Provide functions to specify top apps and developer

contact.

• Implement a feedback form for users to report

problems or give ideas.

SMTP Integration:

• Add SMTP to the app to automate email

communication.

• Set up SMTP servers and configure the app to send

emails to developers email addresses.

Feedback Routing:

• Set up the app to send the feedback submissions to

the email addresses of respective app developers.

• Make sure that feedback submissions include such

details as app name, user details and issue

description.

Two-Way Communication:

• Allow developers to respond to feedback directly

through email, thus, setting up a two-way

communication channel.

• Include the implementation of a system that

notifies users of developer responses in the app.

Testing and Quality Assurance:

• Conduct comprehensive testing of the app to

guarantee functionality and usability.

• Verify email delivery and routing via SMTP.

• Resolve all the bugs and/or problems discovered

during testing.

Deployment:

• Deploy your app to the applicable app stores or

distribution platforms for your users to get the app

and install it.

• Make sure that proper documentation and

instructions are given to users for feedback

submission.

User Engagement and Support:

• Publish the app to users and get them to send

comments and bug reports.

• The support of the user and help should be

provided for any problems or questions connected

to the app.

Feedback Analysis and Iterative Improvements:

• Repeatedly analyze feedback from users and

prioritize bug fixes and improvements according to

the input of users.

• Updates release to the app address reported issues

and improve user experience.

Monitoring and Maintenance:

• Deploy performance monitoring such as

submission rate and response time.

• Resolve user or technical concerns by regular

updates and maintenance.

7.1 Challenges and Constraints

Technical Complexity: To implement SMTP into the app

and to set up a mail server may be technically difficult, in

particular, for those novice developers when it comes to the

email communication protocols.

Email Deliverability: Making sure emails coming from the

application are received at developers email addresses

without being flagged as spam or blocked by email filters

can prove to be a Challenge which affects the reliability of

feedback routing.

User Engagement: The task of convincing users to provide

feedback and report bugs may prove to be difficult because

most users may fail to get the motivation to spend their time

carrying out such task, thereby leading to low utilization of

the platform and as a result incomplete feedback.

Response Time: Maintaining prompt responses to user

feedback and bug reports can be challenging, more so for

developers handling multiple apps or with a high volume of

feedback. Lags in response time cause user dissatisfaction

and frustration.

Feedback Analysis: Analysis and prioritization of the

feedback from the users can be laborious and contextual,

which necessitates developers to sort through a significant

amount of feedback to determine valuable insights and

prioritize bug fixes and improvements.

User Support: It is difficult to support users when the app

encounters issues, even for small development teams with

fewer resources. Timely and satisfactory solving of user

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 08 Issue: 03 | March - 2024 SJIF Rating: 8.176 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM29519 | Page 6

problems is paramount to have happy users.

Quality Assurance: Ensuring the app quality and reliability

through comprehensive testing and bug fixing is tough due

to the fact that bugs tend to appear with each new app release

and require constant maintenance and updates.

Performance Monitoring: Ensuring processor speed and

delivery time can be difficult in deploying performance

monitoring tools. In this case continuous monitoring and

adjustment must be done to optimize the app's performance

and user experience.

8. CONCLUSION

In this paper we put forward an individual application in this

paper, the function of which is to simplify the process of

user feedback receipt and bug reporting for the mobile

applications. Integrating SMTP into the app, we meant to

bring together the communication between the users and the

developers so that these requests are prompt and complete.

The app provides a simple interface that has the list of the

top apps and the developer contact information as well as

also the feedback form for the users to state if there are any

issues and give suggestions. Feedback submissions are

directly sent to the concerned app developers via email

encouraging a very collaborative working relationship

hence the faster bug fixes and also iterative improvements.

Our system is characterized by simplified communication, a

user-friendly interface, near instantaneous feedback,

increased collaboration, quick bugs fixes, and a better user

experience. Developers can obtain more good insights into

the app issues when the bug reports are supplemented with

the user feedback and prioritize the bug fixes, accordingly,

thus resulting in better app quality and user satisfaction.

Briefly, the implementation of the proposed scheme

supplies a unified solution to the problem of feedback and

also bug reporting in the mobile application development.

Using technology and user feedback, the developers amplify

their debugging capacities, focus on fixing the apparent bugs

and consequently end up developing a very pleasant and

nice user experience.

REFERENCES

1. Haering, M., Stanik, C., & Maalej, W. (2021, May).

Automatically matching bug reports with related app

reviews. In 2021 IEEE/ACM 43rd International

Conference on Software Engineering (ICSE) (pp. 970-

981). IEEE.

2. Aljedaani, W., Mkaouer, M. W., Ludi, S., & Javed, Y.

(2022, March). Automatic classification of accessibility

user reviews in android apps. In 2022 7th international

conference on data science and machine learning

applications (CDMA) (pp. 133-138). IEEE

3. Araujo, A. F., Gôlo, M. P., & Marcacini, R. M. (2022).

Opinion mining for app reviews: an analysis of textual

representation and predictive models. Automated

Software Engineering, 29, 1-30.

4. Gao, C., Zhou, W., Xia, X., Lo, D., Xie, Q., & Lyu, M.

R. (2021). Automating app review response generation

based on contextual knowledge. ACM Transactions on

Software Engineering and Methodology (TOSEM),

31(1), 1-36.

5. Hassan, S., Tantithamthavorn, C., Bezemer, C. P., &

Hassan, A. E. (2018). Studying the dialogue between

users and developers of free apps in the google play

store. Empirical Software Engineering, 23, 1275-1312

6. Kamonphop Srisopha, Devendra Swami, Daniel Link,

and Barry W. Boehm. 2020. How features in iOSApp

Store Reviews can Predict Developer Responses. In

EASE ’20: Evaluation and Assessment in Software

Engineering, Trondheim,Norway, April 15-17, 2020,

Jingyue Li, Letizia Jaccheri, Torgeir Dingsøyr, and

Ruzanna Chitchyan (Eds.). ACM, 336–341

7. Phong, M. V., Nguyen, T. T., Pham, H. V., & Nguyen,

T. T. (2015, November). Mining user opinions in

mobile app reviews: A keyword-based approach (t). In

2015 30th IEEE/ACM International Conference on

Automated Software Engineering (ASE) (pp. 749-759).

IEEE

8. Stuart McIlroy, Weiyi Shang, Nasir Ali, and Ahmed E.

Hassan. 2017. Is It Worth Responding to Reviews?

Studying the Top Free Apps in Google Play. IEEE

Software 34, 3 (2017), 64–71.

9. Yang, T., Gao, C., Zang, J., Lo, D., & Lyu, M. (2021,

April). Tour: Dynamic topic and sentiment analysis of

user reviews for assisting app release. In Companion

Proceedings of the Web Conference 2021 (pp. 708-

712).

10. Liu, H., Shen, M., Jin, J., & Jiang, Y. (2020, July).

Automated classification of actions in bug reports of

mobile apps. In Proceedings of the 29th ACM

SIGSOFT International Symposium on Software

Testing and Analysis (pp. 128-140).

11. Fazzini, M., Moran, K., Bernal-Cardenas, C.,

Wendland, T., Orso, A., & Poshyvanyk, D. (2022).

Enhancing mobile app bug reporting via real-time

understanding of reproduction steps. IEEE

Transactions on Software Engineering, 49(3), 1246-

1272.

12. Tan, S. H., & Li, Z. (2020, June). Collaborative bug

finding for android apps. In Proceedings of the

ACM/IEEE 42nd International Conference on Software

Engineering (pp. 1335-1347).

13. Malgaonkar, S., Licorish, S. A., & Savarimuthu, B. T.

R. (2022). Prioritizing user concerns in app reviews–A

study of requests for new features, enhancements and

bug fixes. Information and Software Technology, 144,

106798.

14. Mazuera-Rozo, A., Trubiani, C., Linares-Vásquez, M.,

& Bavota, G. (2020). Investigating types and

survivability of performance bugs in mobile

apps. Empirical Software Engineering, 25, 1644-1686.

15. Su, T., Fan, L., Chen, S., Liu, Y., Xu, L., Pu, G., & Su,

Z. (2020). Why my app crashes? understanding and

benchmarking framework-specific exceptions of

android apps. IEEE Transactions on Software

Engineering, 48(4), 1115-1137.

http://www.ijsrem.com/

