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Abstract 

Algorithm selection and hyperparameter tuning remain two of the most challenging tasks in machine 

learning. The number of machine learning applications is growing much faster than the number of machine 

learning experts, hence we see an increasing demand for efficient automation of learning processes. 
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1 Introduction 
 

Machine learning and data science experts find 

it difficult to select algorithms and 

hyperparameter settings suitable for a given 

dataset; for novices, the challenge is even 

greater. The large number of algorithms, and the 

sensitivity of these methods to hyperparameter 

values, makes it practically infeasible to 

enumerate all possible configurations. To 

surmount these challenges, the field of 

Automated Machine Learning (AutoML) seeks 

to efficiently automate the selection of model 

configurations, and has attracted increasing 

attention in recent years. Especially recent deep 

neural networks crucially depend on a wide 

range of hyperparameter choices about the 

neural network’s architecture, regularization, and 

optimization. Automated hyperparameter 

optimization (HPO) has several important use 

cases; it can 

• Reduce the human effort necessary for 

applying machine learning. This is particularly 

important in the context of AutoML. 

• improve the performance of machine 

learning algorithms (by tailoring them 

to the problem at hand); this has led to new 

state-of-the-art performances for  important 

machine learning benchmarks in several studies. 

• improve the reproducibility and fairness 

of scientific studies. Automated HPO is clearly 

more reproducible than manual search. It 

facilitates fair comparisons since different 

methods can only be compared fairly if they all 

receive the same level of tuning for the problem 

at hand 

The problem of HPO has a long history, dating 

back to the 1990s and it was also established 

early that different hyperparameter 

configurations tend to work best for different 

dataset. In contrast, it is a rather new insight that 

HPO can be used to adapt general-purpose 

pipelines to specific application domains. 

Nowadays, it is also widely acknowledged that 

tuned hyperparameters improve over the default 

setting provided by common machine learning 

libraries. 

http://www.ijsrem.com/
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Because of the increased usage of machine 

learning in companies, HPO is also of 

substantial commercial interest and plays an 

ever larger role there, be it in company-internal 

tools, as part of machine learning cloud service, 

or as a service by itself. 

This paper is organized as follows. Section 2 

2 Understanding 

Hyperparameters 

2.1 What is a parameter in a ML 

learning model? 

A model parameter is a configuration variable 

that is internal to the model and whose value 

can be estimated from the given data. 

• They are required by the model when 

making predictions. 

• Their values define the skill of the 

model on your problem. 

• They are estimated or learned from 

data. 

• They are often not set manually by the 

practitioner. 

• They are often saved as part of the 

learned model. 

So, parameters are crucial to machine learning 

algorithms. Also, they are the part of the model 

that is learned from historical training data. 

Some examples of model parameters include: 

• The weights in an artificial neural 

network. 

• The support vectors in a support vector 

machine. 

• The coefficients in a linear regression or 

logistic regression. 

2.2 What is a hyperparameter in a ML 

learning model? 

A model hyperparameter is a configuration that 

is external to the model and whose value 

cannot be estimated from data. 

• They are often used in processes to help 

estimate model parameters. 

• They are often specified by the 

practitioner. 

• They can often be set using heuristics. 

• They are often tuned for a given 

predictive modeling problem. 

You cannot know the best value for a model 

hyperparameter on a given problem. You may 

use rules of thumb, copy values used on other 

issues, or search for the best value by trial and 

error. When a machine learning algorithm is 

tuned for a specific problem then essentially 

you are tuning the hyperparameters of the 

model to discover the parameters of the model 

that result in the most skillful predictions. 

Some examples of model hyperparameters 

include: 

• The learning rate for training a neural 

network. 

• The C and sigma hyperparameters for 

support vector machines. 

• The k in k-nearest neighbors. 

2.3 Importance of the right set of 

hyperparameter values in a machine 

learning model 

The best way to think about hyperparameters is 

like the settings of an algorithm that can be 

adjusted to optimize performance, just as you 

might turn the knobs of an AM radio to get a 

clear signal. When creating a machine learning 

model, you'll be presented with design choices 

as to how to define your model architecture. 

Often, you don't immediately know what the 

optimal model architecture should be for a 

given model, and thus you'd like to be able to 

explore a range of possibilities. In a true 

machine learning fashion, you’ll ideally ask the 

machine to perform this exploration and select 

the optimal model architecture automatically. 

http://www.ijsrem.com/
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2.4 Two simple strategies to optimize/tune 

the hyperparameters 

Models can have many hyperparameters and 

finding the best combination of parameters can 

be treated as a search problem. 

Although there are many hyperparameter 

optimization/tuning algorithms now, this post 

discusses two simple strategies: 1. grid search 

and 2. Random Search. 

2.4.1 Grid searching of hyperparameters 

Grid search is an approach to hyperparameter 

tuning that will methodically build and evaluate 

a model for each combination of algorithm 

parameters specified in a grid. 

Let’s consider the following example: 

Suppose, a machine learning model X takes 

hyperparameters a1, a2 and a3. In grid 

searching, you first define the range of values 

for each of the hyperparameters a1, a2 and a3. 

You can think of this as an array of values for 

each of the hyperparameters. Now the grid 

search technique will construct many versions 

of X with all the possible combinations of 

hyperparameter (a1, a2 and a3) values that you 

defined in the first place. This range of 

hyperparameter values is referred to as the grid. 

Suppose, you defined the grid as: 

a1 = [0,1,2,3,4,5] 

a2 = [10,20,30,40,5,60] 

a3 = [105,105,110,115,120,125] 

Note that, the array of values of that you are 

defining for the hyperparameters has to be 

legitimate in a sense that you cannot supply 

Floating type values to the array if the 

hyperparameter only takes Integer values. 

Now, grid search will begin its process of 

constructing several versions of X with the grid 

that you just defined. 

It will start with the combination of [0,10,105], 

and it will end with [5,60,125]. It will go 

through all the intermediate combinations 

between these two which makes grid search 

computationally very expensive. 

2.4.2 Random searching 

of hyperparameters 

The idea of random searching of 

hyperparameters was proposed by James 

Bergstra & Yoshua Bengio. 

Random search differs from a grid search. In 

that you longer provide a discrete set of values 

to explore for each hyperparameter; rather, you 

provide a statistical distribution for each 

hyperparameter from which values may be 

randomly sampled. 

You’ll define a sampling distribution for each 

hyperparameter. You can also define how many 

iterations you’d like to build when searching for 

the optimal model. For each iteration, the 

hyperparameter values of the model will be set 

by sampling the defined distributions. One of 

the primary theoretical backings to motivate the 

use of a random search in place of grid search is 

the fact that for most cases, hyperparameters are 

not equally important. According to the original 

paper: 

“….for most datasets only a few of the hyper- 

parameters really matter, but that different 

hyper-parameters are important on different 

datasets. This phenomenon makes grid search a 

poor choice for configuring algorithms for new 

datasets.” 

In the following figure, we're searching over a 

hyperparameter space where the one 

hyperparameter has significantly more influence 

on optimizing the model score - the 

http://www.ijsrem.com/
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distributions shown on each axis represent the 

model's score. In each case, we're evaluating 

nine different models. The grid search strategy 

blatantly misses the optimal model and spends 

redundant time exploring the unimportant 

parameter. 

During this grid search, we isolated each 

hyperparameter and searched for the best 

possible value while holding all other 

hyperparameters constant. For cases where the 

hyperparameter being studied has little effect on 

the resulting model score, this results in wasted 

effort. Conversely, the random search has much 

improved exploratory power and can focus on 

finding the optimal value for the critical 

hyperparameter. 
 

3 Related Work 

The above two strategies described are Model- 

Free Blackbox Optimization Methods. Another 

approach is using Bayesian Optimization. 

Bayesian optimization is a state-of-the-art 

optimization framework for the global 

optimization of expensive Blackbox functions, 

which recently gained traction in HPO by 

obtaining new state-of-the-art results in tuning 

deep neural networks for image classification, 

speech recognition and neural language 

modeling, and by demonstrating wide 

applicability to different problem settings. 

4 How Hyperparameter 

Optimization HPO Works? 

Bayesian optimization is an iterative algorithm 

with two key ingredients: a probabilistic 

surrogate model and an acquisition function to 

decide which point to evaluate next. 

Bayesian optimization finds the value that 

minimizes an objective function by building a 

surrogate function (probability model) based on 

past evaluation results of the objective. The 

surrogate is cheaper to optimize than the 

objective, so the next input values to evaluate 

are selected by applying a criterion to the 

surrogate (often Expected Improvement). 

Bayesian methods differ from random or grid 

search in that they use past evaluation results to 

choose the next values to evaluate. The concept 

is: limit expensive evaluations of the objective 

function by choosing the next input values 

based on those that have done well in the past. 

In the case of hyperparameter optimization, the 

objective function is the validation error of a 

machine learning model using a set of 

hyperparameters. The aim is to find the 

hyperparameters that yield the lowest error on 

the validation set in the hope that these results 

generalize to the testing set. Evaluating the 

objective function is expensive because it 

requires training the machine learning model 

with a specific set of hyperparameters. Ideally, 

we want a method that can explore the search 

space while also limiting evaluations of poor 

hyperparameterchoices.

 Bayesian hyperparameter 

tuning uses a continually updated probability 

model to “concentrate” on promising 

hyperparameters by reasoning from past results. 

4.1 Four Parts of

 Optimization Problem 

There are four parts to a Bayesian Optimization 

problem: 

• Objective Function: what we want to 

minimize, in this case the validation 

http://www.ijsrem.com/
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error of a machine learning model with respect 

to the hyperparameters 

• Domain Space: hyperparameter values 

to search over 

• Optimization algorithm: method for 

constructing the surrogate model and choosing 

the next hyperparameter values to evaluate 

• Result history: stored outcomes from 

evaluations of the objective function consisting 

of the hyperparameters and validation loss 

With those four pieces, we can optimize (find 

the minimum) of any function that returns a real 

value. This is a powerful abstraction that lets us 

solve many problems in addition to tuning 

machine learning hyperparameters. 

5 Applications of AutoML 

We provide a historical overview of the most 

important hyperparameter optimization systems 

and applications to automated machine learning. 

Grid search has been used for hyperparameter 

optimization since the 1990s and was already 

supported by early machine learning tools in 

2002. The first adaptive optimization methods 

applied to HPO were greedy depth-first search 

and pattern search, both improving over default 

hyperparameter configurations, and pattern 

search improving over grid search, too. 

Genetic algorithms were first applied to tuning 

the two hyperparameters C and γ of an RBF- 

SVM in 2004 [03] and resulted in improved 

classification performance in less time than grid 

search. In the same year, an evolutionary 

algorithm was used to learn a composition of 

three different kernels for an SVM, the kernel 

hyperparameters and to jointly select a feature 

subset; the learned combination of kernels was 

able to outperform every single optimized 

kernel. 

 
6 Conclusion 

Based on the research done for this paper it 

concludes that machine learning engineers and 

data scientist need HPOs and automated model 

selection tools. Since 1990s we are using some 

sort of optimization techniques to optimize 

models hyperparameters. Future work - Given 

some input about what the problem is, it would 

be good if machine learning model itself give 

predictions (suggestions) about which models or 

models might be best suited for the given 

problem statement. 
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