
 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 07 Issue: 06 | June - 2023 SJIF Rating: 8.176 ISSN: 2582-3930

© 2023, IJSREM | www.ijsrem.com | Page 1

AutoML - Predicting Optimal Hyperparameter

Shriya jayant Salian

Pallavi Ramsingh Aike

ASM Institute of Management & Computer Studies

Email:
Divyasalian0123@gmail.com/Pallaviaike61@gmail.com

Abstract

Algorithm selection and hyperparameter tuning remain two of the most challenging tasks in machine

learning. The number of machine learning applications is growing much faster than the number of machine

learning experts, hence we see an increasing demand for efficient automation of learning processes.

Keywords: Machine Learning, Model Selection, Hyperparameter Optimization, Automated Machine

Learning.

1 Introduction

Machine learning and data science experts find

it difficult to select algorithms and

hyperparameter settings suitable for a given

dataset; for novices, the challenge is even

greater. The large number of algorithms, and the

sensitivity of these methods to hyperparameter

values, makes it practically infeasible to

enumerate all possible configurations. To

surmount these challenges, the field of

Automated Machine Learning (AutoML) seeks

to efficiently automate the selection of model

configurations, and has attracted increasing

attention in recent years. Especially recent deep

neural networks crucially depend on a wide

range of hyperparameter choices about the

neural network’s architecture, regularization, and

optimization. Automated hyperparameter

optimization (HPO) has several important use

cases; it can

• Reduce the human effort necessary for

applying machine learning. This is particularly

important in the context of AutoML.

• improve the performance of machine

learning algorithms (by tailoring them

to the problem at hand); this has led to new

state-of-the-art performances for important

machine learning benchmarks in several studies.

• improve the reproducibility and fairness

of scientific studies. Automated HPO is clearly

more reproducible than manual search. It

facilitates fair comparisons since different

methods can only be compared fairly if they all

receive the same level of tuning for the problem

at hand

The problem of HPO has a long history, dating

back to the 1990s and it was also established

early that different hyperparameter

configurations tend to work best for different

dataset. In contrast, it is a rather new insight that

HPO can be used to adapt general-purpose

pipelines to specific application domains.

Nowadays, it is also widely acknowledged that

tuned hyperparameters improve over the default

setting provided by common machine learning

libraries.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 07 Issue: 06 | June - 2023 SJIF Rating: 8.176 ISSN: 2582-3930

© 2023, IJSREM | www.ijsrem.com | Page 2

Because of the increased usage of machine

learning in companies, HPO is also of

substantial commercial interest and plays an

ever larger role there, be it in company-internal

tools, as part of machine learning cloud service,

or as a service by itself.

This paper is organized as follows. Section 2

2 Understanding

Hyperparameters

2.1 What is a parameter in a ML

learning model?

A model parameter is a configuration variable

that is internal to the model and whose value

can be estimated from the given data.

• They are required by the model when

making predictions.

• Their values define the skill of the

model on your problem.

• They are estimated or learned from

data.

• They are often not set manually by the

practitioner.

• They are often saved as part of the

learned model.

So, parameters are crucial to machine learning

algorithms. Also, they are the part of the model

that is learned from historical training data.

Some examples of model parameters include:

• The weights in an artificial neural

network.

• The support vectors in a support vector

machine.

• The coefficients in a linear regression or

logistic regression.

2.2 What is a hyperparameter in a ML

learning model?

A model hyperparameter is a configuration that

is external to the model and whose value

cannot be estimated from data.

• They are often used in processes to help

estimate model parameters.

• They are often specified by the

practitioner.

• They can often be set using heuristics.

• They are often tuned for a given

predictive modeling problem.

You cannot know the best value for a model

hyperparameter on a given problem. You may

use rules of thumb, copy values used on other

issues, or search for the best value by trial and

error. When a machine learning algorithm is

tuned for a specific problem then essentially

you are tuning the hyperparameters of the

model to discover the parameters of the model

that result in the most skillful predictions.

Some examples of model hyperparameters

include:

• The learning rate for training a neural

network.

• The C and sigma hyperparameters for

support vector machines.

• The k in k-nearest neighbors.

2.3 Importance of the right set of

hyperparameter values in a machine

learning model

The best way to think about hyperparameters is

like the settings of an algorithm that can be

adjusted to optimize performance, just as you

might turn the knobs of an AM radio to get a

clear signal. When creating a machine learning

model, you'll be presented with design choices

as to how to define your model architecture.

Often, you don't immediately know what the

optimal model architecture should be for a

given model, and thus you'd like to be able to

explore a range of possibilities. In a true

machine learning fashion, you’ll ideally ask the

machine to perform this exploration and select

the optimal model architecture automatically.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 07 Issue: 06 | June - 2023 SJIF Rating: 8.176 ISSN: 2582-3930

© 2023, IJSREM | www.ijsrem.com | Page 3

2.4 Two simple strategies to optimize/tune

the hyperparameters

Models can have many hyperparameters and

finding the best combination of parameters can

be treated as a search problem.

Although there are many hyperparameter

optimization/tuning algorithms now, this post

discusses two simple strategies: 1. grid search

and 2. Random Search.

2.4.1 Grid searching of hyperparameters

Grid search is an approach to hyperparameter

tuning that will methodically build and evaluate

a model for each combination of algorithm

parameters specified in a grid.

Let’s consider the following example:

Suppose, a machine learning model X takes

hyperparameters a1, a2 and a3. In grid

searching, you first define the range of values

for each of the hyperparameters a1, a2 and a3.

You can think of this as an array of values for

each of the hyperparameters. Now the grid

search technique will construct many versions

of X with all the possible combinations of

hyperparameter (a1, a2 and a3) values that you

defined in the first place. This range of

hyperparameter values is referred to as the grid.

Suppose, you defined the grid as:

a1 = [0,1,2,3,4,5]

a2 = [10,20,30,40,5,60]

a3 = [105,105,110,115,120,125]

Note that, the array of values of that you are

defining for the hyperparameters has to be

legitimate in a sense that you cannot supply

Floating type values to the array if the

hyperparameter only takes Integer values.

Now, grid search will begin its process of

constructing several versions of X with the grid

that you just defined.

It will start with the combination of [0,10,105],

and it will end with [5,60,125]. It will go

through all the intermediate combinations

between these two which makes grid search

computationally very expensive.

2.4.2 Random searching

of hyperparameters

The idea of random searching of

hyperparameters was proposed by James

Bergstra & Yoshua Bengio.

Random search differs from a grid search. In

that you longer provide a discrete set of values

to explore for each hyperparameter; rather, you

provide a statistical distribution for each

hyperparameter from which values may be

randomly sampled.

You’ll define a sampling distribution for each

hyperparameter. You can also define how many

iterations you’d like to build when searching for

the optimal model. For each iteration, the

hyperparameter values of the model will be set

by sampling the defined distributions. One of

the primary theoretical backings to motivate the

use of a random search in place of grid search is

the fact that for most cases, hyperparameters are

not equally important. According to the original

paper:

“….for most datasets only a few of the hyper-

parameters really matter, but that different

hyper-parameters are important on different

datasets. This phenomenon makes grid search a

poor choice for configuring algorithms for new

datasets.”

In the following figure, we're searching over a

hyperparameter space where the one

hyperparameter has significantly more influence

on optimizing the model score - the

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 07 Issue: 06 | June - 2023 SJIF Rating: 8.176 ISSN: 2582-3930

© 2023, IJSREM | www.ijsrem.com | Page 4

distributions shown on each axis represent the

model's score. In each case, we're evaluating

nine different models. The grid search strategy

blatantly misses the optimal model and spends

redundant time exploring the unimportant

parameter.

During this grid search, we isolated each

hyperparameter and searched for the best

possible value while holding all other

hyperparameters constant. For cases where the

hyperparameter being studied has little effect on

the resulting model score, this results in wasted

effort. Conversely, the random search has much

improved exploratory power and can focus on

finding the optimal value for the critical

hyperparameter.

3 Related Work

The above two strategies described are Model-

Free Blackbox Optimization Methods. Another

approach is using Bayesian Optimization.

Bayesian optimization is a state-of-the-art

optimization framework for the global

optimization of expensive Blackbox functions,

which recently gained traction in HPO by

obtaining new state-of-the-art results in tuning

deep neural networks for image classification,

speech recognition and neural language

modeling, and by demonstrating wide

applicability to different problem settings.

4 How Hyperparameter

Optimization HPO Works?

Bayesian optimization is an iterative algorithm

with two key ingredients: a probabilistic

surrogate model and an acquisition function to

decide which point to evaluate next.

Bayesian optimization finds the value that

minimizes an objective function by building a

surrogate function (probability model) based on

past evaluation results of the objective. The

surrogate is cheaper to optimize than the

objective, so the next input values to evaluate

are selected by applying a criterion to the

surrogate (often Expected Improvement).

Bayesian methods differ from random or grid

search in that they use past evaluation results to

choose the next values to evaluate. The concept

is: limit expensive evaluations of the objective

function by choosing the next input values

based on those that have done well in the past.

In the case of hyperparameter optimization, the

objective function is the validation error of a

machine learning model using a set of

hyperparameters. The aim is to find the

hyperparameters that yield the lowest error on

the validation set in the hope that these results

generalize to the testing set. Evaluating the

objective function is expensive because it

requires training the machine learning model

with a specific set of hyperparameters. Ideally,

we want a method that can explore the search

space while also limiting evaluations of poor

hyperparameterchoices.

 Bayesian hyperparameter

tuning uses a continually updated probability

model to “concentrate” on promising

hyperparameters by reasoning from past results.

4.1 Four Parts of

 Optimization Problem

There are four parts to a Bayesian Optimization

problem:

• Objective Function: what we want to

minimize, in this case the validation

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 07 Issue: 06 | June - 2023 SJIF Rating: 8.176 ISSN: 2582-3930

© 2023, IJSREM | www.ijsrem.com | Page 5

error of a machine learning model with respect

to the hyperparameters

• Domain Space: hyperparameter values

to search over

• Optimization algorithm: method for

constructing the surrogate model and choosing

the next hyperparameter values to evaluate

• Result history: stored outcomes from

evaluations of the objective function consisting

of the hyperparameters and validation loss

With those four pieces, we can optimize (find

the minimum) of any function that returns a real

value. This is a powerful abstraction that lets us

solve many problems in addition to tuning

machine learning hyperparameters.

5 Applications of AutoML

We provide a historical overview of the most

important hyperparameter optimization systems

and applications to automated machine learning.

Grid search has been used for hyperparameter

optimization since the 1990s and was already

supported by early machine learning tools in

2002. The first adaptive optimization methods

applied to HPO were greedy depth-first search

and pattern search, both improving over default

hyperparameter configurations, and pattern

search improving over grid search, too.

Genetic algorithms were first applied to tuning

the two hyperparameters C and γ of an RBF-

SVM in 2004 [03] and resulted in improved

classification performance in less time than grid

search. In the same year, an evolutionary

algorithm was used to learn a composition of

three different kernels for an SVM, the kernel

hyperparameters and to jointly select a feature

subset; the learned combination of kernels was

able to outperform every single optimized

kernel.

6 Conclusion

Based on the research done for this paper it

concludes that machine learning engineers and

data scientist need HPOs and automated model

selection tools. Since 1990s we are using some

sort of optimization techniques to optimize

models hyperparameters. Future work - Given

some input about what the problem is, it would

be good if machine learning model itself give

predictions (suggestions) about which models or

models might be best suited for the given

problem statement.

References

www.jmlr.org/papers/volume13/bergstra12a/b

ergstra12a.pdf

https://www.cs.ubc.ca/~hoos/Publ/EggEtAl13.p df

https://link.springer.com/chapter/10.1007/978-

3-030-05318-5_1#CR105

https://www.topbots.com/automl-model-

selection-optiml/

https://www.arxiv-

vanity.com/papers/1808.03233/

http://www.ijsrem.com/
http://www.jmlr.org/papers/volume13/bergstra12a/bergstra12a.pdf
http://www.jmlr.org/papers/volume13/bergstra12a/bergstra12a.pdf
https://www.cs.ubc.ca/~hoos/Publ/EggEtAl13.pdf
https://www.cs.ubc.ca/~hoos/Publ/EggEtAl13.pdf
https://link.springer.com/chapter/10.1007/978-3-030-05318-5_1#CR105
https://link.springer.com/chapter/10.1007/978-3-030-05318-5_1#CR105
https://www.topbots.com/automl-model-selection-optiml/
https://www.topbots.com/automl-model-selection-optiml/
https://www.arxiv-vanity.com/papers/1808.03233/
https://www.arxiv-vanity.com/papers/1808.03233/

