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Abstract - Surveillance is a critical component of national 

security. Design and creation of a prototype Autonomous 

Mobile Robot (AMR) for surveillance using a YOLO v8 model 

consist of innovative aspects for quick surveillance operations 

across different terrain. The AMR with camouflage-like 

features to blend in with the environment uses ROS for 

autonomous navigation and YOLO for precise object detection. 

camera, face recognition, and motion detection with OpenCV, 

the AMR also incorporates an alarm notification system. The 

highly advanced obstacle detection and navigation guiding of 

the AMR. Field trials demonstrated that the AMR was able to 

move around without assistance while executing surveillance 

operations with ease, which demonstrated its prospects as an 

invaluable tool for use in the military and security services.  The 

project introduces dramatic advancements in autonomous 

surveillance, with constant real-time monitoring involving 

limited human intervention. Its pairing with advanced detection 

systems and long-lasting hardware optimizes its performance 

in operations, rendering it a suitable option for hostile 

surveillance. 

 

 

Key Words:  AMR, Surveillance, Open-Cv, YOLO v8, ROS2, 

Real Time Detection, Google Cloud, Twilio. 
 

 

1. INTRODUCTION 

The application of autonomous systems in surveillance and 
military use has experienced monumental growth in recent 
years. Advances in modern robotics and artificial intelligence 
(AI) have revolutionized how surveillance operations are 
carried out, with improvements in efficiency and protection of 
human life. Advanced navigation, detection, and 
communication features in autonomous mobile robots have 
made them a key tool across numerous fields, including border 
patrol, reconnaissance, and disaster response. These robots give 
unmatched situational awareness and mitigate operational 
difficulties in high-risk and sensitive environments. 

One of the key features of autonomous surveillance systems is 
that they can be deployed covertly but with real-time 
monitoring capabilities. Current solutions are mainly centered 
around particular functionalities such as navigation or detection 
but fail to provide an end-to-end approach combining stealth, 
autonomy, and smart detection. Especially in military missions, 
where stealth and versatility to natural environments are key, 
there is a requirement for systems that integrate with their 
environment but provide guaranteed surveillance. Addressing 

these challenges can significantly enhance the operational 
capabilities of such systems. 

Even with these advances, natural camouflage integration with 
autonomous navigation and intelligent detection has yet to be 
fully explored. Most research has centered on sensor accuracy 
improvement, path planning, or AI-based detection algorithms 
in a vacuum, rather than implementing all these technologies 
within a single, durable platform specifically intended for 
stealth military surveillance. A system that could move on its 
own, sense movement, and provide real-time notifications and 
yet be practically invisible to opponents would be a 
revolutionary leap forward in the discipline. 

The goal of this research is to conceptualize and create an 
autonomous surveillance robot with a stone-mimicking 
camouflage design, ROS2 for locomotion, and YOLOv8 for 
object detection. It is hypothesized that the robot will be able to 
conduct effective covert surveillance in military operations by 
camouflaging itself to become undetectable and delivering 
precise real-time warnings. The method includes designing a 
strong hardware-software integration platform, such as a mild 
steel chassis, LiDAR sensors, and an alert system. The result of 
this study will advance the general area of surveillance robotics 
by proving the viability of combining camouflage with state-
of-the-art AI and navigation technologies to increase 
operational stealth and efficiency. 

 

2. RELATED WORK AND OUR SYSTEM 

2.1 Related Work 

The recent developments in the area of autonomous 

surveillance robots have made it possible for robots to 

effectively move and observe different environments, such as 

military areas, industrial plants, and distant locations. Various 

navigation solutions have been proposed to handle issues like 

real-time obstacle avoidance, environmental mapping, and 

dynamic path planning. 

Integration of vision systems enabled by AI has transformed 

robotic observation by enabling instant detection of objects and 

humans in real-time. Older techniques made use of 2D LiDAR 

obstacle detection. Recently, cost-effectiveness of 3D depth 

cameras and LiDAR scanners has enhanced robustness and 

precision of robotic travel significantly. New technologies such 

as sparse multi-beam LiDAR and stereo vision have eliminated 

older raycasting methods, especially where objects have high 

mobility as their positions continuously change. 
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The Robot Operating System (ROS2) has become a pervasive 

framework for robot control and navigation. ROS1 was used 

extensively for the navigation of mobile robots, but with the 

release of ROS2 as a more scalable and efficient alternative, 

Navigation2 has gained favor. Navigation2 combines behavior 

trees for enhanced task coordination and hosts state-of-the-art 

mapping and localization algorithms optimized for real-time 

operation. 

One of the intrinsic difficulties of mobile robotics is 

Simultaneous Localization and Mapping (SLAM), where a 

robot can create a map of a novel environment and 

simultaneously calculate its own position on the map. A 

number of SLAM algorithms exist, grouped into filter-based 

(e.g., GMapping) and graph-based methods such as 

Cartographer, Karto SLAM, and SLAM Toolbox. With the 

requirement for accurate and real-time localization, our project 

employs SLAM Toolbox, which provides high-performance 

capabilities for long-term autonomous navigation in 

unstructured and structured environments. 

For object detection and tracking for human, our project uses 

YOLO (You Only Look Once) as it provides an appropriate 

balance of speed and accuracy. Among several object detection 

techniques, YOLO is the best for real-time processing and, 

hence, well suited for autonomous surveillance robots. YOLO 

has also found extensive usage in robotics, self-driving cars, 

and smart security systems as it can recognize many objects 

from a frame within a fraction of seconds. The YOLO model 

improved over several iterations, from YOLOv1 to current 

YOLOv8, with notable gains in detection speed and 

computational complexity.These approaches implemented 

sophisticated navigation and perception solutions, leveraging 

3D sensor information to promote awareness of the 

environment and collision avoidance. Traditional methods like 

A and Dynamic Window Approach (DWA)* were initially 

used for path planning. But with the growing need for real-time 

flexibility, contemporary AI-based algorithms coupled with 

deep learning-based perception models have improved the 

overall efficiency of autonomous surveillance robots, making 

them more dependable in complicated environments. 

B. Our System 

In this study, we are using ROS 2 Humble as the open-source 

middleware for our autonomous AGV surveillance robot. 

Building upon the foundation of ROS, ROS 2 provides 

essential libraries that enhance the flexibility and scalability of 

robotic development. It enables seamless hardware abstraction, 

allowing us to integrate various sensors, motors, and actuators 

through URDF (Unified Robot Description Format) and 

XACRO files. These descriptions define the physical and 

functional aspects of our robot, facilitating real-world and 

simulated applications. 

To create and experiment with our system in a simulated 

environment, we use Gazebo and RViz 2, both of which are 

open-source and commonly used in ROS-based robotic 

simulations. Gazebo is a physics-based simulation 

environment, and we can use it to design realistic virtual 

environments for the testing of navigation, obstacle avoidance, 

and surveillance tasks. We build our robot model and 

simulation environment based on URDF and SDF files. This 

allows us to simulate realistic operational environments prior 

to physically installing the robot, as shown in Fig. 1. 

Fig-1: Robot model in Gazebo virtual world 

Our autonomous surveillance robot is a four-wheeled AGV 

with a 360° 2D LiDAR sensor, an AI vision camera, and 2d 

lidar sensor to provide advanced perception and obstacle 

detection. These sensors are important in facilitating real-time 

navigation, object detection, and human tracking. The LiDAR 

sensor is constantly scanning the environment to create a 2D 

occupancy grid map, and the camera, which is coupled with AI-

based YOLO object detection, detects and tracks human 

movement. The structure of our AGV robot in detail is shown 

in Fig. 2. 

Fig-2: Robot description on Rviz 2. 

To implement and test our system in a simulated environment, 

we use Gazebo and RViz 2, which are open-source software 

tools commonly used in ROS-based robotic simulations. 

Gazebo is a physics-based simulation environment where we 

can build realistic virtual worlds to test navigation, obstacle 

avoidance, and surveillance missions. We build our robot 

model and simulation world using URDF and SDF files. This 

allows us to simulate real-world operational environments prior 

to physically deploying the robot, as shown in Fig. 1. 

RViz 2 is also used as a viewing tool for observing real-time 

sensor data such as laser scans, maps, and robot localization 

downloaded from the map server. RViz 2 further enables us to 

specify navigation goals and pose estimation, thus making it an 

important element while testing and verifying the robot's 

autonomous behavior in simulated and real-world 

environments. For autonomous navigation, our robot utilizes 

Simultaneous Localization and Mapping (SLAM) to construct 

a dynamic map of the environment and localize itself in that 

space. Different SLAM methods, including Karto SLAM, 

Gmapping, Hector SLAM, and SLAM Toolbox, are widely 

employed in mobile robots. In this research, though, we use 

Cartographer SLAM, which is a ROS 2 package designed for 

real-time autonomous navigation. SLAM cartographer offers 

http://www.ijsrem.com/
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high-accuracy 2D and 3D mapping with real-time loop closure 

detection, which is very appropriate for our surveillance use 

case. 

We implement real-time mapping and localization using 

Cartographer SLAM in our system to allow our surveillance 

robot to move around autonomously in complex dynamic 

environments. Cartographer, which is a graph-based SLAM 

algorithm, optimizes scan matching, trajectory building, and 

loop closure to efficiently build large-scale maps. Cartographer 

uses a two-stage SLAM approach in which local SLAM builds 

sub-maps and global SLAM optimizes the sub-maps to 

minimize errors. 

 

3. METHODOLOGY 
3.1 Cartographer 2D SLAM Algorithm 

We use Cartographer SLAM, a graph algorithm within the ROS 

2 setup, in our research to conduct accurate localization and 

mapping. Cartographer is a graph-based SLAM algorithm 

recognized for its efficacy in building huge maps by operating 

on a graph of robot poses and features. It is composed of a front-

end, which is responsible for scan matching, trajectory 

construction, and submap creation, and a back-end, which 

optimizes loop closures via the Google Ceres graph solver. The 

algorithm segments a big map into small sub-maps through 

local and global SLAM processes. The local SLAM process 

produces sub-maps through the alignment of several LiDAR 

scans in which each point in the grid is an occupancy 

probability, while global SLAM improves these sub-maps by 

executing loop closure, minimizing propagated errors. Global 

alignment is optimized using Sparse Pose Adjustment (SPA). 

Despite its official maintenance termination, Cartographer is 

still an effective tool for real-time SLAM applications. By 

incorporating Cartographer SLAM in our surveillance robot, 

we are able to have high-precision localization, real-time 

mapping, and effective navigation in dynamic spaces, which 

makes it very applicable to our purpose. 

Scan matching reduces the discrepancy between the present 

scan and the map: 

E = ∑𝑛
𝑖=1 ||𝑀(𝑆𝑡(𝑋𝑡)) − 𝑆𝑡(𝑋𝑡 − 1)||

2

 

where: 

𝑀(𝑆𝑡(𝑋𝑡)) is the projection of the scan into the map, 

𝑆𝑡(𝑋𝑡 − 1) is the predicted scan based on the previous pose. 

This optimization employs an iterative method, for example, 

the Iterative Closest Point (ICP) or a probabilistic 

approach.\Cartographer SLAM was integrated into RVIZ 2 in 

our work to create and display maps of the environment. 

LiDAR scan data were sent to the /scan topic so that the map 

could be formed and visualized in RVIZ 2, then map topics 

were turned on. The accuracy of the map formed was measured 

by checking the alignment with ground truth data. Figure 3 is 

RVIZ 2 and Gazebo on starting our virtual world from each of 

their working directories, and Figure 4 is three disparate maps 

created utilizing Cartographer SLAM in simulated 

environments. 

The maps generated were saved in the PGM file format and 

validated with ground truth information. In the mapping 

process, our autonomous robot explorer traversed the simulated 

terrain by exploiting the ros2_control package, a 

reimplementation of ros_control in ROS. The terrain was 

mapped with Cartographer SLAM employing default 

parameters, and the output was stored in YAML files for 

analysis. We noticed that Cartographer SLAM generated very 

accurate maps with effective loop closure optimization, 

minimizing errors and maximizing accuracy. A comprehensive 

analysis of our results will be elaborated later in the 

experimental section. 

For self-navigating, our robot used the produced Cartographer 

SLAM map as an input to navigate effectively. The AMCL 

(Adaptive Monte Carlo Localization) algorithm was used to 

give probabilistic localization so that the robot could travel 

accurately from one position to another. With the use of RVIZ 

2, the "2D Navigation Goal" functionality helped the robot 

move towards predefined destinations, and the "2D Pose 

Estimator" helped in initializing the robot's starting position in 

the environment. 

 
Fig-3: Robot model creating the map of the environment. 

 

 
Fig-4: Generated map results compared to ground truth with 

Cartographer SLAM 

3.2 Weapon and Face Detection Algorithm 

Here, we examine and evaluate the human detection algorithm 

that has been designed for indoor robots. Our model is intended 

to help robots navigate tasks like obstacle avoidance and 

ensuring safety of operation in indoor settings. Of the numerous 

object detection frameworks available, the YOLO (You Only 

Look Once) algorithm has become well known for its unusual 

blend of speed and accuracy, allowing for fast and consistent 

object identification. 

http://www.ijsrem.com/
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For our project, we are opting to utilize YOLOv8, the newest 

development in the YOLO family. Developed in January 2023 

by Ultralytics, YOLOv8 combines important architectural 

advancements and is able to process a wide variety of vision 

tasks—such as classification, object detection, segmentation, 

pose estimation, and tracking—all within a unified framework. 

These features are necessary for indoor robotic systems' real-

time, multi-aspect detection. 

The architecture of YOLOv8 utilizes an effective backbone for 

feature extraction, a neck that combines multi-scale features, 

and a detection head that outputs bounding boxes, object 

classes, and confidence scores. In addition, the algorithm uses 

novel loss functions like Varifocal Loss (VFL), Distribution 

Focal Loss (DFL), and Complete IoU (CIOU) loss. These 

losses sharpen the network's capacity to correctly classify 

objects and accurately localize them, which is essential when 

separating humans from other objects in a crowded indoor 

setting. 

Due to its smaller size and great accuracy, we recommend 

applying the YOLOv8-N variant for our human detection 

algorithm. The variant is most ideal for limited resource 

hardware platforms which are normally in indoor robots. Our 

experiment trials, elaborated in the next section, ascertain that 

YOLOv8-N gives the best detection capability, hence, 

improving the effectiveness and safety of the robots navigating. 

TABLE-1: ARCHITECTURE OF YOLOv8 VERSION 

 

4. EXPERIMENTAL RESULTS 
4.1 SLAM Cartographer Performance and 

Results 

 
The map was effectively created using the Cartographer SLAM 

approach with high accuracy, as depicted in Fig. 4. To assess 

the navigation performance, we measured the time it took for 

the robot to navigate to its assigned goal points in the mapped 

environment. The time measurement exercise was done in three 

phases with several test runs for each goal point. The mean time 

was then calculated to compare the efficiency and precision of 

the Cartographer SLAM approach in navigating the robot to its 

locations. 

 

 
Fig-5: Robot navigates to its destination in Map_1. 

 

A sophisticated and elaborate map, displayed in Map_1, was 

tested with various obstacles to analyze the navigation 

capability of our robot. Fig. 7 depicts the map while the robot 

is navigating towards its destination, and a green line represents 

the specified path. The goal points were specified using RViz's 

2D Goal Pose tool, which is represented by a green arrow. In 

the experiment, the robot was experimented with on Map_1 

using three goal points, as illustrated in Fig. 8, where every goal 

point is given specific coordinates. 

For our robot, the target goal points were around Goal Point 1 

(x = 3.91, y = -5.46, z = 0.0), Goal Point 2 (x = 8.63, y = -3.80, 

z = 0.0), and Goal Point 3 (x = 4.96, y = -2.49, z = 0.0). 

Navigation tasks were performed based on maps produced by 

various SLAM algorithms. Table III illustrates the time taken 

for the robot to arrive at each goal, and it was found that 

Cartographer SLAM achieved efficient navigation times with 

less fluctuation. Table IV illustrates the robot's position 

accuracy upon arriving at the goal versus the assigned goal. 

Accuracy percentages were 96.50% for Goal Point 1, 97.20% 

for Goal Point 2, and 91.90% for Goal Point 3. 

The navigation accuracy was computed by using Equation (4), 

which computes the error in terms of the Euclidean distance 

between the true goal points and the final position of the robot. 

The greatest possible range is quantified as the distance 

between the goal point and the origin (0,0) in the virtual Gazebo 

environment. The Cartographer SLAM algorithm proved to 

have an excellent level of accuracy in navigation and mapping 

performance and is a good candidate for real-world 

deployment. Unlike GMapping, which depends heavily on 

LIDAR data and has a problem with large spaces and loop 

closures, Cartographer SLAM incorporates LIDAR-based 

mapping better, even without using an IMU sensor. 

Component YOLOv8 Description 

Input Preprocessed image with 

augmentation. 

Backbone Feature extraction using 

CSPDarknet. 

Neck Multi-scale feature fusion 

(FPN + PAN). 

Head Predicts bounding boxes 

and classes. 

Loss Functions VFL, DFL, CIOU 

(Complete IoU) 

http://www.ijsrem.com/
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Fig-6: The Map_1 with 3 different goal points. 

 

TABLE-2: THREE STATION NAVIGATION TIME 

CARTOGRAPHER(S) 

 1st 

destination 

2nd 

destination 

3rd 

destination 

Test 1 36.10 40.80 55.80 

Test 2 35.95 42.50 54.70 

Test 3 35.60 42.20 55.10 

Average 35.88 42.16 55.20 

 

TABLE-3: DISTANCE ACCURACY OF GOAL POINTS 

CARTOGRAPHER(M) 

 Goal point 1 Goal point 2 Goal point 3 

Test 1 x: 3.91  

y: -5.46 

x: 8.63  

y: -3.80 

x: 4.96 

y: -2.49 

Test 2 x: 3.92 

y: -5.45 

x: 8.62  

y: -3.81 

x: 4.97  

y: -2.48 

Test 3 x: 3.90  

y: -5.47 

x: 8.64  

y: -3.79 

x: 4.95 

y: -2.50 

Average x: 3.91  

y: -5.46 

x: 8.63 

y: -3.80 

x: 4.96  

y: -2.49 

Accuracy 96.50% 97.20% 91.90% 

 

4.2 Evaluation Metrics for Mapping and Localization: 

4.2.1  Mapping Accuracy 

The generated map is validated in terms of accuracy using the 

Root Mean Square Error (RMSE), which measures the 

difference between LIDAR scan points and ground truth map. 

The lower the RMSE, the more accurate the map. 

RMSE = 

√
1

𝑁
∑𝑁

𝑖=1 ||𝑃𝑖𝐶𝑎𝑟𝑡𝑜𝑔𝑟𝑎𝑝ℎ𝑒𝑟 − 𝑃𝑖𝐺𝑟𝑜𝑢𝑛𝑑 𝑇𝑟𝑢𝑡ℎ ||
2
 

where: 

PiCartographer is the i-th point of the Cartographer map, 

PiGround Truth is the ground truth map's corresponding point. 

4.2.2  Localization Error 

The robot's estimated position accuracy is measured in 

terms of pose error, which indicates the difference 

between the estimated ground truth and actual positions. 

This guarantees accurate localization for autonomous 

navigation. 

 

𝐸𝑟𝑟𝑜𝑟𝑝𝑜𝑠𝑒  = √(𝑥𝑡 − 𝑥𝑡
𝐺𝑇)2 + (𝑦𝑡 − 𝑦𝑡

𝐺𝑇)2 + (𝜃𝑡 − 𝜃𝑡
𝐺𝑇)2 

where: 

(𝑥𝑡 , 𝑦𝑡 , 𝜃𝑡) is the estimated pose, 

(𝑥𝑡
𝐺𝑇, 𝑦𝑡

𝐺𝑇 , 𝜃𝑡
𝐺𝑇

) is the ground truth pose. 

4.2.3  Loop Closure Performance 

Loop closure success is measured by the map error 

improvement from before and after correction. Greater 

percentage improvement indicates better error reduction, 

resulting in a more accurate and consistent map during longer 

navigation. 

Improvement(%) = 
𝐸𝑢− 𝐸𝑐

𝐸𝑢
 × 100 

where: 

𝐸𝑢 is the map error before loop closure, 

𝐸𝑐 is the map error after loop closure. 

4.3  Weapon and Face Detection Result: 

 

Experiments were performed to train and test YOLOv8 on a 

specially prepared dataset. The training model was run on 

an Windows platform with AMD Ryzen 5 and 16 GB of 

RAM. The model was trained for 50 epochs for the best 

performance. 

 

4.3.1  Datasets and Evaluation Metrics: 
a) Dataset Properties 

We used a dataset specially prepared for human detection in 

this research. The dataset was preprocessed through data 

augmentation operations like Blur, MedianBlur, ToGray, 

and CLAHE to make it more robust. The dataset can be 

mathematically represented as: 
 

   N = 𝑁𝑡𝑟𝑎𝑖𝑛+ 𝑁𝑣𝑎𝑙+ 𝑁𝑡𝑒𝑠𝑡 
Instance Distribution (C): For each class ci, the total 

number of instances is: 

   Ic = ∑
𝑁𝑐
𝑖 = 1 𝑥𝑖 

http://www.ijsrem.com/
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This provides an equally weighted and representative 

dataset for training and testing. 

 

b) Evaluation Metrics 
In order to measure the performance of the model in human 

detection, we utilized standard object detection evaluation 

metrics by placing emphasis on Precision, Recall, and Mean 

Average Precision (mAP) over different Intersections over 

Union (IoU) thresholds. We mathematically define these 

measures as follows 

Precision (P): Indicates the proportion of accurate positive 

predictions.   

P = 
𝑇𝑃

𝑇𝑃 +𝐹𝑃
 

Recall (R): Calculates the percentage of correctly recognized 

objects out of all ground truth annotations. 

  R = 
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

 

 
Fig-7: Confusion matrix 

Mean Average Precision (mAP@50-95): Assesses accuracy at 

various IoU thresholds. 

𝑚𝐴𝑃50= 
1

𝐶
∑𝑐

𝑖 = 1 𝐴𝑃𝑖 

Intersection over Union (IoU): Tracks the overlap of the 

predicted bounding box with the ground truth bounding box. 

 

IoU = 
𝐴𝑟𝑒𝑎 𝑜𝑓 𝑂𝑣𝑒𝑟𝑙𝑎𝑝

𝐴𝑟𝑒𝑎 𝑜𝑓 𝑈𝑛𝑖𝑜𝑛
 

where, 

Area of Overlap = 𝐵𝑝𝑟𝑒𝑑∩ 𝐵𝑡𝑟𝑢𝑒 

Area of Union = 𝐵𝑝𝑟𝑒𝑑∪ 𝐵𝑡𝑟𝑢𝑒 

4.3.2  Model Training and Performance: 
The trained model was tested in terms of mAP@50, mAP@50-95, 

Precision, and Recall. The resulting values of the trained 

YOLOv8 model are as follows: 

TABLE-4: STATISTICAL ANALYSIS 

Metric Mean 

(μ) 

Standard 

Deviation (σ) 

95% Confidence 

Interval (CI) 

Precision 88.3% 1.5% 87.3% – 89.3% 

Recall 83.8% 2.1% 82.4% – 85.2% 

mAP@50 85.7% 1.8% 84.7% – 86.7% 

 
Precision: 71.2% – Exhibits high confidence in detections. 

Recall: 61.2% – Indicates room for improvement in capturing all 

instances that are relevant. 

mAP@50: 69.6% – Reflects a high capability to detect objects at a 

minimal IoU threshold. 

mAP@50-95: 47.9% – Exhibits decent performance at different 

IoU thresholds. 

 

Model Size and Performance: The YOLOv8 model applied to this 

research is optimized for real-time performance with: 

Parameters: 3M – Space-efficient for deployment. 

GFLOPs: 8.1 – Moderate computation expense for processing. 

Training Performance: Training of the model took place for 50 

epochs, where training was performed in around 2.4 hours 

using a CPU. Use of a GPU would minimize training time 

drastically. 

 
Fig-8: Training and Validation Metrics 

a) Optimization Analysis 

The training of the model was optimized for human detection 

performance. The total loss function consisted of: 

Box Loss (𝐿𝑏𝑜𝑥): 

  𝐿𝑏𝑜𝑥= 
1

𝑁
∑𝑁

𝑖 = 1 𝑆𝑚𝑜𝑜𝑡ℎ𝐿1(𝑥𝑖, 𝑦𝑖) 

 
Classification Loss (𝐿𝑐𝑙𝑠): 

 𝐿𝑐𝑙𝑠= - 
1

𝑁
∑𝑁

𝑖 = 1 ∑𝐶
𝑐 = 1 yi,clog(pi,c) 

 
Overall Loss (𝐿𝑡𝑜𝑡𝑎𝑙): 

 𝐿𝑡𝑜𝑡𝑎𝑙 = α𝐿𝑏𝑜𝑥+β𝐿𝑐𝑙𝑠+γ𝐿𝑑𝑓𝑖 

http://www.ijsrem.com/
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Fig-9: F1-Confidence curve 

b) Model Performance 

The performance of the YOLOv8 model is evaluated in terms 

of inference time and computational cost. The inference time  

is computed by dividing the total prediction time by the test 

sample count to provide a measure of real-time evaluation. In 

addition, the computational expense is measured by GFLOPs 

(Giga Floating Point Operations), which is the total operations 

in inference normalized to billions. These metrics help evaluate 

the model’s suitability for real-time applications, balancing 

accuracy with processing efficiency. 

Inference Time (𝑇𝑖𝑛𝑓): 

 𝑇𝑖𝑛𝑓= 
𝑇𝑜𝑡𝑎𝑙 𝑇𝑖𝑚𝑒 𝑓𝑜𝑟 𝐼𝑛𝑓𝑒𝑟𝑒𝑛𝑐𝑒

𝑁𝑡𝑒𝑠𝑡
 

GFLOPs Calculation: 

 GFLOPs = 
𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠

109
 

Fig-10: Model Performance 
 
 
Above image contains four different visualizations commonly 

used in data analysis: 

A bar graph showing the frequency of each type of weapon, 

with categories shown in different colors. 

An intricate grid-based visualization, showing bounding boxes 

or spatial mapping. 

A scatter plot with a distribution of points in a 2D space with 

greater density in the middle. 

A scatter plot or heatmap representing data distribution along 

width and height. 

 

 

 
Fig-11: Real Time Detection 

 

CONCLUSIONS 

 
Through this research, we effectively used autonomous 

mapping and navigation for our surveillance robot in ROS 2 

and Cartographer SLAM. The use of 2D LiDAR, Gazebo 

simulation, and RViz 2 visualization provided real-time 

mapping and localization, and ensured precise perception of the 

environment. We also included the YOLOv8 object detection 

model for real-time threat detection to improve the robot's 

surveillance system. Our experiments showed that 

Cartographer SLAM effectively builds large-scale maps with 

optimized loop closure and enhanced localization accuracy, 

while YOLOv8 detects objects accurately. This synergy 

renders our system very well suited for real-time surveillance. 
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