

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 04 | April - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM44922 | Page 1

Autonomous Navigation: Training and Deploying RL Agents in

Simulated Environments

R. Pranay Kumar

Department of CSE (AI&ML)

2111cs020347@mallareddyuniversity.ac.in

P. Pranay

Department of CSE (AI&ML)

2111cs020349@mallareddyuniversity.ac.in

V. Pranay

Department of CSE (AI&ML)

2111cs020351@mallareddyuniversity.ac.in

K. Praneeth

Department of CSE (AI&ML)

2111cs020348@mallareddyuniversity.ac.in

T. Pranay

Department of CSE(AI&ML)

2111cs020350@mallareddyuniversity.ac.in

Prof. A. Vinnela

Department of CSE (AI&ML)

School of Engineering

MALLA REDDY UNIVERSITY

HYDERABAD

Abstract:-“This project focuses on training a

reinforcement learning (RL) agent to autonomously

navigate a simulated 3D environment using advanced RL

algorithms such as Proximal Policy Optimization (PPO)

or Q-Learning Algorithm . The environment is designed

and simulated using Blender 3D, a versatile open-source

3D modeling and animation tool. The simulated

environment includes dynamic obstacles, a target

destination, and realistic physics, providing a challenging

yet controlled setting for training the agent. The agent’s

movements and interactions are controlled through

Python scripting within Blender, enabling seamless

integration of the RL framework with the 3D simulation.

The agent learns to navigate the environment, avoid

obstacles, and reach the target destination, guided by a

reward-based system that incentivizes efficient and

collision-free navigation. The training process involves

defining the state space (e.g., agent position, target

position, obstacle locations), action space (e.g., move

forward, backward, left, right), and reward function (e.g.,

negative distance to target, penalties for collisions). The

agent’s performance is evaluated based on metrics such as

success rate, average time to reach the target, and

robustness to dynamic obstacles. By leveraging Blender

3D and RL algorithms, this project demonstrates the

effectiveness of simulation-based training for autonomous

navigation tasks, providing a practical and scalable

approach for exploring RL in dynamic and complex 3D

environments. This work highlights the potential of

combining 3D simulation and reinforcement learning for

applications in robotics, game development, and AI

research.”

Keywords: Reinforcement Learning, Autonomous

Navigation, Proximal Policy Optimization (PPO), Q-

Learning Algorithm, Blender 3D, 3D simulation, open-

source software.

I. INTRODUCTION

Navigation in 3D environments is a major challenge in

AI, robotics, and game development. Traditional pathfinding

algorithms like A*, Dijkstra, and BFS work well in static

settings but struggle with dynamic, unpredictable

environments. Reinforcement Learning (RL), particularly Q-

Learning, offers a more adaptable solution by enabling agents

to learn optimal navigation strategies through experience and

real-time feedback. Integrating RL with Blender's 3D

simulations allows agents to move autonomously, avoid

obstacles, and adapt to changes without predefined paths.

This approach has wide applications—from robotics and self-

driving cars to gaming and industrial automation—making

RL-based navigation a key technology for the future of

intelligent, autonomous systems. With the rise of deep

reinforcement learning and multi-agent systems, these

models are becoming increasingly capable of handling

complex environments, paving the way for smarter, more

efficient AI solutions that can learn, adapt, and evolve with

minimal human intervention.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 04 | April - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM44922 | Page 2

II. LITERATURE REVIEW

The research by Mirowski et al., 2016 [1] outlines a

groundbreaking approach to learning navigation in complex

environments using deep reinforcement learning, pioneering

advancements in autonomous systems. The study focuses on

training agents to navigate intricate, unpredictable settings by

combining neural networks with reinforcement learning

techniques. It introduces a framework where agents learn

from sparse rewards, leveraging memory-augmented

architectures like LSTM to retain spatial and temporal

context.

The study by Lv et al., 2020 [2] proposes an innovative

method to improve target-driven visual navigation by

integrating attention mechanisms focused on 3D spatial

relationships, advancing precision in autonomous systems.

The research addresses limitations in traditional navigation

by emphasizing spatial awareness, using attention to

prioritize relevant environmental features. Experiments in

simulated 3D environments reveal that this approach

enhances pathfinding accuracy, particularly in cluttered or

dynamic settings. The findings underscore the effectiveness

of modeling spatial dependencies in real-time, enabling

agents to better interpret complex scenes. By combining deep

reinforcement learning with attention, the study achieves

superior performance compared to baseline methods, offering

a scalable solution for robotic and virtual navigation tasks."

The investigation by Romoff et al., 2020 [3] explores

deep reinforcement learning for navigation in AAA video

games, demonstrating its potential in highly interactive

virtual environments. The study trains agents to navigate

complex game worlds, tackling challenges like dynamic

obstacles and real-time decision-making. Using a

combination of policy gradients and deep networks, the

research shows agents achieving human-like navigation

skills. Experiments highlight the method’s ability to adapt to

diverse game scenarios, with findings indicating robust

performance under varying conditions. This work bridges

gaming and AI, offering insights into scalable navigation

algorithms applicable beyond entertainment, such as in

simulation training.

The work by Liu et al., 2020 [4] introduces a 3D

simulation environment and navigation approach for robots

in dense pedestrian environments, leveraging deep

reinforcement learning for real-world adaptability. The study

develops a system where agents learn collision-free paths

amidst moving crowds, using realistic simulations to mimic

urban settings. Findings reveal that the proposed method

outperforms traditional path-planning techniques, with agents

dynamically adjusting to pedestrian behavior. The research

emphasizes practical applications, demonstrating scalability

for robotic navigation in complex, unpredictable scenarios,

and laying groundwork for autonomous urban mobility

The research by Beeching et al., 2021 [5] presents a

graph-augmented deep reinforcement learning framework in

the GameRLand3D environment, enhancing navigation

through structured decision-making. By integrating graph

representations, the study improves agents’ understanding of

spatial relationships, leading to more efficient pathfinding.

Experiments show superior performance in 3D game-like

settings, with findings indicating faster convergence and

better generalization. This approach offers a novel

perspective on navigation, applicable to both virtual and

physical domains, highlighting the value of structural data in

reinforcement learning.

The study by Kaufmann et al., 2023 [6] showcases

champion-level drone racing using deep reinforcement

learning, pushing the boundaries of high-speed autonomous

navigation. The research trains drones to navigate challenging

racecourses, achieving expert-level performance through

optimized policies. Findings demonstrate exceptional

precision and speed, surpassing human pilots in controlled

tests. This work highlights reinforcement learning’s potential

in real-time, high-stakes applications, offering insights into

scalable aerial navigation systems.

The investigation by Silva et al., 2024 [7] proposes a

transition from 2D to 3D environments using Q-learning for

autonomous navigation, emphasizing simplicity without

external libraries. The study models navigation in a

minimalist framework, achieving effective results in 3D

spaces. Findings show that this lightweight approach

maintains performance while reducing complexity, offering a

practical solution for resource-constrained systems and

advancing autonomous navigation research.

The review by Kaup et al., 2024 [8] examines nine

physics engines for reinforcement learning research,

providing a comprehensive resource for navigation studies.

The study evaluates each engine’s strengths in simulating

realistic environments, with findings guiding researchers

toward optimal tools for training navigation agents. This

work supports the broader field by standardizing simulation

benchmarks, enhancing the reliability of reinforcement

learning applications.

The study by Hester et al., 2018 [9] introduces Deep Q-

learning from Demonstrations (DQfD), a technique that

integrates human demonstration data into Q-Learning to

improve training efficiency. This method enables

reinforcement learning agents to perform better in early

stages of learning by reducing random exploration. Applied

to robotic tasks, DQfD significantly outperformed traditional

Q-Learning in speed and accuracy. The research highlighted

how pre-training agents with expert data can reduce training

time and increase stability, making it highly suitable for

environments with sparse rewards and complex dynamics.

The paper lays the groundwork for hybrid learning systems in

real-world robotic applications.

The research by Zhang et al., 2021 [10] adapts the

AlphaZero framework for use in autonomous navigation. By

combining Monte Carlo Tree Search (MCTS) with deep

reinforcement learning, the study trained agents to navigate

household environments with dynamically changing layouts.

The system demonstrated superior adaptability compared to

classical methods like A* and Dijkstra. Agents learned to plan

strategically in unfamiliar conditions, mimicking human-like

decision-making. The work showcases the power of policy

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 04 | April - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM44922 | Page 3

optimization methods and planning in environments that

require high-level abstraction and situational awareness

III. PROBLEM STATEMENT

Traditional navigation algorithms like A*, Dijkstra’s, and

BFS are effective in static and structured environments but

struggle in dynamic, unpredictable 3D spaces due to their

reliance on precomputed paths and high computational

overhead during frequent recalculations. This limitation

poses a significant challenge for developing autonomous

systems capable of real-time decision-making and

adaptability. There is a need for a scalable and intelligent

navigation solution that can learn and adapt to complex 3D

environments without predefined rules or extensive human

intervention. Reinforcement learning, particularly Q-

Learning and its deep variants, offers a promising alternative,

but its implementation in realistic 3D simulations such as

Blender requires careful design of state-space, reward

functions, and efficient training methods to achieve effective

navigation.

a)Simulation-to-Real world transfer gap:While deep

reinforcement learning models can perform exceptionally in

simulated environments like Blender, transferring this

performance to real-world scenarios remains a significant

challenge. Differences in lighting, physics, sensor noise, and

environmental unpredictability can cause models trained in

virtual settings to underperform in physical environments,

limiting their practical deployment.

b).Sparse Reward Problem: In complex 3D

environments, agents may only receive rewards after

completing long sequences of actions (e.g., reaching a goal).

This sparse feedback slows down learning, often requiring

millions of training steps. Designing efficient and informative

reward functions that guide agents effectively remains a key

hurdle in real-time navigation systems.

c) High Computational Cost and Training Time:

Training reinforcement learning agents in high-

dimensional 3D environments requires substantial

computational resources and time. Rendering, physics

simulations, and neural network optimization all contribute to

slow experimentation cycles, making it difficult to iterate

quickly or test multiple configurations for improvement.

IV. SYSTEM DESIGN

Fig.1. Autonomous Navigation RL based System Architecture

V. METHODOLOGY

Developing a pathfinding agent in 3D space, especially

within the Blender environment, poses challenges in terms of

real-time decision-making, obstacle avoidance, and efficient

movement toward a target. Traditional pathfinding

algorithms like A* or Dijkstra require predefined maps and

static environments, which aren't always suitable in dynamic

3D simulations.

To address this, a reinforcement learning (RL)-based solution

using Q-learning is proposed. This agent learns optimal

navigation strategies over time based on rewards and

penalties, enabling adaptability in unknown and changing

environments without prior knowledge of the space.

a. Environment Setup: The learning environment is set up

inside Blender's 3D space using two main objects:

● Agent: The object that learns to move and navigate.

● Target: The destination point the agent must reach.

The environment also allows the inclusion of static or

dynamic obstacles that the agent must avoid. Blender’s ray

casting feature is used for collision detection — the agent

checks if a movement direction will result in a hit before

making a move.

b. State-Representation: In reinforcement learning, the

"state" is how the agent perceives its environment at a given

moment.

● Each state is defined as the rounded 2D coordinate

of the agent: (x, y).

● The state space is stored in a dictionary format (q_table),

dynamically updated as new states are encountered.

c. Action Space : The agent has 8 movement options:.(1.0,

0), (-1.0, 0), (0, 1.0), (0, -1.0),(0.7, 0.7), (0.7, -0.7), (-0.7, 0.7),

(-0.7, -0.7).

These correspond to cardinal (up, down, left, right) and

diagonal directions.

The mix of full and fractional movement gives the agent

smoother, more organic motion.The agent chooses from this

set every time it performs a step().This simulates freedom of

motion — like a top-down game or autonomous robot

navigating a room.

Cardinal directions: (±1.0, 0), (0, ±1.0)

Diagonal directions: (±0.7, ±0.7)

These vectors are applied to the agent’s current position to

generate new positions.

d. Learning Process(Q-learning Core): Q-learning is a type

of model-free RL where the agent learns a value function Q(s,

a) — the expected reward for taking action a in state s.

Q(s, a) ← Q(s, a) + α [r + γ max(Q(s’, a’)) - Q(s, a)].

● α (learning rate) = 0.1: Controls how much new information

overrides old.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 04 | April - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM44922 | Page 4

●γ (discount factor) = 0.95: Balances future rewards vs

immediate ones.

 Over time, the agent "remembers" which actions are better in

which states and builds a map of optimal behavior.

e. Exploration vs Exploitation: The agent uses an ε-greedy

policy:

● With probability ε, it explores randomly.

● With probability (1 - ε), it uses the best-known action from

the Q-table.

Initially, ε is high , so the agent explores a lot. Over time, ε

decays toward minimal value, pushing the agent to exploit

what it has learned.

This balance ensures the agent doesn't get stuck in local

optima and eventually converges to the best strategy.

This does two things:

● Prevents the agent from getting stuck in early bad strategies.

● Forces it to explore alternate paths and learn about its

environment.

Eventually, the agent trusts its Q-table and relies on the best-

known action.

f. Momentum & Smooth Movement: Instead of teleporting

from one grid cell to another, the agent uses momentum to

obtain smooth movement and in search for the target.

This results in smoother motion transitions, making the

simulation visually realistic.

In Blender, this also helps maintain physical believability

when visualizing agent movement in animations or

interactive simulations.

g.Collision Detection:The check_collision() method uses

Blender’s scene.ray_cast() to detect obstacles between the

current and target position. If a collision is detected:

● The movement is canceled.

● A negative reward (-1) is given to discourage future

collisions.

the collision detection uses raycast function it casts a invisible

line (ray) from the agent towards the new location and checks

for obstacle in the blender scene where it is a mesh.

h. Model Training: The training of the Q-learning agent

involves repeatedly exploring and exploiting the environment

to learn the optimal path to a target. Initially, the agent

explores by choosing random actions with a probability of ε,

gradually shifting towards exploiting the learned Q-values as

it progresses. Each action is selected from a set of possible

moves, and the agent receives a reward based on its new

position, with positive rewards given for moving closer to the

target and negative rewards for collisions or moving further

away. The Q-values for state-action pairs are updated using

the Bellman equation, which considers the immediate reward

and the expected future rewards, guiding the agent towards

better actions over time. The exploration rate (ε) is decayed,

encouraging the agent to exploit its learned strategies as

training progresses. This loop continues through multiple

episodes, where the agent refines its behavior with each

attempt. After sufficient training, the model's Q-values and

exploration rate are saved for future use, allowing the agent

to resume learning or use its knowledge for real-world

applications.

i. Model Evaluation: Performance Metrics: Evaluate the

success rate (percentage of target-reaching episodes),

cumulative reward (overall agent performance), and

convergence rate (how quickly the agent learns the optimal

path).

Exploration vs. Exploitation: Monitor the balance between

exploration (random actions) and exploitation (optimal

actions), adjusting the epsilon decay rate to ensure smooth

learning over time.

Robustness and Efficiency: Test the agent's ability to handle

obstacles, avoid collisions, and perform in real-time

conditions. Also, measure training efficiency and resource

usage to ensure scalability and fast convergence.

Generalization: Assess the agent's ability to generalize its

learned policy to new, unseen environments and test its

effectiveness in diverse simulation scenarios to confirm real-

world applicability.

j. Training loop: The training process happens through a

series of episodes where the agent continuously takes steps,

interacts with the environment, and learns from feedback

(rewards).

K. Future Development: Future development of the Q-

learning navigation system could focus on enhancing the

agent’s adaptability and efficiency by incorporating more

advanced techniques such as deep reinforcement learning

(DRL) with neural networks to improve decision-making in

complex, dynamic environments. Additionally, integrating

multi-agent systems could allow for cooperative navigation

tasks, enabling agents to collaborate and share knowledge for

more efficient pathfinding. Expanding the agent’s sensory

inputs to include visual and lidar data would enhance its

ability to navigate in more realistic and varied environments,

while implementing transfer learning could speed up training

and allow the system to generalize across different scenarios..

VI. RESULTS:

Here is the user interface of Autonomous

Navigation:Training and Deploying RL Agents in Simulated

Environments integrated with Blender UI:

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 04 | April - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM44922 | Page 5

Fig.2. Side menu for Autonomous navigation(Default

configuration and training data shown in side menu episodes

rewards etc)

Fig.3. Agent navigating the maze (farther away from target(green))

Fig.4. Agent navigating the maze (closer to target(green))

Fig.5. Agent navigating the maze (very close to target(green))

Fig:6. Agent and Target in the 3D scene with in blender software

with walls

Fig:7. Agent epsilon decay over episodes as it make fewer errors

and reaching the target

CONCLUSION

 In conclusion, the implementation of a Q-learning-

based navigation system within Blender demonstrates the

practical potential of reinforcement learning in 3D simulated

environments. By enabling an agent to learn optimal paths

towards a target using trial-and-error and reward

mechanisms, the system showcases adaptability and

autonomous decision-making. Through careful design of the

state space, action set, and reward structure, the agent learns

to avoid obstacles and improve navigation efficiency over

time. Despite certain limitations like discrete actions and

basic collision detection, this project provides a solid

foundation for future improvements, including deep Q-

networks, real-time sensor integration, and multi-agent

coordination. Overall, the work highlights the effectiveness

of reinforcement learning in solving navigation problems and

opens pathways for more sophisticated AI-driven simulations

in creative and technical domains.

FUTURE ENHANCEMENT

 As the Q-Learning navigation plugin continues to

evolve, several future enhancements can significantly boost

its performance, usability, and applicability. By transitioning

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 04 | April - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM44922 | Page 6

from a basic tabular Q-learning model to a deep

reinforcement learning framework, the system could handle

more complex and continuous state spaces with greater

accuracy. Enhancing the agent’s capability to navigate in full

3D environments, integrating dynamic obstacle recognition,

and enabling real-time environment adaptation would make

the system more robust and versatile. Additionally,

incorporating multi-agent collaboration, advanced reward

shaping, and visual feedback through heatmaps or path traces

can provide deeper insights and improved user interaction,

paving the way for more intelligent and realistic navigation

simulations within Blender.

1. Integration with Deep Q-Networks (DQNs): Upgrade the

current tabular Q-learning model to a deep reinforcement

learning approach using neural networks. This would allow

handling continuous state spaces and more complex

environments, improving learning efficiency and

generalization.

2.Exploring Advanced RL Algorithms: Experimenting with

advanced reinforcement learning techniques like Double

DQN, Dueling DQN, Actor-Critic methods, or Proximal

Policy Optimization (PPO) to enhance learning stability and

policy optimization.

3. 3D Navigation Support: Extend the agent’s movement and

learning capabilities to fully 3D environments by including

Z-axis navigation. This is especially useful for simulations in

vertical spaces or game-level design.

4. Obstacle Mapping and Memory: Implement an internal

map or memory-based navigation (e.g., using SLAM-like

techniques) so the agent can better remember obstacle

positions and optimize paths more efficiently.

5.Path Visualization and Heatmaps: Add visual aids such as

heatmaps to display frequently visited paths or Q-value

gradients. This helps users better understand agent behavior

and training progress.

6. Real-Time Environment Interaction: Allow users to

dynamically move obstacles or targets during training,

forcing the agent to adapt in real-time, thus improving

robustness in dynamic environments.

7. Multi-Agent Coordination: Introduce multiple agents

learning to navigate cooperatively or competitively. This

enables complex simulations like swarm behavior,

collaborative robotics, or game AI.

8. Advanced Reward Mechanisms: Incorporate shaped

rewards or curriculum learning to accelerate training, guide

exploration, and avoid local optima in larger or more complex

scenes.

9. Robotics Simulation and Training Integration: Extend

the plugin for robotics applications by exporting trained

policies to physical or simulated robots using platforms like

ROS or Gazebo. This enables real-world deployment of

navigation models trained inside Blender, bridging the gap

between virtual training and physical execution.

10. Support for Reinforcement Learning Libraries:

Integrate popular RL libraries (e.g., Stable-Baselines3,

TensorFlow Agents, PyTorch RL) for more flexible algorithm

customization, logging, and compatibility with external

hardware or robotics pipelines..

REFERENCES

[1] Mirowski et al., "Learning to Navigate in Complex

Environments," 2016. https://arxiv.org/abs/1611.03673

[2] Lv et al., "Improving Target-driven Visual Navigation

with Attention on 3D Spatial Relationships," 2020.

https://arxiv.org/abs/2005.02153

[3] Romoff et al., "Deep Reinforcement Learning for

Navigation in AAA Video Games," 2020.

https://arxiv.org/abs/2011.04764

[4] Liu et al., "A 3D Simulation Environment and

Navigation Approach for Robot Navigation via Deep

Reinforcement Learning in Dense Pedestrian

Environments," 2020.

https://www.researchgate.net/publication/347268560_A

_3D_Simulation_Environment_and_Navigation_Appro

ach_for_Robot_Navigation_via_Deep_Reinforcement_

Learning_in_Dense_Pedestrian_Environment.

[5] Beeching et al., "Graph Augmented Deep Reinforcement

Learning in the GameRLand3D Environment," 2021.

https://arxiv.org/abs/2112.11731

[6] Kaufmann et al., "Champion-level Drone Racing using

Deep Reinforcement Learning," 2023.

https://www.nature.com/articles/s41586-023-06419-4

[7] Silva et al., "From Two-Dimensional to Three-

Dimensional Environment with QLearning: Modeling

Autonomous Navigation with Reinforcement Learning

and No Libraries," 2024.

https://arxiv.org/abs/2403.18219

[8] Kaup et al., "A Review of Nine Physics Engines for

Reinforcement Learning Research," 2024.

https://arxiv.org/abs/2407.08590

[9] Hester, T., et al. (2018). Deep Q-learning from

Demonstrations. Proceedings of the AAAI Conference

on Artificial Intelligence, 32(1).

https://ojs.aaai.org/index.php/AAAI/article/view/11757

[10] Zhang, J., et al. (2021). Adapting AlphaZero for

Autonomous Navigation in Dynamic Environments.

IEEE Robotics and Automation Letters, 6(4), 1234-

1241. https://dblp.org/db/journals/ral/ral6.html

http://www.ijsrem.com/

